1
|
Paudel KR, Panth N, Kim DW, Karki R. Chungtaejeon (CTJ) inhibits adhesion and migration of VSMC through cytoskeletal remodeling pathway. Heliyon 2024; 10:e38508. [PMID: 39397925 PMCID: PMC11471206 DOI: 10.1016/j.heliyon.2024.e38508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Vascular remodeling is crucial for the progression of vascular disease such as atherosclerosis. We utilize the in vitro experimental model of atherosclerosis to elucidate the activity of Chungtaejeon (CTJ), a Korean fermented tea on adhesion and migration of human aortic vascular smooth muscle cells (HASMC). Materials and methods Various in vitro assays such as cell viability, cell adhesion, Western blot, immunofluorescence, were carried out on HASMC to explore pathway associated with cytoskeletal remodeling during the progression of atherosclerosis. Results In result, CTJ significantly inhibited adhesion of HASMC as revealed by collagen assay. Similarly, CTJ inhibited the β1-integrin protein expression as well as FAK phosphorylation. Treatment of CTJ also inhibited stress fiber formation. Likewise, adherence of cells on collagen optimally increased the expression of both RhoA and Cdc42, however, treatment of CTJ dose dependently decreased their expression. The lysophosphatidic acid stimulation of HASMC rapidly increased the level of phosphorylated forms of MLC20 within 15 min, followed by an extended level of MLC20 phosphorylation. The treatment of CTJ at a dose of 50, 100 and 250 μg/ml remarkably reduced the diphosphorylated form while decreased the level of monophosphorylated form of MLC20. Conclusions Our results suggests that, with further validation CTJ could be a promising herbal resource for prevention of atherosclerosis.
Collapse
Affiliation(s)
- Keshav Raj Paudel
- Department of Oriental Medicine Resource, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea
| | - Nisha Panth
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea
| | - Dong Wook Kim
- Department of Oriental Medicine Resource, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea
| | - Rajendra Karki
- Department of Biological Sciences, College of Natural Science, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Peña-Jorquera H, Cid-Jofré V, Landaeta-Díaz L, Petermann-Rocha F, Martorell M, Zbinden-Foncea H, Ferrari G, Jorquera-Aguilera C, Cristi-Montero C. Plant-Based Nutrition: Exploring Health Benefits for Atherosclerosis, Chronic Diseases, and Metabolic Syndrome-A Comprehensive Review. Nutrients 2023; 15:3244. [PMID: 37513660 PMCID: PMC10386413 DOI: 10.3390/nu15143244] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Atherosclerosis, chronic non-communicable diseases, and metabolic syndrome are highly interconnected and collectively contribute to global health concerns that reduce life expectancy and quality of life. These conditions arise from multiple risk factors, including inflammation, insulin resistance, impaired blood lipid profile, endothelial dysfunction, and increased cardiovascular risk. Adopting a plant-based diet has gained popularity as a viable alternative to promote health and mitigate the incidence of, and risk factors associated with, these three health conditions. Understanding the potential benefits of a plant-based diet for human health is crucial, particularly in the face of the rising prevalence of chronic diseases like diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Thus, this review focused on the plausible advantages of consuming a type of food pattern for the prevention and/or treatment of chronic diseases, emphasizing the dietary aspects that contribute to these conditions and the evidence supporting the benefits of a plant-based diet for human health. To facilitate a more in-depth analysis, we present separate evidence for each of these three concepts, acknowledging their intrinsic connection while providing a specific focus on each one. This review underscores the potential of a plant-based diet to target the underlying causes of these chronic diseases and enhance health outcomes for individuals and populations.
Collapse
Affiliation(s)
- Humberto Peña-Jorquera
- IRyS Group, Physical Education School, Pontificia Universidad Católica de Valparaíso, Viña del Mar 2530388, Chile
| | - Valeska Cid-Jofré
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9160019, Chile
| | - Leslie Landaeta-Díaz
- Facultad de Salud y Ciencias Sociales, Universidad de las Américas, Santiago 7500975, Chile
- Núcleo en Ciencias Ambientales y Alimentarias, Universidad de las Américas, Santiago 7500975, Chile
| | - Fanny Petermann-Rocha
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad Diego Portales, Santiago 8370068, Chile
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
| | - Hermann Zbinden-Foncea
- Laboratorio de Fisiología del Ejercicio y Metabolismo, Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago 7500000, Chile
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Gerson Ferrari
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Providencia 7500912, Chile
- Escuela de Ciencias de la Actividad Física, el Deporte y la Salud, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Carlos Jorquera-Aguilera
- Escuela de Nutrición y Dietética, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Carlos Cristi-Montero
- IRyS Group, Physical Education School, Pontificia Universidad Católica de Valparaíso, Viña del Mar 2530388, Chile
| |
Collapse
|
3
|
Microparticles-Mediated Vascular Inflammation and its Amelioration by Antioxidant Activity of Baicalin. Antioxidants (Basel) 2020; 9:antiox9090890. [PMID: 32962240 PMCID: PMC7555600 DOI: 10.3390/antiox9090890] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Microparticles (MPs) are extracellular vesicles (0.1–1.0 μm in size), released in response to cell activation or apoptosis. Endothelial microparticles (EC-MP), vascular smooth muscle cell microparticles (VSMC-MP), and macrophage microparticles (MØ-MP) are key hallmarks of atherosclerosis progression. In our current study, we investigated the potent antioxidant activity of baicalin to ameliorate MP-induced vascular smooth muscle cell (VSMC) dysfunction and endothelial cell (EC) dysfunction, as well as the production of inflammatory mediators in macrophage (RAW264.7). In our study, baicalin suppressed the apoptosis, reactive oxygen species (ROS) generation, NO production, foam cell formation, protein expression of inducible nitric oxide synthase and cyclooxygenase-2 in MØ-MP-induced RAW264.7. In addition, VSMC migration induced by VSMC-MP was dose-dependently inhibited by baicalin. Likewise, baicalin inhibits metalloproteinase-9 expression and suppresses VSMC-MP-induced VSMC proliferation by down-regulation of mitogen-activated protein kinase and proliferating cell nuclear antigen protein expressions. Baicalin also inhibited ROS production and apoptosis in VSMC. In EC, the marker of endothelial dysfunction (endothelial senescence, upregulation of ICAM, and ROS production) induced by EC-MP was halted by baicalin. Our results suggested that baicalin exerts potent biological activity to restore the function of EC and VSMC altered by their corresponding microparticles and inhibits the release of inflammation markers from activated macrophages.
Collapse
|
4
|
Sharma BR, Kim DW, Rhyu DY. Korean Chungtaejeon tea extract attenuates body weight gain in C57BL/6J-Lep ob/ob mice and regulates adipogenesis and lipolysis in 3T3-L1 adipocytes. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 15:56-63. [PMID: 28088260 DOI: 10.1016/s2095-4964(17)60321-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Traditional Korean Chungtaejeon (CTJ) tea is a type of fermented tea, which has received increasing attention in recent years because of its purported health benefits. The present study was designed to investigate the effect and mechanism of CTJ tea extract on body weight gain using C57BL/6J-Lep ob/ob mice and 3T3-L1 adipocytes, respectively. METHODS The effects of CTJ on cell viability, lipid accumulation, and expression of protein and mRNA were measured in 3T3-L1 adipocytes by using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, oil red O staining, Western blotting, and reverse transcriptase-polymerase chain reaction analyses. C57BL6J-Lep ob/ob mice were administered with CTJ (200 or 400 mg/kg body weight) for ten weeks. Then, body weight, food intake, total cholesterol, and triglyceride were measured in ob/ob mice. RESULTS CTJ tea extract treated at 250 μg/mL (CTJ250) significantly suppressed lipid accumulation in the differentiated 3T3-L1 adipocytes. Likewise, CTJ250 significantly decreased the protein expression of peroxisome proliferator-activated receptorγ (PPARγ), CCAAT/enhancer-binding protein α, and adipocyte lipid-binding protein, and regulated the mRNA expression of PPARγ, sterol regulatory element-binding protein-1c gene, fatty acid synthase, adipocyte lipid-binding protein, hormone-sensitive lipase, carnitine palmitoyl transferase 1, cluster of differentiation 36, and acetyl-CoA carboxylase in the differentiated 3T3-L1 adipocytes. Mice administered with CTJ showed dose-dependent decrease in body weight gain, starting from week 4 of the experiment. CTJ tea extract administered at 400 mg/kg body weight significantly decreased fat mass, food efficacy ratio, and levels of plasma triglyceride and total cholesterol. CONCLUSION CTJ attenuated weight gain in ob/ob mice and regulated the activity of the molecules involved in adipogenesis and lipolysis in 3T3-L1 adipocytes. CTJ is a potentially valuable herbal therapy for the prevention of obesity and/or obesity-related disorders.
Collapse
Affiliation(s)
- Bhesh Raj Sharma
- Department of Oriental Medicine Resources and Institute of Korean Medicine Industry, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Dong Wook Kim
- Department of Oriental Medicine Resources and Institute of Korean Medicine Industry, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Dong Young Rhyu
- Department of Oriental Medicine Resources and Institute of Korean Medicine Industry, Mokpo National University, Jeonnam 534-729, Republic of Korea
| |
Collapse
|
5
|
Pereira LOM, Vilegas W, Tangerina MMP, Arunachalam K, Balogun SO, Orlandi-Mattos PE, Colodel EM, Martins DTDO. Lafoensia pacari A. St.-Hil.: Wound healing activity and mechanism of action of standardized hydroethanolic leaves extract. JOURNAL OF ETHNOPHARMACOLOGY 2018; 219:337-350. [PMID: 29501673 DOI: 10.1016/j.jep.2018.02.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 01/11/2018] [Accepted: 02/24/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL IMPORTANCE Lafoensia pacari A. St.-Hil., (Lythraceae) is a native tree of Brazilian Cerrado and commonly known in Brazil as "mangava-brava". Its leaves are used in Brazilian folk medicine in wound healing, cutaneous mycoses, and in the treatment of gastritis and ulcers. AIM OF THE STUDY The present study was designed to evaluate the wound healing activity and mechanism of action of the hydroethanolic extract of Lafoensia pacari A. St.-Hil. leaves (HELp), and to advance in its chemical profiling. MATERIALS AND METHODS HELp was prepared by maceration in 70% hydroethanolic solution (1:10, w/v). The phytochemical analyses were investigated using colorimetry and electrospray ionization/mass spectrometric detection (ESI-MSn). Its in vitro cytotoxicity was evaluated in CHO-K1 and L929 cells, while the in vivo acute toxicity was performed in mice. The potential in vivo wound healing activity was assessed using excision and incision rat models and histopathology of the wounded skin (excision model) was carried out. The in vitro wound healing activity of HELp was demonstrated by scratch assay in L-929 cells, by measuring proliferation/migration rate and p-ERK 1/2 protein expression using western blot analysis. HELp's in vivo anti-inflammatory activity was evaluated by lipopolysaccharide (LPS) induced peritonitis in mice, along with the determination of nitric oxide (NO) and cytokines (TNF-α and IL-10) in the peritoneal lavages. Its potential in vitro antibacterial activity was performed using microbroth dilution assay, while in vitro antioxidant activities was by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, and ferric reducing antioxidant power (FRAP) assays. RESULTS The phytochemical analysis of HELp revealed the presence of polyphenols with ellagic acid, punicalagin, punicalin, kaempferol, quercetin-3-O-xylopyranoside and quercetin-3-O-rhamnopyranoside being the most prominent. HELp showed no toxicity on CHO-k1 and L929 cell lines. Topical treatment with HELp (10 and 30 mg/g of gel) presented increased rates of wound contraction at all the days evaluated with complete wound re-epithelialization at 22.0 ± 1.5 (p < 0.05) and 21.7 ± 1.6 (p < 0.01) days, respectively. Topical application of HELp (10, 30 or 100 mg/g of gel) in incised wounds caused an increase in tensile break strength at all concentrations resulting in moderate re-epithelialization and neovascularization, increased cell proliferation an accelerated remodeling phase of the wound, in a manner comparable to standard drug (Madecassol®, 10 mg/g). In the scratch assay with L929 cells, HELp (0.1 and 0.03 mg/mL) and PDGF (5 ng/mL) resulted in the increased proliferation/migration rate of fibroblasts and higher expression of p-ERK 1/2 protein. In LPS-induced peritonitis, HELp (100 and 200 mg/kg p.o.) decreased total leukocyte migration, comparable to the dexamethasone (0.5 mg/kg p.o.). In RAW 264.7 macrophages activated by LPS, HELp produced anti-inflammatory activity dependent on increased concentrations of IL-10, reduction in NO production, without altering the TNF-α levels. HELp also presented potent antioxidant activity in the DPPH and FRAP, but lacks in vitro antibacterial activity. CONCLUSION The present study results support the popular use of the leaves of L. pacari in the treatment of wounds. Its wound healing activity is multi-targeted and involves inhibition of the proliferative and anti-inflammatory phases, antioxidant and positive modulation of the remodeling phase that might be involved different secondary metabolites, with emphasis on the ellagic acid, punicalagin, punicalin, kaempferol, quercetin-3-O-xylopyranoside and quercetin-3-O-rhamnopyranoside.
Collapse
Affiliation(s)
- Lucas Olivo Martins Pereira
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Wagner Vilegas
- UNESP - São Paulo State University, Institute of Biosciences, São Vicente, São Paulo, Brazil
| | | | - Karuppusamy Arunachalam
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Sikiru Olaitan Balogun
- Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil; Curso de Farmácia, Faculdade Noroeste do Mato Grosso, Associação Juinense de Ensino Superior, AJES - Faculdade do Noroeste de Mato Grosso, Brazil
| | - Paulo Eduardo Orlandi-Mattos
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Edson Moleta Colodel
- Faculdade de Medicina Veterinaria, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, no. 2367, Boa Esperança, 78060-900 Cuiabá, MT, Brazil.
| | | |
Collapse
|
6
|
Li W, Zhi W, Liu F, He Z, Wang X, Niu X. Atractylenolide I restores HO-1 expression and inhibits Ox-LDL-induced VSMCs proliferation, migration and inflammatory responses in vitro. Exp Cell Res 2017; 353:26-34. [PMID: 28274716 DOI: 10.1016/j.yexcr.2017.02.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/25/2022]
Abstract
Pathogenesis of atherosclerosis is characterized by the proliferation and migration of vascular smooth muscle cells (VSMCs) and inflammatory lesions. The aim of this study is to elucidate the effect of atractylenolide I (AO-I) on smooth muscle cell inflammation, proliferation and migration induced by oxidized modified low density lipoprotein (Ox-LDL). Here, We found that atractylenolide I inhibited Ox-LDL-induced VSMCs proliferation and migration in a dose-dependent manner, and decreased the production of inflammatory cytokines and the expression of monocyte chemoattractant protein-1 (MCP-1) in VSMCs. The study also identified that AO-I prominently inhibited p38-MAPK and NF-κB activation. More importantly, the specific heme oxygenase-1 (HO-1) inhibitor zinc protoporphyrin (ZnPP) IX partially abolished the beneficial effects of atractylenolide I on Ox-LDL-induced VSMCs. Furthermore, atractylenolide I blocked the foam cell formation in macrophages induced by Ox-LDL. In summary, inhibitory roles of AO-I in VSMCs proliferation and migration, lipid peroxidation and subsequent inflammatory responses might contribute to the anti-atherosclerotic property of AO-I.
Collapse
Affiliation(s)
- Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| | - Wenbing Zhi
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Fang Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zehong He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiuei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
7
|
Zhou L, Wu F, Jin W, Yan B, Chen X, He Y, Yang W, Du W, Zhang Q, Guo Y, Yuan Q, Dong X, Yu W, Zhang J, Xiao L, Tong P, Shan L, Efferth T. Theabrownin Inhibits Cell Cycle Progression and Tumor Growth of Lung Carcinoma through c-myc-Related Mechanism. Front Pharmacol 2017; 8:75. [PMID: 28289384 PMCID: PMC5326752 DOI: 10.3389/fphar.2017.00075] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
Green tea, the fresh leaves of Camellia sinensis, is not only a health-promoting beverage but also a traditional Chinese medicine used for prevention or treatment of cancer, such as lung cancer. Theabrownin (TB) is the main fraction responsible for the medicinal effects of green tea, but whether it possesses anti-cancer effect is unknown yet. This study aimed to determine the in vitro and in vivo anti-lung cancer effect of TB and explore the underlying molecular mechanism, by using A549 cell line and Lewis lung carcinoma-bearing mice. In cellular experiment, MTT assay was performed to evaluate the inhibitory effect and IC50 values of TB, and flow cytometry was conducted to analyze the cell cycle progression affected by TB. In animal experiment, mice body mass, tumor incidence, tumor size and tumor weight were measured, and histopathological analysis on tumor was performed with Transferase dUTP nick-end labeling staining. Real time PCR and western blot assays were adopted to detect the expression of C-MYC associated genes and proteins for mechanism clarification. TB was found to inhibit A549 cell viability in a dose- and time-dependent manner and block A549 cell cycle at G0/G1 phase. Down-regulation of c-myc, cyclin A, cyclin D, cdk2, cdk4, proliferation of cell nuclear antigen and up-regulation of p21, p27, and phosphate and tension homolog in both gene and protein levels were observed with TB treatment. A c-myc-related mechanism was thereby proposed, since c-myc could transcriptionally regulate all other genes in its downstream region for G1/S transitions of cell cycle and proliferation of cancer cells. This is the first report regarding the anti-NSCLC effect and the underlying mechanism of TB on cell cycle progression and proliferation of A549 cells. The in vivo data verified the in vitro result that TB could significantly inhibit the lung cancer growth in mice and induce apoptosis on tumors in a dose-dependent manner. It provides a promising candidate of natural products for lung cancer therapy and new development of anti-cancer agent.
Collapse
Affiliation(s)
- Li Zhou
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Feifei Wu
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences Inc.Hangzhou, China
| | - Wangdong Jin
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Bo Yan
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Xin Chen
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Yingfei He
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Weiji Yang
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Wenlin Du
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences Inc.Hangzhou, China
| | - Qiang Zhang
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences Inc.Hangzhou, China
| | - Yonghua Guo
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences Inc.Hangzhou, China
| | - Qiang Yuan
- The Second Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhou, China
| | | | - Wenhua Yu
- Hangzhou First People’s HospitalHangzhou, China
| | | | - Luwei Xiao
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Letian Shan
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences Inc.Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of MainzMainz, Germany
| |
Collapse
|
8
|
Paudel KR, Karki R, Kim DW. Cepharanthine inhibits in vitro VSMC proliferation and migration and vascular inflammatory responses mediated by RAW264.7. Toxicol In Vitro 2016; 34:16-25. [DOI: 10.1016/j.tiv.2016.03.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/17/2016] [Accepted: 03/20/2016] [Indexed: 12/12/2022]
|
9
|
Paudel KR, Lee UW, Kim DW. Chungtaejeon, a Korean fermented tea, prevents the risk of atherosclerosis in rats fed a high-fat atherogenic diet. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2016; 14:134-42. [PMID: 26988435 DOI: 10.1016/s2095-4964(16)60249-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Hypercholesterolemia is one of the well-established risk factors for cardiovascular mortality and morbidity in coronary heart disease. The aim of this study was to investigate the anti-atherogenic effect of Chungtaejeon (CTJ, a Korean fermented tea) aqueous extract on proliferation and migration of human aortic smooth muscle cells (HASMCs) in vivo and in vitro. METHODS The authors used high-fat atherogenic diet (HFAD) to induce hyperlipidemia in Wistar rats in in vivo animal experiments and used HASMCs for in vitro cell experiments. For the in vitro cell experiment, the proliferation of HASMCs was evaluated using the MTT assay. Similarly, the expression of matrix metalloproteinases (MMPs) in HASMCs was measured using gelatin zymography. Antimigratory activity of CTJ was revealed using the wound-healing model and Boyden 's chamber assay. In the in vivo experiment, CTJ was administered in three different doses for 20 d from the initiation of the HFAD. After 20 d, the serum lipid profile and total lipid contents in liver were measured. RESULTS Treatment with CTJ for 24 h dose-dependently inhibited the proliferation and migration of HASMCs and expression of MMP-2 in HASMCs. The oral administration of CTJ at concentrations of 200 and 400 mg/kg decreased the levels of low-density lipoprotein cholesterol, total serum cholesterol and hepatic cholesterol of HFAD-fed rats. CONCLUSION CTJ possessed strong antiproliferative, antimigratory, as well as lipid-lowering activities. Thus, CTJ can be considered as a therapeutic option in the treatment of high-fat diet-induced atherosclerosis.
Collapse
Affiliation(s)
- Keshav Raj Paudel
- Department of Oriental Medicine Resources, Mokpo National University, Muan-gun, Jeonnam 534-729, South Korea
| | - Ung-Won Lee
- Department of Physics, Mokpo National University, Muan-gun, Jeonnam 534-729, South Korea
| | - Dong-Wook Kim
- Department of Oriental Medicine Resources, Mokpo National University, Muan-gun, Jeonnam 534-729, South Korea
| |
Collapse
|
10
|
Antiatherogenic Effect of Camellia japonica Fruit Extract in High Fat Diet-Fed Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9679867. [PMID: 27340422 PMCID: PMC4906218 DOI: 10.1155/2016/9679867] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 12/11/2022]
Abstract
Hypercholesterolemia is a well-known etiological factor for cardiovascular disease and a common symptom of most types of metabolic disorders. Camellia japonica is a traditional garden plant, and its flower and seed have been used as a base oil of traditional cosmetics in East Asia. The present study was carried out to evaluate the effect of C. japonica fruit extracts (CJF) in a high fat diet- (HFD-) induced hypercholesterolemic rat model. CJF was administered orally at three different doses: 100, 400, and 800 mg·kg−1·day−1 (CJF 100, 400, and 800, resp.). Our results showed that CJF possessed strong cholesterol-lowering potency as indicated by the decrease in serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL), accompanied by an increase in serum high-density lipoprotein (HDL). Furthermore, CJF reduced serum lipid peroxidation by suppressing the formation of thiobarbituric acid reactive substance. In addition, oil red O (ORO) staining of rat arteries showed decreased lipid-positive staining in the CJF-treated groups compared to the control HFD group. Taken together, these results suggest that CJF could be a potent herbal therapeutic option and source of a functional food for the prevention and treatment of atherosclerosis and other diseases associated with hypercholesterolemia.
Collapse
|
11
|
Paudel KR, Panth N, Kim DW. Circulating Endothelial Microparticles: A Key Hallmark of Atherosclerosis Progression. SCIENTIFICA 2016; 2016:8514056. [PMID: 27066292 PMCID: PMC4811266 DOI: 10.1155/2016/8514056] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 06/04/2023]
Abstract
The levels of circulating microparticles (MPs) are raised in various cardiovascular diseases. Their increased level in plasma is regarded as a biomarker of alteration in vascular function. The prominent MPs present in blood are endothelial microparticles (EMPs) described as complex submicron (0.1 to 1.0 μm) vesicles like structure, released in response to endothelium cell activation or apoptosis. EMPs possess both physiological and pathological effects and may promote oxidative stress and vascular inflammation. EMPs release is triggered by inducer like angiotensin II, lipopolysaccharide, and hydrogen peroxide leading to the progression of atherosclerosis. However, there are multiple physiological pathways for EMPs generation like NADPH oxidase derived endothelial ROS formation, Rho kinase pathway, and mitogen-activated protein kinases. Endothelial dysfunction is a key initiating event in atherosclerotic plaque formation. Atheroemboli, resulting from ruptured carotid plaques, is a major cause of stroke. Increasing evidence suggests that EMPs play an important role in the pathogenesis of cardiovascular disease, acting as a marker of damage, either exacerbating disease progression or triggering a repair response. In this regard, it has been suggested that EMPs have the potential to act as biomarkers of disease status. This review aims to provide updated information of EMPs in relation to atherosclerosis pathogenesis.
Collapse
Affiliation(s)
- Keshav Raj Paudel
- Department of Oriental Medicine Resources, Mokpo National University, Muan-gun, Jeonnam 534-729, Republic of Korea
| | - Nisha Panth
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Republic of Korea
| | - Dong-Wook Kim
- Department of Oriental Medicine Resources, Mokpo National University, Muan-gun, Jeonnam 534-729, Republic of Korea
| |
Collapse
|
12
|
Sharma BR, Kim MS, Rhyu DY. Nelumbo Nucifera leaf extract attenuated pancreatic ß-cells toxicity induced by interleukin-1ß and interferon-γ, and increased insulin secrection of pancreatic ß-cells in streptozotocin-induced diabetic rats. J TRADIT CHIN MED 2016; 36:71-7. [DOI: 10.1016/s0254-6272(16)30011-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Terminalia chebula Fructus Inhibits Migration and Proliferation of Vascular Smooth Muscle Cells and Production of Inflammatory Mediators in RAW 264.7. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:502182. [PMID: 25784946 PMCID: PMC4345257 DOI: 10.1155/2015/502182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/15/2015] [Accepted: 01/27/2015] [Indexed: 01/11/2023]
Abstract
Pathogenesis of atherosclerosis and neointima formation after angioplasty involves vascular smooth muscle cells (VSMCs) migration and proliferation followed by inflammatory responses mediated by recruited macrophages in the neointima. Terminalia chebula is widely used traditional medicine in Asia for its beneficial effects against cancer, diabetes, and bacterial infection. The study was designed to determine whether Terminalia chebula fructus water extract (TFW) suppresses VSMC migration and proliferation and inflammatory mediators production in macrophage (RAW 264.7). Our results showed that TFW possessed strong antioxidative effects in 1,1-diphenyl-2-picryl hydrazyl (DPPH) scavenging and lipid peroxidation assays. In addition, TFW reduced nitric oxide (NO) production, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) expression in RAW 264.7 cells. Also, TFW inhibited platelet-derived growth factor (PDGF-BB) induced VSMC migration as determined by wound healing and Boyden chamber assays. The antimigratory effect of TFW was due to its inhibitory effect on metalloproteinase-9 (MMP-9) expression, focal adhesion kinase (FAK) activation, and Rho-family of small GTPases (Cdc42 and RhoA) expression in VSMCs. Furthermore, TFW suppressed PDGF-BB induced VSMC proliferation by downregulation of mitogen activated protein kinases (MAPKs) signaling molecules. These results suggest that TFW could be a beneficial resource in the prevention of atherosclerosis.
Collapse
|
14
|
Dalar A, Türker M, Zabaras D, Konczak I. Phenolic composition, antioxidant and enzyme inhibitory activities of Eryngium bornmuelleri leaf. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2014; 69:30-6. [PMID: 24202545 DOI: 10.1007/s11130-013-0393-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Eryngium bornmuelleri Nab. (Tusî) is an endemic botanical from the Eastern Anatolia region of Turkey traditionally used for preparation of herbal tea. Within this study, phenolic composition, antioxidant capacities and inhibitory activities towards selected digestive enzymes of E. bornmuelleri leaf were investigated. Sequential extracts, obtained by extraction of plant tissue by ethanol, acetone and water exhibited pronounced antioxidant capacities and in a dose-dependent manner suppressed the metabolic syndrome related enzymes: α-amylase, α-glucosidase and pancreatic lipase. All extracts contained high levels of phenolic compounds. Flavonoid glycosides were the main phytochemicals detected, with rutin as the major compound (70% of total phenolics). Chlorogenic, hydroxybenzoic and caftaric acids as well as traces of caffeic, ferulic and rosmarinic acids were also detected. Correlation analysis indicated that phenolic compounds were the major sources of the enzyme-inhibitory activities. This study suggests that E. bornmuelleri leaf extracts can modulate the metabolism of sugars and fats through inhibition of the relevant digestive enzymes.
Collapse
Affiliation(s)
- Abdullah Dalar
- CSIRO Animal Food and Health Sciences, North Ryde, NSW, Australia
| | | | | | | |
Collapse
|
15
|
Lee JJ, Kwon H, Lee JH, Kim DG, Jung SH, Ma JY. Fermented soshiho-tang with Lactobacillus plantarum enhances the antiproliferative activity in vascular smooth muscle cell. Altern Ther Health Med 2014; 14:78. [PMID: 24580756 PMCID: PMC3942327 DOI: 10.1186/1472-6882-14-78] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 02/24/2014] [Indexed: 11/26/2022]
Abstract
Background Soshiho-tang (SST) is a traditional medicine widely used for the treatment of chronic hepatitis. SST has been shown to confer a variety of pharmacological activities, including prevention of hepatotoxicity, promotion of liver regeneration, and modulation of liver fibrosis. In this study, we investigated the antiproliferative activity of native and fermented (FSST) formulations of SST in vascular smooth muscle cells (VSMCs) and examined the potential underlying mechanisms driving these effects. Methods SST, along with preparations fermented with Lactobacillus plantarum KFRI-144 (S-A144), L. amylophilus KFRI-161 (S-A161) and L. bulgaricus KFRI-344 (S-A344), were investigated to determine their effects on the proliferation and viability of VSMCs, along with the signalling pathways underlying these effects. Results S-A144 exhibited a strong, dose-dependent inhibition of VSMC proliferation relative to untreated controls, but the others did not affect. In addition, S-A144 significantly decreased the phosphorylation of Akt and PLCγ1 in a dose-dependent manner and induced cell cycle arrest at the G0/G1 phase characterised by decreased expression of CDKs, cyclins and PCNA. Conclusions The findings suggest that S-A144 exhibit enhanced inhibition of PDGF-BB-induced VSMC proliferation comparison to S-AOR through the suppression of cell cycle progression and expression of cell cycle-related proteins, along with the downregulation of Akt phosphorylation.
Collapse
|
16
|
Karki R, Park CH, Kim DW. Extract of buckwheat sprouts scavenges oxidation and inhibits pro-inflammatory mediators in lipopolysaccharide-stimulated macrophages (RAW264.7). JOURNAL OF INTEGRATIVE MEDICINE-JIM 2013; 11:246-52. [PMID: 23867243 DOI: 10.3736/jintegrmed2013036] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Buckwheat has been considered as a potential source of nutraceutical components on the world market of probiotic foodstuffs. The purpose of this study was to evaluate the effects of tartary buckwheat (Fagopyrum tataricum) sprouts on oxidation and pro-inflammatory mediators. METHODS The anti-oxidant effects of buckwheat extract (BWE) and rutin were evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH)- and nitric oxide (NO)-scavenging activities, serum peroxidation and chelating assays. Lipopolysaccharide (LPS)-stimulated RAW264.7 cells were used to evaluate anti-inflammatory activities of buckwheat and rutin. NO production in LPS-stimulated RAW264.7 cells was determined by using Griess reagent. The expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-kappa B (NF-κB) p65 subunit in cytosolic and nuclear portions were determined by Western blot analysis. Also, the production of inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) was determined by enzyme-linked immunosorbent assay. RESULTS Inhibitory concentration 50 values for DPPH- and NO-scavenging activities of BWE were 24.97 and 72.54 μg/mL respectively. BWE inhibited serum oxidation and possessed chelating activity. Furthermore, BWE inhibited IL-6 and TNF-α production in LPS-stimulated RAW264.7 cells. Also, BWE inhibited iNOS and COX-2 expression and NF-κB p65 translocation. CONCLUSION Buckwheat sprouts possessed strong antioxidant activity and inhibited production of pro-inflammatory mediators in the applied model systems. Thus, buckwheat can be suggested to be beneficial in inflammatory diseases by inhibiting the free radicals and inflammatory mediators.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Oriental Medicine Resources, Mokpo National University, Muan-gun, Jeollanam-do 534-729, South Korea; E-mail: ,
| | | | | |
Collapse
|
17
|
Nelumbo nucifera leaf extract inhibits neointimal hyperplasia through modulation of smooth muscle cell proliferation and migration. Nutrition 2013; 29:268-75. [DOI: 10.1016/j.nut.2012.04.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/22/2012] [Accepted: 04/29/2012] [Indexed: 11/21/2022]
|