1
|
Xu Q, Wang X, Wang N, Li S, Yao X, Kuang H, Qiu Z, Ke D, Yang W, Guan Y. Nitrogen inhibition of nitrogenase activity involves the modulation of cytosolic invertase in soybean nodule. J Genet Genomics 2024; 51:1404-1412. [PMID: 38950857 DOI: 10.1016/j.jgg.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Legume symbiotic nitrogen fixation (SNF) is suppressed by inorganic nitrogen (N) in the soil. High N inhibition of nitrogenase activity is associated with the deprivation of carbon allocation and metabolism in nodules. However, the underlying molecular mechanisms remain unclear. Here, we identify GmCIN1, which encodes a cytosolic invertase, as a gateway for the N-tuning of sucrose utilization in nodules. GmCIN1 is enriched in mature soybean nodules, and its expression is regulated by nitrogen status. The knockout of GmCIN1 using genome editing partially mimics the inhibitory effects of N on nitrogenase activity and sugar content and the impact of high N on nodule transcriptomes. This indicates that GmCIN1 partially mediates the high N inhibition of nodule activity. Moreover, ChIP-qPCR and EMSA reveal that SNAP1/2 transcription factors directly bind to the GmCIN1 promoter. In addition, SNAP1/2 may be involved in the repression of GmCIN1 expression in mature nodules at high N concentrations. Our findings provide insights into the involvement of the transcriptional tuning of carbon (C) metabolism genes by N-signaling modulators in the N-induced inhibition of nitrogenase activity.
Collapse
Affiliation(s)
- Qinzhen Xu
- College of Resources and Environment, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xin Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Nan Wang
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010000, China
| | - Suning Li
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Xiaolei Yao
- College of Resources and Environment, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Huaqin Kuang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Zhimin Qiu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang 325005, China
| | - Danxia Ke
- College of Life Sciences & Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Wenqiang Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuefeng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
2
|
Xue C, Liu R, Xia Z, Jia J, Hu B, Rennenberg H. Sulfur availability and nodulation modify the response of Robinia pseudoacacia L. to lead (Pb) exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135612. [PMID: 39182290 DOI: 10.1016/j.jhazmat.2024.135612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Both sulfur (S) supply and legume-rhizobium symbiosis can significantly contribute to enhancing the efficiency of phytoremediation of heavy metals (HMs). However, the regulatory mechanism determining the performance of legumes at lead (Pb) exposure have not been elucidated. Here, we cultivated black locust (Robinia pseudoacacia L.), a leguminous woody pioneer species at three S supply levels (i.e., deficient, moderate, and high S) with rhizobia inoculation and investigated the interaction of these treatments upon Pb exposure. Our results revealed that the root system of Robinia has a strong Pb accumulation and anti-oxidative capacity that protect the leaves from Pb toxicity. Compared with moderate S supply, high S supply significantly increased Pb accumulation in roots by promoting the synthesis of reduced S compounds (i.e., thiols, phytochelatin), and also strengthened the antioxidant system in leaves. Weakened defense at deficient S supply was indicated by enhanced oxidative damage. Rhizobia inoculation alleviated the oxidative damage of its Robinia host by immobilizing Pb to reduce its absorption by root cells. Together with enhanced Pb chelation in leaves, these mechanisms strengthen Pb detoxification in the Robinia-rhizobia symbiosis. Our results indicate that appropriate S supply can improve the defense of legume-rhizobia symbiosis against HM toxicity.
Collapse
Affiliation(s)
- Caixin Xue
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Rui Liu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Zhuyuan Xia
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Jin Jia
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China.
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
3
|
Zhang Y, Liu R, Liu Z, Hu Y, Xia Z, Hu B, Rennenberg H. Consequences of excess urea application on photosynthetic characteristics and nitrogen metabolism of Robinia pseudoacacia seedlings. CHEMOSPHERE 2024; 346:140619. [PMID: 37944768 DOI: 10.1016/j.chemosphere.2023.140619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Urea is the most frequently used nitrogen (N) fertilizer worldwide. However, the mechanisms in plants to cope with excess urea are largely unknown, especially for woody legumes that can meet their N demand by their own N2-fixation capacity. Here, we studied the immediate consequences of different amounts of urea application and exposure duration on photosynthesis, N metabolism, and the activity of antioxidative enzymes of Robinia pseudoacacia seedlings. For this purpose, seedlings were grown for 3 months under normal N availability with rhizobia inoculation and, subsequently, 50 mg N kg-1 was applied to the soil twice with urea as additional N source. Our results show that excess urea application significantly promoted photosynthesis, which increased by 80.3% and 84.7% compared with CK after the 1st and 2nd urea applications, respectively. The increase in photosynthesis translated into an increase in root and nodule biomass of 88.7% and 82.0%, respectively, while leaf biomass decreased by 4.8% after the first application of urea. The N content in leaves was 92.6% higher than in roots, but excess urea application increased the N content of protein and free amino acids in roots by 25.0%, and 43.3%, respectively. Apparently, enhanced root growth and N storage in the roots constitute mechanisms to prevent the negative consequences of excess N in the shoot upon urea application. Nitrate reductase (NR) activity of leaves and roots increased by 74.4% and 26.3%, respectively. Glutathione reductase (GR) activity in leaves and roots was enhanced by 337% and 34.0%, respectively, but then decreased rapidly to the initial level before fertilization. This result shows that not only N metabolism, but also antioxidative capacity was transiently promoted by excess urea application. Apparently, excess urea application initially poses oxidative stress to the plants that is immediately counteracted by enhanced scavenging of reactive oxygen species via enhanced GR activity.
Collapse
Affiliation(s)
- Yong Zhang
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China
| | - Rui Liu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China
| | - Zhenshan Liu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China
| | - Yanping Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China
| | - Zhuyuan Xia
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China.
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, PR China
| |
Collapse
|
4
|
Zhang G, Ahmad MZ, Chen B, Manan S, Zhang Y, Jin H, Wang X, Zhao J. Lipidomic and transcriptomic profiling of developing nodules reveals the essential roles of active glycolysis and fatty acid and membrane lipid biosynthesis in soybean nodulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1351-1371. [PMID: 32412123 DOI: 10.1111/tpj.14805] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/16/2020] [Accepted: 04/28/2020] [Indexed: 05/11/2023]
Abstract
Symbiotic rhizobia-legume interactions are energy-demanding processes, and the carbon supply from host cells that is critically required for nodulation and nitrogen fixation is not fully understood. Investigation of the lipidomic and carbohydrate profiles with the transcriptome of developing nodules revealed highly activated glycolysis, fatty acid (FA), 2-monoacylglycerol (2-MAG), and membrane lipid biosynthesis and transport during nodule development. RNA-sequence profiling of metabolic genes in roots and developing nodules highlighted the enhanced expression of genes involved in the biosynthesis and transport of FAs, membrane lipids, and 2-MAG in rhizobia-soybean symbioses via the RAML-WRI-FatM-GPAT-STRL pathway, which is similar to that in legume-arbuscular mycorrhizal fungi symbiosis. The essential roles of the metabolic pathway during soybean nodulation were further supported by analysis of transgenic hairy roots overexpressing soybean GmWRI1b-OE and GmLEC2a-OE. GmLEC2a-OE hairy roots produced fewer nodules, in contrast to GmWRI1b-OE hairy roots. GmLEC2a-OE hairy roots displayed different or even opposite expression patterns of the genes involved in glycolysis and the synthesis of FAs, 2-MAG, TAG, and membrane lipids compared to GmWRI1b-OE hairy roots. Glycolysis, FA and membrane lipid biosynthesis were repressed in GmLEC2a-OE but increased in GmWRI1b-OE hairy roots, which may account for the reduced nodulation in GmLEC2a-OE hairy roots but increased nodulation in GmWRI1b-OE hairy roots. These data show that active FA, 2-MAG and membrane lipid biosynthesis are essential for nodulation and rhizobia-soybean symbioses. These data shed light on essential and complex lipid metabolism for soybean nodulation and nodule development, laying the foundation for the future detailed investigation of soybean nodulation.
Collapse
Affiliation(s)
- Gaoyang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Muhammad Z Ahmad
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Beibei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sehrish Manan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuliang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanan Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St Louis, MO, 63121, USA
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
5
|
Zhou H, Yao X, Zhao Q, Zhang W, Zhang B, Xie F. Rapid Effect of Nitrogen Supply for Soybean at the Beginning Flowering Stage on Biomass and Sucrose Metabolism. Sci Rep 2019; 9:15530. [PMID: 31664126 PMCID: PMC6820794 DOI: 10.1038/s41598-019-52043-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/24/2019] [Indexed: 11/24/2022] Open
Abstract
Nitrogen application at the beginning flowering stage (R1 stage) increased the soybean grain yield, however, the rapid effect of enriched nitrogen at R1 growth stage on soybean dry matter accumulation and sugar metabolism is still unclear. Continuous high nitrogen (CHN), Continuous low nitrogen (CLN), Enriched nitrogen supply at R1 stage (ENS) treatments were applied on two soybean cultivars (Liaodou11, Liaodou14), to investigate the effect of enriched nitrogen on plant biomass accumulation and sucrose metabolism. After 12 h of ENS treatment, the root/shoot rate of both cultivars were lower than that of CLN, but at 24 h it was no significant difference between ENS and CLN. Enriched N at R1 stage, soybean kept a balance of sucrose synthesis and decomposition in leaf by affecting sucrose synthetase (SS) and sucrose phosphate synthase (SPS) activities. Under N limitation condition the plant dry matter accumulation supported root growth priority. Enriched N at R1 stage resulted in the rapid shoot biomass accumulation. In high yield cultivar, the shoot growth was priority to root growth, the common yield cultivar was on the contrary. Our result suggest that enrich N at R1 stage resulted in the accumulation of biomass in shoot rapidly.
Collapse
Affiliation(s)
- Hongli Zhou
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xingdong Yao
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Qiang Zhao
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Wei Zhang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Bo Zhang
- Virginia Tech Department of Crop, Soil and Environmental Sciences, Blacksburg, VA, USA
| | - Futi Xie
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
6
|
Liu A, Contador CA, Fan K, Lam HM. Interaction and Regulation of Carbon, Nitrogen, and Phosphorus Metabolisms in Root Nodules of Legumes. FRONTIERS IN PLANT SCIENCE 2018; 9:1860. [PMID: 30619423 PMCID: PMC6305480 DOI: 10.3389/fpls.2018.01860] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/30/2018] [Indexed: 05/19/2023]
Abstract
Members of the plant family Leguminosae (Fabaceae) are unique in that they have evolved a symbiotic relationship with rhizobia (a group of soil bacteria that can fix atmospheric nitrogen). Rhizobia infect and form root nodules on their specific host plants before differentiating into bacteroids, the symbiotic form of rhizobia. This complex relationship involves the supply of C4-dicarboxylate and phosphate by the host plants to the microsymbionts that utilize them in the energy-intensive process of fixing atmospheric nitrogen into ammonium, which is in turn made available to the host plants as a source of nitrogen, a macronutrient for growth. Although nitrogen-fixing bacteroids are no longer growing, they are metabolically active. The symbiotic process is complex and tightly regulated by both the host plants and the bacteroids. The metabolic pathways of carbon, nitrogen, and phosphate are heavily regulated in the host plants, as they need to strike a fine balance between satisfying their own needs as well as those of the microsymbionts. A network of transporters for the various metabolites are responsible for the trafficking of these essential molecules between the two partners through the symbiosome membrane (plant-derived membrane surrounding the bacteroid), and these are in turn regulated by various transcription factors that control their expressions under different environmental conditions. Understanding this complex process of symbiotic nitrogen fixation is vital in promoting sustainable agriculture and enhancing soil fertility.
Collapse
Affiliation(s)
- Ailin Liu
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Carolina A. Contador
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kejing Fan
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon-Ming Lam
- Centre for Soybean Research, State Key Laboratory of Agrobiotechnology, Shatin, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- *Correspondence: Hon-Ming Lam,
| |
Collapse
|
7
|
Dahro B, Wang F, Peng T, Liu JH. PtrA/NINV, an alkaline/neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC PLANT BIOLOGY 2016. [PMID: 27025596 DOI: 10.1016/j.envexpbot.2018.12.009] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Alkaline/neutral invertase (A/N-INV), an enzyme that hydrolyzes sucrose irreversibly into glucose and fructose, is essential for normal plant growth,development, and stress tolerance. However, the physiological and/or molecular mechanism underpinning the role of A/N-INV in abiotic stress tolerance is poorly understood. RESULTS In this report, an A/N-INV gene (PtrA/NINV) was isolated from Poncirus trifoliata, a cold-hardy relative of citrus, and functionally characterized. PtrA/NINV expression levels were induced by cold, salt, dehydration, sucrose, and ABA, but decreased by glucose. PtrA/NINV was found to localize in both chloroplasts and mitochondria. Overexpression of PtrA/NINV conferred enhanced tolerance to multiple stresses, including cold, high salinity, and drought, as supported by lower levels of reactive oxygen species (ROS), reduced oxidative damages, decreased water loss rate, and increased photosynthesis efficiency, relative to wild-type (WT). The transgenic plants exhibited higher A/N-INV activity and greater reducing sugar content under normal and stress conditions. CONCLUSIONS PtrA/NINV is an important gene implicated in sucrose decomposition, and plays a positive role in abiotic stress tolerance by promoting osmotic adjustment, ROS detoxification and photosynthesis efficiency. Thus, PtrA/NINV has great potential to be used in transgenic breeding for improvement of stress tolerance.
Collapse
Affiliation(s)
- Bachar Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Horticulture, Faculty of Agriculture, Tishreen University, Lattakia, Syria
| | - Fei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Peng
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Dahro B, Wang F, Peng T, Liu JH. PtrA/NINV, an alkaline/neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC PLANT BIOLOGY 2016; 16:76. [PMID: 27025596 PMCID: PMC4812658 DOI: 10.1186/s12870-016-0761-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/15/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Alkaline/neutral invertase (A/N-INV), an enzyme that hydrolyzes sucrose irreversibly into glucose and fructose, is essential for normal plant growth,development, and stress tolerance. However, the physiological and/or molecular mechanism underpinning the role of A/N-INV in abiotic stress tolerance is poorly understood. RESULTS In this report, an A/N-INV gene (PtrA/NINV) was isolated from Poncirus trifoliata, a cold-hardy relative of citrus, and functionally characterized. PtrA/NINV expression levels were induced by cold, salt, dehydration, sucrose, and ABA, but decreased by glucose. PtrA/NINV was found to localize in both chloroplasts and mitochondria. Overexpression of PtrA/NINV conferred enhanced tolerance to multiple stresses, including cold, high salinity, and drought, as supported by lower levels of reactive oxygen species (ROS), reduced oxidative damages, decreased water loss rate, and increased photosynthesis efficiency, relative to wild-type (WT). The transgenic plants exhibited higher A/N-INV activity and greater reducing sugar content under normal and stress conditions. CONCLUSIONS PtrA/NINV is an important gene implicated in sucrose decomposition, and plays a positive role in abiotic stress tolerance by promoting osmotic adjustment, ROS detoxification and photosynthesis efficiency. Thus, PtrA/NINV has great potential to be used in transgenic breeding for improvement of stress tolerance.
Collapse
Affiliation(s)
- Bachar Dahro
- />Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
- />Department of Horticulture, Faculty of Agriculture, Tishreen University, Lattakia, Syria
| | - Fei Wang
- />Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ting Peng
- />Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ji-Hong Liu
- />Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
9
|
Liu J, Han L, Huai B, Zheng P, Chang Q, Guan T, Li D, Huang L, Kang Z. Down-regulation of a wheat alkaline/neutral invertase correlates with reduced host susceptibility to wheat stripe rust caused by Puccinia striiformis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7325-38. [PMID: 26386259 DOI: 10.1093/jxb/erv428] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Numerous studies have found that sucrose (Suc) metabolism plays a crucial role in the environmental stress response of many plant species. The majority of Suc metabolism-associated reports refer to acid invertases (Ac-Invs). However, alkaline/neutral Invs (A/N-Invs) have been poorly studied. In this study, a wheat A/N-Inv gene, Ta-A/N-Inv1, with three copies located on chromosomes 4A, 4B, and 4D, was cloned from a wheat-Puccinia striiformis f. sp. tritici (Pst) interaction cDNA library. Transcripts of the three Ta-A/N-Inv1 copies were up-regulated in wheat leaves that were infected by Pst or had experienced certain abiotic treatments. Furthermore, the expression of Ta-A/N-Inv1 was decreased by treatment with exogenous hormones. Heterologous mutant complementation and subcellular localization revealed that Ta-A/N-Inv1 is a cytoplasmic invertase. Knocking down all three copies of Ta-A/N-Inv1 using the barley stripe mosaic virus-induced gene silencing system reduced the susceptibility of wheat to the Pst virulent pathotype CYR31, which is associated with pathogen-induced H2O2 accumulation and enhanced necrosis. Interestingly, 48h dark treatment of the Ta-A/N-Inv1-knockdown plants immediately after inoculation abrogated their enhanced resistance, suggesting that H2O2 production and its associated cell death and resistance in the Ta-A/N-Inv1-silenced plants require light. Consistent with this observation, photosynthesis and reactive oxygen species (ROS)-related genes were significantly up-regulated in the Ta-A/N-Inv1-knockdown plants infected by CYR31 under light exposure. These results suggest that Ta-A/N-Inv1 might act as a negative regulator in wheat disease resistance to Pst by increasing cytoplasmic hexose accumulation and downregulating photosynthesis of the leaves to avoid cell death due to excessive ROS production.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China China-Australia Joint Research Centre for Abiotic and Biotic Stress Management, Northwest A&F University, Yangling, China
| | - Lina Han
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Baoyu Huai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Peijing Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Qing Chang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Tao Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Dan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China China-Australia Joint Research Centre for Abiotic and Biotic Stress Management, Northwest A&F University, Yangling, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China China-Australia Joint Research Centre for Abiotic and Biotic Stress Management, Northwest A&F University, Yangling, China
| |
Collapse
|
10
|
Liu S, Lan J, Zhou B, Qin Y, Zhou Y, Xiao X, Yang J, Gou J, Qi J, Huang Y, Tang C. HbNIN2, a cytosolic alkaline/neutral-invertase, is responsible for sucrose catabolism in rubber-producing laticifers of Hevea brasiliensis (para rubber tree). THE NEW PHYTOLOGIST 2015; 206:709-25. [PMID: 25581169 DOI: 10.1111/nph.13257] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/29/2014] [Indexed: 05/21/2023]
Abstract
In Hevea brasiliensis, an alkaline/neutral invertase (A/N-Inv) is responsible for sucrose catabolism in latex (essentially the cytoplasm of rubber-producing laticifers, the source of natural rubber) and implicated in rubber yield. However, neither the gene encoding this enzyme nor its molecular and biochemical properties have been well documented. Three Hevea A/N-Inv genes, namely HbNIN1, 2 and 3, were first cloned and characterized in planta and in Escherichia coli. Cellular localizations of HbNIN2 mRNA and protein were probed. From latex, active A/N-Inv proteins were purified, identified, and explored for enzymatic properties. HbNIN2 was identified as the major A/N-Inv gene functioning in latex based on its functionality in E. coli, its latex-predominant expression, the conspicuous localization of its mRNA and protein in the laticifers, and its expressional correlation with rubber yield. An active A/N-Inv protein was partially purified from latex, and determined as HbNIN2. The enhancement of HbNIN2 enzymatic activity by pyridoxal is peculiar to A/N-Invs in other plants. We conclude that HbNIN2, a cytosolic A/N-Inv, is responsible for sucrose catabolism in rubber laticifers. The results contribute to the studies of sucrose catabolism in plants as a whole and natural rubber synthesis in particular.
Collapse
Affiliation(s)
- Shujin Liu
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, Hainan, China; College of Agronomy, Hainan University, Haikou, 570228, Hainan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Larrainzar E, Gil-Quintana E, Seminario A, Arrese-Igor C, González EM. Nodule carbohydrate catabolism is enhanced in the Medicago truncatula A17-Sinorhizobium medicae WSM419 symbiosis. Front Microbiol 2014; 5:447. [PMID: 25221545 PMCID: PMC4145349 DOI: 10.3389/fmicb.2014.00447] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/05/2014] [Indexed: 12/22/2022] Open
Abstract
The symbiotic association between Medicago truncatula and Sinorhizobium meliloti is a well-established model system in the legume–Rhizobium community. Despite its wide use, the symbiotic efficiency of this model has been recently questioned and an alternative microsymbiont, S. medicae, has been proposed. However, little is known about the physiological mechanisms behind the higher symbiotic efficiency of S. medicae WSM419. In the present study, we inoculated M. truncatula Jemalong A17 with either S. medicae WSM419 or S. meliloti 2011 and compared plant growth, photosynthesis, N2-fixation rates, and plant nodule carbon and nitrogen metabolic activities in the two systems. M. truncatula plants in symbiosis with S. medicae showed increased biomass and photosynthesis rates per plant. Plants grown in symbiosis with S. medicae WSM419 also showed higher N2-fixation rates, which were correlated with a larger nodule biomass, while nodule number was similar in both systems. In terms of plant nodule metabolism, M. truncatula–S. medicae WSM419 nodules showed increased sucrose-catabolic activity, mostly associated with sucrose synthase, accompanied by a reduced starch content, whereas nitrogen-assimilation activities were comparable to those measured in nodules infected with S. meliloti 2011. Taken together, these results suggest that S. medicae WSM419 is able to enhance plant carbon catabolism in M. truncatula nodules, which allows for the maintaining of high symbiotic N2-fixation rates, better growth and improved general plant performance.
Collapse
Affiliation(s)
- Estíbaliz Larrainzar
- Departamento de Ciencias del Medio Natural/Environmental Sciences, Universidad Pública de Navarra Pamplona, Spain
| | - Erena Gil-Quintana
- Departamento de Ciencias del Medio Natural/Environmental Sciences, Universidad Pública de Navarra Pamplona, Spain
| | - Amaia Seminario
- Departamento de Ciencias del Medio Natural/Environmental Sciences, Universidad Pública de Navarra Pamplona, Spain
| | - Cesar Arrese-Igor
- Departamento de Ciencias del Medio Natural/Environmental Sciences, Universidad Pública de Navarra Pamplona, Spain
| | - Esther M González
- Departamento de Ciencias del Medio Natural/Environmental Sciences, Universidad Pública de Navarra Pamplona, Spain
| |
Collapse
|
12
|
Cloning, 3D modeling and expression analysis of three vacuolar invertase genes from cassava (Manihot Esculenta Crantz). Molecules 2014; 19:6228-45. [PMID: 24838076 PMCID: PMC6270675 DOI: 10.3390/molecules19056228] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/02/2014] [Accepted: 05/12/2014] [Indexed: 11/23/2022] Open
Abstract
Vacuolar invertase is one of the key enzymes in sucrose metabolism that irreversibly catalyzes the hydrolysis of sucrose to glucose and fructose in plants. In this research, three vacuolar invertase genes, named MeVINV1-3, and with 653, 660 and 639 amino acids, respectively, were cloned from cassava. The motifs of NDPNG (β-fructosidase motif), RDP and WECVD, which are conserved and essential for catalytic activity in the vacuolar invertase family, were found in MeVINV1 and MeVINV2. Meanwhile, in MeVINV3, instead of NDPNG we found the motif NGPDG, in which the three amino acids GPD are different from those in other vacuolar invertases (DPN) that might result in MeVINV3 being an inactivated protein. The N-terminal leader sequence of MeVINVs contains a signal anchor, which is associated with the sorting of vacuolar invertase to vacuole. The overall predicted 3D structure of the MeVINVs consists of a five bladed β-propeller module at N-terminus domain, and forms a β-sandwich module at the C-terminus domain. The active site of the protein is situated in the β-propeller module. MeVINVs are classified in two subfamilies, α and β groups, in which α group members of MeVINV1 and 2 are highly expressed in reproductive organs and tuber roots (considered as sink organs), while β group members of MeVINV3 are highly expressed in leaves (source organs). All MeVINVs are highly expressed in leaves, while only MeVINV1 and 2 are highly expressed in tubers at cassava tuber maturity stage. Thus, MeVINV1 and 2 play an important role in sucrose unloading and starch accumulation, as well in buffering the pools of sucrose, hexoses and sugar phosphates in leaves, specifically at later stages of plant development.
Collapse
|
13
|
Expression of three β-type carbonic anhydrases in tomato fruits. Mol Biol Rep 2013; 40:4189-96. [DOI: 10.1007/s11033-013-2498-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
|
14
|
Tsikou D, Kalloniati C, Fotelli MN, Nikolopoulos D, Katinakis P, Udvardi MK, Rennenberg H, Flemetakis E. Cessation of photosynthesis in Lotus japonicus leaves leads to reprogramming of nodule metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1317-32. [PMID: 23404899 PMCID: PMC3598425 DOI: 10.1093/jxb/ert015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Symbiotic nitrogen fixation (SNF) involves global changes in gene expression and metabolite accumulation in both rhizobia and the host plant. In order to study the metabolic changes mediated by leaf-root interaction, photosynthesis was limited in leaves by exposure of plants to darkness, and subsequently gene expression was profiled by real-time reverse transcription-PCR (RT-PCR) and metabolite levels by gas chromatography-mass spectrometry in the nodules of the model legume Lotus japonicus. Photosynthetic carbon deficiency caused by prolonged darkness affected many metabolic processes in L. japonicus nodules. Most of the metabolic genes analysed were down-regulated during the extended dark period. In addition to that, the levels of most metabolites decreased or remained unaltered, although accumulation of amino acids was observed. Reduced glycolysis and carbon fixation resulted in lower organic acid levels, especially of malate, the primary source of carbon for bacteroid metabolism and SNF. The high amino acid concentrations together with a reduction in total protein concentration indicate possible protein degradation in nodules under these conditions. Interestingly, comparisons between amino acid and protein content in various organs indicated systemic changes in response to prolonged darkness between nodulated and non-nodulated plants, rendering the nodule a source organ for both C and N under these conditions.
Collapse
Affiliation(s)
- Daniela Tsikou
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Chrysanthi Kalloniati
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Mariangela N. Fotelli
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Dimosthenis Nikolopoulos
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Panagiotis Katinakis
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Michael K. Udvardi
- The Samuel Roberts Noble Foundation, Plant Biology Division, 2510 Sam Noble Pky, Ardmore, OK 7340, USA
| | - Heinz Rennenberg
- Albert-Ludwigs-University Freiburg, Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Georges-Köhler-Allee 053/054, D-79110 Freiburg, Germany
- King Saud University, PO Box 2454, Riyadh 11451, Saudi Arabia
| | - Emmanouil Flemetakis
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
15
|
Xiang L, Le Roy K, Bolouri-Moghaddam MR, Vanhaecke M, Lammens W, Rolland F, Van den Ende W. Exploring the neutral invertase-oxidative stress defence connection in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3849-62. [PMID: 21441406 PMCID: PMC3134342 DOI: 10.1093/jxb/err069] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Over the past decades, considerable advances have been made in understanding the crucial role and the regulation of sucrose metabolism in plants. Among the various sucrose-catabolizing enzymes, alkaline/neutral invertases (A/N-Invs) have long remained poorly studied. However, recent findings have demonstrated the presence of A/N-Invs in various organelles in addition to the cytosol, and their importance for plant development and stress tolerance. A cytosolic (At-A/N-InvG, At1g35580) and a mitochondrial (At-A/N-InvA, At1g56560) member of the A/N-Invs have been analysed in more detail in Arabidopsis and it was found that At-A/N-InvA knockout plants show an even more severe growth phenotype than At-A/N-InvG knockout plants. The absence of either A/N-Inv was associated with higher oxidative stress defence gene expression, while transient overexpression of At-A/N-InvA and At-A/N-InvG in leaf mesophyll protoplasts down-regulated the oxidative stress-responsive ascorbate peroxidase 2 (APX2) promoter. Moreover, up-regulation of the APX2 promoter by hydrogen peroxide or abscisic acid could be blocked by adding metabolizable sugars or ascorbate. A hypothetical model is proposed in which both mitochondrial and cytosolic A/N-Invs can generate glucose as a substrate for mitochondria-associated hexokinase, contributing to mitochondrial reactive oxygen species homeostasis.
Collapse
Affiliation(s)
- Li Xiang
- KULeuven, Laboratory of Molecular Plant Physiology, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Katrien Le Roy
- KULeuven, Laboratory of Molecular Plant Physiology, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Mohammad-Reza Bolouri-Moghaddam
- Department of Agronomy, Plant Breeding and Biotechnology, Faculty of Crop Science, Sari Agricultural Science and Natural Resources University, Sari, Iran
| | - Mieke Vanhaecke
- KULeuven, Laboratory of Molecular Plant Physiology, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Willem Lammens
- KULeuven, Laboratory of Molecular Plant Physiology, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Filip Rolland
- KULeuven, Laboratory of Functional Biology, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Wim Van den Ende
- KULeuven, Laboratory of Molecular Plant Physiology, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Troncoso-Ponce MA, Rivoal J, Cejudo FJ, Dorion S, Garcés R, Martínez-Force E. Cloning, biochemical characterisation, tissue localisation and possible post-translational regulatory mechanism of the cytosolic phosphoglucose isomerase from developing sunflower seeds. PLANTA 2010; 232:845-859. [PMID: 20628759 DOI: 10.1007/s00425-010-1219-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 06/23/2010] [Indexed: 05/29/2023]
Abstract
Lipid biosynthesis in developing sunflower (Helianthus annuus L.) seeds requires reducing power. One of the main sources of cellular NADPH is the oxidative pentose phosphate pathway (OPPP), generated from the oxidation of glucose-6-phosphate. This glycolytic intermediate, which can be imported to the plastid and enter in the OPPP, is the substrate and product of cytosolic phosphoglucose isomerase (cPGI, EC 5.3.1.9). In this report, we describe the cloning of a full-length cDNA encoding cPGI from developing sunflower seeds. The sequence was predicted to code for a protein of 566 residues characterised by the presence of two sugar isomerase domains. This cDNA was heterologously expressed in Escherichia coli as a His-tagged protein. The recombinant protein was purified using immobilised metal ion affinity chromatography and biochemically characterised. The enzyme had a specific activity of 1,436 micromol min(-1) mg(-1) and 1,011 micromol min(-1) mg(-1) protein when the reaction was initiated with glucose-6-phosphate and fructose-6-phosphate, respectively. Activity was not affected by erythrose-4-phosphate, but was inhibited by 6-P gluconate and glyceraldehyde-3-phosphate. A polyclonal immune serum was raised against the purified enzyme, allowing the study of protein levels during the period of active lipid synthesis in seeds. These results were compared with PGI activity profiles and mRNA expression levels obtained from Q-PCR studies. Our results point to the existence of a possible post-translational regulatory mechanism during seed development. Immunolocalisation of the protein in seed tissues further indicated that cPGI is highly expressed in the procambial ring.
Collapse
|
17
|
Aleman L, Ortega JL, Martinez-Grimes M, Seger M, Holguin FO, Uribe DJ, Garcia-Ibilcieta D, Sengupta-Gopalan C. Nodule-enhanced expression of a sucrose phosphate synthase gene member (MsSPSA) has a role in carbon and nitrogen metabolism in the nodules of alfalfa (Medicago sativa L.). PLANTA 2010; 231:233-44. [PMID: 19898977 PMCID: PMC3881968 DOI: 10.1007/s00425-009-1043-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 10/19/2009] [Indexed: 05/25/2023]
Abstract
Sucrose phosphate synthase (SPS) catalyzes the first step in the synthesis of sucrose in photosynthetic tissues. We characterized the expression of three different isoforms of SPS belonging to two different SPS gene families in alfalfa (Medicago sativa L.), a previously identified SPS (MsSPSA) and two novel isoforms belonging to class B (MsSPSB and MsSPSB3). While MsSPSA showed nodule-enhanced expression, both MsSPSB genes exhibited leaf-enhanced expression. Alfalfa leaf and nodule SPS enzymes showed differences in chromatographic and electrophoretic migration and differences in V (max) and allosteric regulation. The root nodules in legume plants are a strong sink for photosynthates with its need for ATP, reducing power and carbon skeletons for dinitrogen fixation and ammonia assimilation. The expression of genes encoding SPS and other key enzymes in sucrose metabolism, sucrose phosphate phosphatase and sucrose synthase, was analyzed in the leaves and nodules of plants inoculated with Sinorhizobium meliloti. Based on the expression pattern of these genes, the properties of the SPS isoforms and the concentration of starch and soluble sugars in nodules induced by a wild type and a nitrogen fixation deficient strain, we propose that SPS has an important role in the control of carbon flux into different metabolic pathways in the symbiotic nodules.
Collapse
Affiliation(s)
- Lorenzo Aleman
- Graduate Program in Molecular Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Jose Luis Ortega
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Martha Martinez-Grimes
- Graduate Program in Molecular Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Mark Seger
- Graduate Program in Molecular Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Francisco Omar Holguin
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Diana J. Uribe
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - David Garcia-Ibilcieta
- Graduate Program in Molecular Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Champa Sengupta-Gopalan
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
- Graduate Program in Molecular Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
18
|
Fasseas MK, Tsikou D, Flemetakis E, Katinakis P. Molecular and biochemical analysis of the beta class carbonic anhydrases in Caenorhabditis elegans. Mol Biol Rep 2009; 37:2941-50. [PMID: 19816790 DOI: 10.1007/s11033-009-9857-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 09/28/2009] [Indexed: 12/31/2022]
Abstract
The beta class of the carbonic anhydrase (CA) enzyme family has been found in plants, yeast, bacteria and algae, but not in animals. Also, little is known concerning the CAs of C. elegans. Genes possibly encoding beta-CAs were revealed by in silico analysis of the C. elegans genome. Amino acid sequence and 3D structure analysis revealed a resemblance to both plant and cab-type beta-CAs. Temporal expression patterns of the two genes, as well as changes in expression levels under different atmospheric conditions (stress) were analyzed by real-time RT-PCR. Recombinant enzymes, expressed in E. coli were used for in vitro measurement of CA activity, while a yeast complementation experiment was performed in order to assess their ability to complement the function of S. crevisieae beta-CA (NCE103) in vivo. RNAi by feeding was performed on wild-type populations that were then examined for a visible phenotype under normal or various stress conditions (pH, CO(2)/O(2)). Two genes possibly encoding beta-CAs were revealed (bca-1 and y116a8c.28). Their products contain elements of both plant and cab-type CAs. Both assays showed that Y116a8c.28 is an active CA. Both genes showed significant levels of transcript accumulation during development, while they also responded to the stress conditions. No visible phenotype was scored under normal or stress conditions.
Collapse
Affiliation(s)
- Michael K Fasseas
- Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | | | | | | |
Collapse
|
19
|
Welham T, Pike J, Horst I, Flemetakis E, Katinakis P, Kaneko T, Sato S, Tabata S, Perry J, Parniske M, Wang TL. A cytosolic invertase is required for normal growth and cell development in the model legume, Lotus japonicus. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3353-65. [PMID: 19474088 PMCID: PMC2724688 DOI: 10.1093/jxb/erp169] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 05/17/2023]
Abstract
Neutral/alkaline invertases are a subgroup, confined to plants and cyanobacteria, of a diverse family of enzymes. A family of seven closely-related genes, LjINV1-LjINV7, is described here and their expression in the model legume, Lotus japonicus, is examined. LjINV1 previously identified as encoding a nodule-enhanced isoform is the predominant isoform present in all parts of the plant. Mutants for two isoforms, LjINV1 and LjINV2, were isolated using TILLING. A premature stop codon allele of LjINV2 had no effect on enzyme activity nor did it show a visible phenotype. For LjINV1, premature stop codon and missense mutations were obtained and the phenotype of the mutants examined. Recovery of homozygous mutants was problematic, but their phenotype showed a severe reduction in growth of the root and the shoot, a change in cellular development, and impaired flowering. The cellular organization of both roots and leaves was altered; leaves were smaller and thicker with extra layers of cells and roots showed an extended and broader zone of cell division. Moreover, anthers contained no pollen. Both heterozygotes and homozygous mutants showed decreased amounts of enzyme activity in nodules and shoot tips. Shoot tips also contained up to a 9-fold increased level of sucrose. However, mutants were capable of forming functional root nodules. LjINV1 is therefore crucial to whole plant development, but is clearly not essential for nodule formation or function.
Collapse
Affiliation(s)
- Tracey Welham
- Metabolic Biology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Jodie Pike
- The Sainbury Laboratory, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Irmtraud Horst
- Metabolic Biology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Emmanouil Flemetakis
- Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Panagiotis Katinakis
- Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Takakazu Kaneko
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Jillian Perry
- Metabolic Biology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Martin Parniske
- Department Biology I, Genetics, University of Munich (LMU), Grosshaderner Str. 2–4, D-82152 Planegg, Germany
| | - Trevor L. Wang
- Metabolic Biology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| |
Collapse
|
20
|
Ben Salah I, Albacete A, Martínez Andújar C, Haouala R, Labidi N, Zribi F, Martinez V, Pérez-Alfocea F, Abdelly C. Response of nitrogen fixation in relation to nodule carbohydrate metabolism in Medicago ciliaris lines subjected to salt stress. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:477-88. [PMID: 18804311 DOI: 10.1016/j.jplph.2008.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 06/02/2008] [Accepted: 06/25/2008] [Indexed: 05/08/2023]
Abstract
The effect of salt stress on nitrogen fixation, in relation to sucrose transport towards nodules and other sink organs and the potential of sucrose breakdown by nodules, was investigated in two lines of Medicago ciliaris. Under salt stress conditions, the two lines showed a decrease of total biomass production, but TNC 1.8 was less affected by salt than TNC 11.9. The chlorophyll content was not changed in TNC 1.8, in contrast to TNC 11.9. Shoot, root, and nodule biomass were also affected in the two lines, but TNC 1.8 exhibited the higher potentialities of biomass production of these organs. Nitrogen fixation also decreased in the two lines, and was more sensitive to salt than growth parameters. TNC 1.8 consistently exhibited the higher values of nitrogen fixation. Unlike nodules, leaves of both lines were well supplied in nutrients with some exceptions. Specifically, the calcium content decreased in the sensitive line leaves, and the nodule magnesium content was not changed in either line. The tolerant line accumulated more sodium in its leaves. The two lines did not show any differences in the nodule sodium content. Sucrose allocation towards nodules was affected by salt in the two lines, but this constraint did not seem to affect the repartition of sucrose between sink organs. Salt stress induced perturbations in nodule sucrolytic activities in the two lines. It inhibited sucrose synthase, but the inhibition was more marked in TNC 11.9; alkaline/neutral activity was not altered in TNC 1.8, whereas it decreased more than half in TNC 11.9. Thus, the relative tolerance of TNC 1.8 to salt stress could be attributed to a better use of these photoassimilates by nodules and a better supply of bacteroids in malate. The hypothesis of a competition for sucrose between nodules and other sink organs under salt stress could not be verified.
Collapse
Affiliation(s)
- Imène Ben Salah
- Laboratoire d'Adaptation des Plantes aux Stress Abiotiques, CBBC, Hammam-Lif, Tunisia
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Andreadeli A, Flemetakis E, Axarli I, Dimou M, Udvardi MK, Katinakis P, Labrou NE. Cloning and characterization of Lotus japonicus formate dehydrogenase: a possible correlation with hypoxia. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:976-84. [PMID: 19281876 DOI: 10.1016/j.bbapap.2009.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
Abstract
Formate dehydrogenases (FDHs, EC 1.2.1.2) comprise a group of enzymes found in both prokaryotes and eukaryotes that catalyse the oxidation of formate to CO(2). FDH1 from the model legume Lotus japonicus (LjFDH1) was cloned and expressed in E. coli BL21(DE3) as soluble active protein. The enzyme was purified using affinity chromatography on Cibacron blue 3GA-Sepharose. The enzymatic properties of the recombinant enzyme were investigated and the kinetic parameters (K(m), k(cat)) for a number of substrates were determined. Molecular modelling studies were also employed to create a model of LjFDH1, based on the known structure of the Pseudomonas sp. 101 enzyme. The molecular model was used to help interpret biochemical data concerning substrate specificity and catalytic mechanism of the enzyme. The temporal expression pattern of LjFDH1 gene was studied by real-time RT-PCR in various plant organs and during the development of nitrogen-fixing nodules. Furthermore, the spatial transcript accumulation during nodule development and in young seedpods was determined by in situ RNA-RNA hybridization. These results considered together indicate a possible role of formate oxidation by LjFDH1 in plant tissues characterized by relative hypoxia.
Collapse
Affiliation(s)
- A Andreadeli
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
22
|
Marino D, Hohnjec N, Küster H, Moran JF, González EM, Arrese-Igor C. Evidence for transcriptional and post-translational regulation of sucrose synthase in pea nodules by the cellular redox state. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:622-30. [PMID: 18393622 DOI: 10.1094/mpmi-21-5-0622] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nitrogen fixation (NF) in legume nodules is very sensitive to environmental constraints. Nodule sucrose synthase (SS; EC 2.4.1.13) has been suggested to play a crucial role in those circumstances because its downregulation leads to an impaired glycolytic carbon flux and, therefore, a depletion of carbon substrates for bacteroids. In the present study, the likelihood of SS being regulated by oxidative signaling has been addressed by the in vivo supply of paraquat (PQ) to nodulated pea plants and the in vitro effects of oxidizing and reducing agents on nodule SS. PQ produced cellular redox imbalance leading to an inhibition of NF. This was preceded by the downregulation of SS gene expression, protein content, and activity. In vitro, oxidizing agents were able to inhibit SS activity and this inhibition was completely reversed by the addition of dithiothreitol. The overall results are consistent with a regulation model of nodule SS exerted by the cellular redox state at both the transcriptional and post-translational levels. The importance of such mechanisms for the regulation of NF in response to environmental stresses are discussed.
Collapse
Affiliation(s)
- Daniel Marino
- Departamento de Ciencias del Medio Natural, Universidad Pública de Navarra, E-31006 Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Wienkoop S, Larrainzar E, Glinski M, González EM, Arrese-Igor C, Weckwerth W. Absolute quantification of Medicago truncatula sucrose synthase isoforms and N-metabolism enzymes in symbiotic root nodules and the detection of novel nodule phosphoproteins by mass spectrometry. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3307-15. [PMID: 18772307 PMCID: PMC2529246 DOI: 10.1093/jxb/ern182] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Revised: 06/17/2008] [Accepted: 06/18/2008] [Indexed: 05/20/2023]
Abstract
Mass spectrometry (MS) has become increasingly important for tissue specific protein quantification at the isoform level, as well as for the analysis of protein post-translational regulation mechanisms and turnover rates. Thanks to the development of high accuracy mass spectrometers, peptide sequencing without prior knowledge of the amino acid sequence--de novo sequencing--can be performed. In this work, absolute quantification of a set of key enzymes involved in carbon and nitrogen metabolism in Medicago truncatula 'Jemalong A17' root nodules is presented. Among them, sucrose synthase (SuSy; EC 2.4.1.13), one of the central enzymes in sucrose cleavage in root nodules, has been further characterized and the relative phosphorylation state of the three most abundant isoforms has been quantified. De novo sequencing provided sequence information of a so far unidentified peptide, most probably belonging to SuSy2, the second most abundant isoform in M. truncatula root nodules. TiO(2)-phosphopeptide enrichment led to the identification of not only a phosphorylation site at Ser11 in SuSy1, but also of several novel phosphorylation sites present in other root nodule proteins such as alkaline invertase (AI; EC 3.2.1.26) and an RNA-binding protein.
Collapse
Affiliation(s)
- Stefanie Wienkoop
- Institute of Biochemistry and Biology, University of Potsdam, c/o MPI-MP, D-14476 Potsdam, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
Baier MC, Barsch A, Küster H, Hohnjec N. Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome. PLANT PHYSIOLOGY 2007; 145:1600-18. [PMID: 17951459 PMCID: PMC2151687 DOI: 10.1104/pp.107.106955] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 10/17/2007] [Indexed: 05/20/2023]
Abstract
We analyzed the role of the sucrose (Suc) synthase MtSucS1 during nodulation of the model legume Medicago truncatula, integrating data for the developmental, transcriptional, and metabolic processes affected downstream of an impaired Suc cleavage in root nodules. To reduce carbohydrate supply to nodule tissues, transgenic plants expressing a p35S-driven MtSucS1-antisense fusion were constructed. These plants displayed an up to 90% reduction of MtSucS1 proteins in roots and nodules. Phenotypic studies of two independent MtSucS1-reduced lines demonstrated that only under conditions depending on nodulation, these plants appeared to be impaired in above-ground growth. Specifically plant height, shoot weight, leaf development, flowering, as well as seed maturation were reduced, and the efficiency of photosynthesis was affected. Concomitantly, a significantly enhanced root to shoot ratio with a marked increase in root tip numbers was observed. Root nodule formation was found retarded and the impaired nodulation was accompanied by a less efficient nitrogen (N) acquisition. The decreased total N content of MtSucS1-antisense lines and an enhanced carbon to N ratio in roots, nodules, and shoots correlated with the extent of MtSucS1 knockdown. On the level of transcription, effects of an MtSucS1 reduction were evident for genes representing important nodes of the nodule carbon and N metabolism, while metabolite profiling revealed significantly lower levels of amino acids and their derivatives particularly in strongly MtSucS1-reduced nodules. Our results support the model that nodule-enhanced Suc synthase 1 of the model legume M. truncatula is required for the establishment and maintenance of an efficient N-fixing symbiosis.
Collapse
Affiliation(s)
- Markus C Baier
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, D-33594 Bielefeld, Germany
| | | | | | | |
Collapse
|
25
|
Vargas WA, Pontis HG, Salerno GL. Differential expression of alkaline and neutral invertases in response to environmental stresses: characterization of an alkaline isoform as a stress-response enzyme in wheat leaves. PLANTA 2007; 226:1535-45. [PMID: 17674033 DOI: 10.1007/s00425-007-0590-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 07/13/2007] [Indexed: 05/16/2023]
Abstract
It is well accepted that sucrose (Suc) metabolism is involved in responses to environmental stresses in many plant species. In the present study we showed that alkaline invertase (A-Inv) expression is up-regulated in wheat leaves after an osmotic stress or a low-temperature treatment. We demonstrated that the increase of total alkaline/neutral Inv activity in wheat leaves after a stress could be due to the induction of an A-Inv isoform. Also, we identified and functionally characterized the first wheat cDNA sequence that codes for an A-Inv. The wheat leaf full-length sequence encoded a protein 70% similar to a neutral Inv of Lolium temulentum; however, after functional characterization, it resulted to encode a protein that hydrolyzed Suc to hexoses with an optimum pH of 8, and, consequently, the encoding sequence was named Ta-A-Inv. By RT-PCR assays we demonstrated that Ta-A-Inv expression is induced in response to osmotic and cold stress in mature primary wheat leaves. We propose that Ta-A-Inv activity could play an important role associated with a more efficient cytosolic Suc hydrolysis during environmental stresses.
Collapse
Affiliation(s)
- Walter A Vargas
- Centro de Investigaciones Biológicas, Fundación para Investigaciones Biológicas Aplicadas (FIBA), C.C. 1348, 7600, Mar del Plata, Argentina
| | | | | |
Collapse
|
26
|
Larrainzar E, Wienkoop S, Weckwerth W, Ladrera R, Arrese-Igor C, González EM. Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress. PLANT PHYSIOLOGY 2007; 144:1495-507. [PMID: 17545507 PMCID: PMC1914115 DOI: 10.1104/pp.107.101618] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Drought is one of the environmental factors most affecting crop production. Under drought, symbiotic nitrogen fixation is one of the physiological processes to first show stress responses in nodulated legumes. This inhibition process involves a number of factors whose interactions are not yet understood. This work aims to further understand changes occurring in nodules under drought stress from a proteomic perspective. Drought was imposed on Medicago truncatula 'Jemalong A17' plants grown in symbiosis with Sinorhizobium meliloti strain 2011. Changes at the protein level were analyzed using a nongel approach based on liquid chromatography coupled to tandem mass spectrometry. Due to the complexity of nodule tissue, the separation of plant and bacteroid fractions in M. truncatula root nodules was first checked with the aim of minimizing cross contamination between the fractions. Second, the protein plant fraction of M. truncatula nodules was profiled, leading to the identification of 377 plant proteins, the largest description of the plant nodule proteome so far. Third, both symbiotic partners were independently analyzed for quantitative differences at the protein level during drought stress. Multivariate data mining allowed for the classification of proteins sets that were involved in drought stress responses. The isolation of the nodule plant and bacteroid protein fractions enabled the independent analysis of the response of both counterparts, gaining further understanding of how each symbiotic member is distinctly affected at the protein level under a water-deficit situation.
Collapse
Affiliation(s)
- Estíbaliz Larrainzar
- Departamento de Ciencias del Medio Natural, Universidad Pública de Navarra, Pamplona, Navarra, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Lytovchenko A, Sonnewald U, Fernie AR. The complex network of non-cellulosic carbohydrate metabolism. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:227-35. [PMID: 17434793 DOI: 10.1016/j.pbi.2007.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 04/02/2007] [Indexed: 05/04/2023]
Abstract
Partitioning of carbon dominates intracellular fluxes in both photosynthetic and heterotrophic plant tissues, and has vast influence on both plant growth and development. Recently, much progress has been made in elucidating the structures of the biosynthetic and degradative pathways that link the major and minor pools of soluble carbohydrates to cellular polymers such as starch, heteroglycans and fructans. In most cases, the regulatory properties of these pathways have been elucidated and the enzymes involved have been investigated using reverse genetics approaches. Although many of the results from these approaches were merely confirmatory, several of them were highly unexpected. The challenge ahead is to achieve better understanding of metabolic regulation at the network level in order to develop more rational strategies for metabolic engineering.
Collapse
Affiliation(s)
- Anna Lytovchenko
- Abteilung Willmitzer, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | | | |
Collapse
|
28
|
Horst I, Welham T, Kelly S, Kaneko T, Sato S, Tabata S, Parniske M, Wang TL. TILLING mutants of Lotus japonicus reveal that nitrogen assimilation and fixation can occur in the absence of nodule-enhanced sucrose synthase. PLANT PHYSIOLOGY 2007; 144:806-20. [PMID: 17468221 PMCID: PMC1914161 DOI: 10.1104/pp.107.097063] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In all plant species studied to date, sucrose synthase occurs as multiple isoforms. The specific functions of the different isoforms are for the most part not clear. Six isoforms of sucrose synthase have been identified in the model legume Lotus japonicus, the same number as in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). The genes encoding these isoforms are differentially expressed in all plant organs examined, although one, LjSUS4, is only expressed in flowers. LjSUS1 is the most highly expressed in all plant organs tested, except root nodules, where LjSUS3 accounts for more than 60% of the total SUS transcripts. One gene, LjSUS2, produces two transcripts due to alternative splicing, a feature not observed in other species to date. We have isolated plants carrying ethyl methanesulfonate-induced mutations in several SUS genes by targeting-induced local lesions in genomes reverse genetics and examined the effect of null alleles of two genes, LjSUS1 and LjSUS3, on nodule function. No differences were observed between the mutants and wild-type plants under glasshouse conditions, but there was evidence for a nitrogen-starvation phenotype in the sus3-1 mutant and severe impairment of growth in the sus1-1/sus3-1 double mutant under specific environmental conditions. Nodules of sus3-1 mutant plants retained a capacity for nitrogen fixation under all conditions. Thus, nitrogen fixation can occur in L. japonicus nodules even in the absence of LjSUS3 (the major nodule-induced isoform of SUS), so LjSUS1 must also contribute to the maintenance of nitrogen assimilation.
Collapse
Affiliation(s)
- Irmtraud Horst
- Metabolic Biology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
29
|
White J, Prell J, James EK, Poole P. Nutrient sharing between symbionts. PLANT PHYSIOLOGY 2007; 144:604-14. [PMID: 17556524 PMCID: PMC1914197 DOI: 10.1104/pp.107.097741] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 04/30/2007] [Indexed: 05/15/2023]
Affiliation(s)
- James White
- School of Biological Sciences, University of Reading, Whiteknights Reading RG6 6AJ, United Kingdom
| | | | | | | |
Collapse
|
30
|
Rossouw D, Bosch S, Kossmann J, Botha FC, Groenewald JH. Downregulation of neutral invertase activity in sugarcane cell suspension cultures leads to a reduction in respiration and growth and an increase in sucrose accumulation. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:490-498. [PMID: 32689378 DOI: 10.1071/fp06214] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 03/14/2007] [Indexed: 06/11/2023]
Abstract
Suspension cultures were used as a model system to investigate sucrose metabolism in four sugarcane (Saccharum spp. interspecific hybrids) cell lines transformed with antisense neutral invertase (NI) constructs. Throughout a 14-day growth cycle two cell lines in which the antisense sequence was under the control of a tandem CaMV-35S: maize ubiquitin promoter showed a strong reduction in NI activity, as well as reduced hexose and increased sucrose concentrations in comparison to the control line. In lines where the antisense NI sequence was under the control of the weaker CaMV-35S promoter alone, changes in enzyme activity and sugar concentrations were intermediate to those of the more strongly inhibited lines and the control. In comparison to the control line, a higher sucrose to hexose ratio, i.e. increased purity, was obtained in all the lines with reduced NI activity. The in vivo rate of sucrose hydrolysis was reduced in the transgenic lines, suggesting a concomitant reduction in the flux through the 'futile cycle' of sucrose breakdown and re-synthesis. Differences between the transgenic cultures and the control were most pronounced during the early stages of the growth cycle and tapered off as the cultures matured. The transgenic cultures displayed impaired growth characteristics suggesting that the growth rate of these cells was retarded because of the reduced availability of hexoses for respiration.
Collapse
Affiliation(s)
- Debra Rossouw
- Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Sue Bosch
- Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Jens Kossmann
- Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Frederik C Botha
- Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Jan-Hendrik Groenewald
- Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|