1
|
Janik-Zabrotowicz E, Gruszecki W. LHCII - a protein like a 'Swiss Army knife' with many mechanisms and functions. PHOTOSYNTHETICA 2023; 61:405-416. [PMID: 39649481 PMCID: PMC11586845 DOI: 10.32615/ps.2023.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/07/2023] [Indexed: 12/10/2024]
Abstract
The review highlights the relationship between the molecular organization of the light-harvesting complex of photosystem II (LHCII) and sunlight utilization by higher plants. The molecular form of LHCII switches rapidly and reversibly during diurnal changes of light intensity, from low (ca. 10) to high [ca. 1,000 μmol(photon) m-2 s-1], so the sensitivity of LHCII to light may control the balance between light harvesting and photoprotection state. Our understanding and concept of this mechanism are based on the knowledge of the structure and photophysics of different LHCII molecular forms: monomer, dimer, trimer, and aggregate. It is proposed that LHCII monomers, dimers, and lateral aggregates are fundamental blocks of excess light-dissipation machinery. Trimer is exceptionally well suited to play a physiological role of an antenna complex. A correlation between the LHCII molecular form and the presence of xanthophyll cycle pigment violaxanthin and zeaxanthin in the complex structure is also shown. Moreover, the role of LHCII protein phosphorylation in thylakoid membrane architecture is also discussed. The dual function of LHCII has been studied in the natural thylakoid membranes of chloroplasts, in the artificial lipid-LHCII model membranes, and by suspension of LHCII in a detergent solution.
Collapse
Affiliation(s)
- E. Janik-Zabrotowicz
- Department of Cell Biology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, ul. Akademicka 19, 20-033 Lublin, Poland
| | - W.I. Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Pl. Marii Curie-Sklodowskiej 1, 20-031 Lublin, Poland
| |
Collapse
|
2
|
Pandey J, Devadasu E, Saini D, Dhokne K, Marriboina S, Raghavendra AS, Subramanyam R. Reversible changes in structure and function of photosynthetic apparatus of pea (Pisum sativum) leaves under drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:60-74. [PMID: 36377283 DOI: 10.1111/tpj.16034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The effects of drought on photosynthesis have been extensively studied, whereas those on thylakoid organization are limited. We observed a significant decline in gas exchange parameters of pea (Pisum sativum) leaves under progressive drought stress. Chl a fluorescence kinetics revealed the reduction of photochemical efficiency of photosystem (PS)II and PSI. The non-photochemical quenching (NPQ) and the levels of PSII subunit PSBS increased. Furthermore, the light-harvesting complexes (LHCs) and some of the PSI and PSII core proteins were disassembled in drought conditions, whereas these complexes were reassociated during recovery. By contrast, the abundance of supercomplexes of PSII-LHCII and PSII dimer were reduced, whereas LHCII monomers increased following the change in the macro-organization of thylakoids. The stacks of thylakoids were loosely arranged in drought-affected plants, which could be attributed to changes in the supercomplexes of thylakoids. Severe drought stress caused a reduction of both LHCI and LHCII and a few reaction center proteins of PSI and PSII, indicating significant disorganization of the photosynthetic machinery. After 7 days of rewatering, plants recovered well, with restored chloroplast thylakoid structure and photosynthetic efficiency. The correlation of structural changes with leaf reactive oxygen species levels indicated that these changes were associated with the production of reactive oxygen species.
Collapse
Affiliation(s)
- Jayendra Pandey
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Elsinraju Devadasu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Deepak Saini
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Kunal Dhokne
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Sureshbabu Marriboina
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Agepati S Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
3
|
Azadi-Chegeni F, Thallmair S, Ward ME, Perin G, Marrink SJ, Baldus M, Morosinotto T, Pandit A. Protein dynamics and lipid affinity of monomeric, zeaxanthin-binding LHCII in thylakoid membranes. Biophys J 2022; 121:396-409. [PMID: 34971616 PMCID: PMC8822613 DOI: 10.1016/j.bpj.2021.12.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/02/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023] Open
Abstract
The xanthophyll cycle in the antenna of photosynthetic organisms under light stress is one of the most well-known processes in photosynthesis, but its role is not well understood. In the xanthophyll cycle, violaxanthin (Vio) is reversibly transformed to zeaxanthin (Zea) that occupies Vio binding sites of light-harvesting antenna proteins. Higher monomer/trimer ratios of the most abundant light-harvesting protein, the light-harvesting complex II (LHCII), usually occur in Zea accumulating membranes and have been observed in plants after prolonged illumination and during high-light acclimation. We present a combined NMR and coarse-grained simulation study on monomeric LHCII from the npq2 mutant that constitutively binds Zea in the Vio binding pocket. LHCII was isolated from 13C-enriched npq2 Chlamydomonas reinhardtii (Cr) cells and reconstituted in thylakoid lipid membranes. NMR results reveal selective changes in the fold and dynamics of npq2 LHCII compared with the trimeric, wild-type and show that npq2 LHCII contains multiple mono- or digalactosyl diacylglycerol lipids (MGDG and DGDG) that are strongly protein bound. Coarse-grained simulations on npq2 LHCII embedded in a thylakoid lipid membrane agree with these observations. The simulations show that LHCII monomers have more extensive lipid contacts than LHCII trimers and that protein-lipid contacts are influenced by Zea. We propose that both monomerization and Zea binding could have a functional role in modulating membrane fluidity and influence the aggregation and conformational dynamics of LHCII with a likely impact on photoprotection ability.
Collapse
Affiliation(s)
- Fatemeh Azadi-Chegeni
- Leiden Institute of Chemistry, Department of Solid-State NMR, Leiden University, Leiden, the Netherlands
| | - Sebastian Thallmair
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands; Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Meaghan E Ward
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Giorgio Perin
- Department of Biology, University of Padua, Padua, Italy
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | | | - Anjali Pandit
- Leiden Institute of Chemistry, Department of Solid-State NMR, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
4
|
Size and Fluorescence Properties of Algal Photosynthetic Antenna Proteins Estimated by Microscopy. Int J Mol Sci 2022; 23:ijms23020778. [PMID: 35054961 PMCID: PMC8775774 DOI: 10.3390/ijms23020778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Antenna proteins play a major role in the regulation of light-harvesting in photosynthesis. However, less is known about a possible link between their sizes (oligomerization state) and fluorescence intensity (number of photons emitted). Here, we used a microscopy-based method, Fluorescence Correlation Spectroscopy (FCS), to analyze different antenna proteins at the particle level. The direct comparison indicated that Chromera Light Harvesting (CLH) antenna particles (isolated from Chromera velia) behaved as the monomeric Light Harvesting Complex II (LHCII) (from higher plants), in terms of their radius (based on the diffusion time) and fluorescence yields. FCS data thus indicated a monomeric oligomerization state of algal CLH antenna (at our experimental conditions) that was later confirmed also by biochemical experiments. Additionally, our data provide a proof of concept that the FCS method is well suited to measure proteins sizes (oligomerization state) and fluorescence intensities (photon counts) of antenna proteins per single particle (monomers and oligomers). We proved that antenna monomers (CLH and LHCIIm) are more "quenched" than the corresponding trimers. The FCS measurement thus represents a useful experimental approach that allows studying the role of antenna oligomerization in the mechanism of photoprotection.
Collapse
|
5
|
Antenna Protein Clustering In Vitro Unveiled by Fluorescence Correlation Spectroscopy. Int J Mol Sci 2021; 22:ijms22062969. [PMID: 33804002 PMCID: PMC8000295 DOI: 10.3390/ijms22062969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/26/2022] Open
Abstract
Antenna protein aggregation is one of the principal mechanisms considered effective in protecting phototrophs against high light damage. Commonly, it is induced, in vitro, by decreasing detergent concentration and pH of a solution of purified antennas; the resulting reduction in fluorescence emission is considered to be representative of non-photochemical quenching in vivo. However, little is known about the actual size and organization of antenna particles formed by this means, and hence the physiological relevance of this experimental approach is questionable. Here, a quasi-single molecule method, fluorescence correlation spectroscopy (FCS), was applied during in vitro quenching of LHCII trimers from higher plants for a parallel estimation of particle size, fluorescence, and antenna cluster homogeneity in a single measurement. FCS revealed that, below detergent critical micelle concentration, low pH promoted the formation of large protein oligomers of sizes up to micrometers, and therefore is apparently incompatible with thylakoid membranes. In contrast, LHCII clusters formed at high pH were smaller and homogenous, and yet still capable of efficient quenching. The results altogether set the physiological validity limits of in vitro quenching experiments. Our data also support the idea that the small, moderately quenching LHCII oligomers found at high pH could be relevant with respect to non-photochemical quenching in vivo.
Collapse
|
6
|
Abstract
Since 1893, when the word "photosynthesis" was first coined by Charles Reid Barnes and Conway MacMillan, our understanding of the elements and regulation of this complex process is far from being entirely understood. We aim to review the most relevant advances in photosynthesis research from the last few years and to provide a perspective on the forthcoming research in this field. Recent discoveries related to light sensing, harvesting, and dissipation; kinetics of CO2 fixation; components and regulators of CO2 diffusion through stomata and mesophyll; and genetic engineering for improving photosynthetic and production capacities of crops are addressed.
Collapse
Affiliation(s)
- Alicia V Perera-Castro
- Department of Biology, Universitat de les Illes Balears, INAGEA, Palma de Mallorca, Spain
| | - Jaume Flexas
- Department of Biology, Universitat de les Illes Balears, INAGEA, Palma de Mallorca, Spain
| |
Collapse
|
7
|
Kaňa R, Steinbach G, Sobotka R, Vámosi G, Komenda J. Fast Diffusion of the Unassembled PetC1-GFP Protein in the Cyanobacterial Thylakoid Membrane. Life (Basel) 2020; 11:life11010015. [PMID: 33383642 PMCID: PMC7823997 DOI: 10.3390/life11010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 01/08/2023] Open
Abstract
Biological membranes were originally described as a fluid mosaic with uniform distribution of proteins and lipids. Later, heterogeneous membrane areas were found in many membrane systems including cyanobacterial thylakoids. In fact, cyanobacterial pigment-protein complexes (photosystems, phycobilisomes) form a heterogeneous mosaic of thylakoid membrane microdomains (MDs) restricting protein mobility. The trafficking of membrane proteins is one of the key factors for long-term survival under stress conditions, for instance during exposure to photoinhibitory light conditions. However, the mobility of unbound 'free' proteins in thylakoid membrane is poorly characterized. In this work, we assessed the maximal diffusional ability of a small, unbound thylakoid membrane protein by semi-single molecule FCS (fluorescence correlation spectroscopy) method in the cyanobacterium Synechocystis sp. PCC6803. We utilized a GFP-tagged variant of the cytochrome b6f subunit PetC1 (PetC1-GFP), which was not assembled in the b6f complex due to the presence of the tag. Subsequent FCS measurements have identified a very fast diffusion of the PetC1-GFP protein in the thylakoid membrane (D = 0.14 - 2.95 µm2s-1). This means that the mobility of PetC1-GFP was comparable with that of free lipids and was 50-500 times higher in comparison to the mobility of proteins (e.g., IsiA, LHCII-light-harvesting complexes of PSII) naturally associated with larger thylakoid membrane complexes like photosystems. Our results thus demonstrate the ability of free thylakoid-membrane proteins to move very fast, revealing the crucial role of protein-protein interactions in the mobility restrictions for large thylakoid protein complexes.
Collapse
Affiliation(s)
- Radek Kaňa
- Center ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (R.S.); (J.K.)
- Correspondence:
| | - Gábor Steinbach
- Institute of Biophysics, Biological Research Center, 6726 Szeged, Hungary;
| | - Roman Sobotka
- Center ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (R.S.); (J.K.)
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Josef Komenda
- Center ALGATECH, Institute of Microbiology of the Czech Academy of Sciences, 37901 Třeboň, Czech Republic; (R.S.); (J.K.)
| |
Collapse
|
8
|
Janik-Zabrotowicz E, Arczewska M, Zubik M, Terpilowski K, Skrzypek TH, Swietlicka I, Gagos M. Cremophor EL Nano-Emulsion Monomerizes Chlorophyll a in Water Medium. Biomolecules 2019; 9:biom9120881. [PMID: 31888249 PMCID: PMC6995590 DOI: 10.3390/biom9120881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/06/2019] [Accepted: 12/14/2019] [Indexed: 12/15/2022] Open
Abstract
In this paper, the application of a non-ionic detergent Cremophor EL for monomerization of chlorophyll a in an aqueous medium is studied. The spectrophotometric properties of chlorophyll a encapsulated into the Cremophor EL nano-emulsion system were characterized by electronic absorption, steady-state and time-resolved fluorescence as well as circular dichroism spectroscopy. The results have shown that chlorophyll a dissolves more efficiently in the aqueous medium containing low-level Cremophor (5 wt%) than at an ethanolic solution even in the concentration of 10−4 M. The molecular organization of the chlorophyll a in the Cremophor EL nano-micelles was also investigated by means of Raman spectroscopy. The spectral changes in the frequency of the C=O stretching group were used to distinguish the aggregation state of chlorophyll. It was revealed that chlorophyll a exists dominantly in the monomeric form in the Cremophor EL aqueous solution. The promising aspect of the use of Cremophor EL nano-emulsion as a delivery system is to maintain stable chlorophyll monomer in an aqueous medium. It would open the potential for a new, practical application of chlorophyll a in medicine, as a dietary supplement or studies on molecular organization of chlorophyll a in the well-defined artificial system.
Collapse
Affiliation(s)
- Ewa Janik-Zabrotowicz
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Sklodowska University, ul. Akademicka 19, 20-033 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-537-5941; Fax: +48-81-537-5901
| | - Marta Arczewska
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20–950 Lublin, Poland; (M.A.); (I.S.)
| | - Monika Zubik
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, Radziszewskiego 10, 20–031 Lublin, Poland;
| | - Konrad Terpilowski
- Department of Physical Chemistry-Interfacial Phenomena, Maria Curie-Sklodowska University, Pl. Marii Curie-Sklodowskiej 3, 20–031 Lublin, Poland;
| | - Tomasz H. Skrzypek
- Laboratory of Confocal and Electron Microscopy, Department of Biotechnology and Environment Sciences Center for Interdisciplinary Research, John Paul II Catholic University of Lublin, ul. Konstantynów 1J, 20–708 Lublin, Poland;
| | - Izabela Swietlicka
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20–950 Lublin, Poland; (M.A.); (I.S.)
| | - Mariusz Gagos
- Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Sklodowska University, ul. Akademicka 19, 20-033 Lublin, Poland;
| |
Collapse
|
9
|
Kawakami K, Tokutsu R, Kim E, Minagawa J. Four distinct trimeric forms of light-harvesting complex II isolated from the green alga Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2019; 142:195-201. [PMID: 31493286 DOI: 10.1007/s11120-019-00669-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Light-harvesting complex II (LHCII) absorbs light energy and transfers it primarily to photosystem II in green algae and land plants. Although the trimeric structure of LHCII is conserved between the two lineages, its subunit composition and function are believed to differ significantly. In this study, we purified four LHCII trimers from the green alga Chlamydomonas reinhardtii and analyzed their biochemical properties. We used several preparation methods to obtain four distinct fractions (fractions 1-4), each of which contained an LHCII trimer with different contents of Type I, III, and IV proteins. The pigment compositions of the LHCIIs in the four fractions were similar. The absorption and fluorescence spectra were also similar, although the peak positions differed slightly. These results indicate that this green alga contains four types of LHCII trimer with different biochemical and spectroscopic features. Based on these findings, we discuss the function and structural organization of green algal LHCII antennae.
Collapse
Affiliation(s)
- Keisuke Kawakami
- The OCU Advanced Research Institute for Natural Science & Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka City, Osaka, 558-8585, Japan.
| | - Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Eunchul Kim
- Division of Environmental Photobiology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, 444-8585, Japan
| |
Collapse
|
10
|
Kumar A, Prasad A, Sedlářová M, Pospíšil P. Characterization of Protein Radicals in Arabidopsis. Front Physiol 2019; 10:958. [PMID: 31456690 PMCID: PMC6700370 DOI: 10.3389/fphys.2019.00958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/09/2019] [Indexed: 01/23/2023] Open
Abstract
Oxidative modification of proteins in photosystem II (PSII) exposed to high light has been studied for a few decades, but the characterization of protein radicals formed by protein oxidation is largely unknown. Protein oxidation is induced by the direct reaction of proteins with reactive oxygen species known to form highly reactive protein radicals comprising carbon-centered (alkyl) and oxygen-centered (peroxyl and alkoxyl) radicals. In this study, protein radicals were monitored in Arabidopsis exposed to high light by immuno-spin trapping technique based on the detection of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) nitrone adducts using the anti-DMPO antibody. Protein radicals were imaged in Arabidopsis leaves and chloroplasts by confocal laser scanning microscopy using fluorescein conjugated with the anti-DMPO antibody. Characterization of protein radicals by standard blotting techniques using PSII protein specific antibodies shows that protein radicals are formed on D1, D2, CP43, CP47, and Lhcb3 proteins. Protein oxidation reflected by the appearance/disappearance of the protein bands reveals that formation of protein radicals was associated with protein fragmentation (cleavage of the D1 peptide bonds) and aggregation (cross-linking with another PSII subunits). Characterization of protein radical formation is important for better understating of the mechanism of oxidative modification of PSII proteins under high light.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
11
|
Energy transfer and distribution in photosystem super/megacomplexes of plants. Curr Opin Biotechnol 2018; 54:50-56. [DOI: 10.1016/j.copbio.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/25/2017] [Accepted: 01/04/2018] [Indexed: 11/18/2022]
|
12
|
Hey D, Grimm B. ONE-HELIX PROTEIN2 (OHP2) Is Required for the Stability of OHP1 and Assembly Factor HCF244 and Is Functionally Linked to PSII Biogenesis. PLANT PHYSIOLOGY 2018; 177:1453-1472. [PMID: 29930106 PMCID: PMC6084673 DOI: 10.1104/pp.18.00540] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/13/2018] [Indexed: 05/07/2023]
Abstract
The members of the light-harvesting complex protein family, which include the one-helix proteins (OHPs), are characterized by one to four membrane-spanning helices. These proteins function in light absorption and energy dissipation, sensing light intensity, and triggering photomorphogenesis or the binding of chlorophyll and intermediates of chlorophyll biosynthesis. Arabidopsis (Arabidopsis thaliana) contains two OHPs, while four homologs (named high-light-induced proteins) exist in Synechocystis PCC6803. Various functions have been assigned to high-light-induced proteins, ranging from photoprotection and the assembly of photosystem I (PSI) and PSII to regulation of the early steps of chlorophyll biosynthesis, but little is known about the function of the two plant OHPs. Here, we show that the two Arabidopsis OHPs form heterodimers and that the stromal part of OHP2 interacts with the plastid-localized PSII assembly factor HIGH CHLOROPHYLL FLUORESCENCE244 (HCF244). Moreover, concurrent accumulation of the two OHPs and HCF244 is critical for the stability of all three proteins. In particular, the absence of OHP2 leads to the complete loss of OHP1 and HCF244. We used a virus-induced gene silencing approach to minimize the expression of OHP1 or OHP2 in adult Arabidopsis plants and revealed that OHP2 is essential for the accumulation of the PSII core subunits, while the other photosynthetic complexes and the major light-harvesting complex proteins remained unaffected. We examined the potential functions of the OHP1-OHP2-HCF244 complex in the assembly and/or repair of PSII and propose a role for this heterotrimeric complex in thylakoid membrane biogenesis.
Collapse
Affiliation(s)
- Daniel Hey
- Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, Institut für Biologie, AG Pflanzenphysiologie, 10115 Berlin, Germany
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, Institut für Biologie, AG Pflanzenphysiologie, 10115 Berlin, Germany
| |
Collapse
|