1
|
Zheng J, Zhang J, Han J, Zhao Z, Lin K. The effect of salidroside in promoting endogenous neural regeneration after cerebral ischemia/reperfusion involves notch signaling pathway and neurotrophic factors. BMC Complement Med Ther 2024; 24:293. [PMID: 39090706 PMCID: PMC11295647 DOI: 10.1186/s12906-024-04597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Salidroside is the major bioactive and pharmacological active substance in Rhodiola rosea L. It has been reported to have neuroprotective effects on cerebral ischemia/reperfusion (I/R). However, whether salidroside can enhance neural regeneration after cerebral I/R is still unknown. This study investigated the effects of salidroside on the endogenous neural regeneration after cerebral I/R and the related mechanism. METHODS Focal cerebral I/R was induced in rats by transient middle cerebral artery occlusion/reperfusion (MCAO/R). The rats were intraperitoneally treated salidroside once daily for 7 consecutive days. Neurobehavioral assessments were performed at 3 days and 7 days after the injury. TTC staining was performed to assess cerebral infarct volume. To evaluate the survival of neurons, immunohistochemical staining of Neuronal Nuclei (NeuN) in the ischemic hemisphere were conducted. Also, immunofluorescence double or triple staining of the biomarkers of proliferating neural progenitor cells in Subventricular Zone (SVZ) and striatum of the ischemia hemisphere were performed to investigate the neurogenesis. Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the expression of neurotrophic factors (NTFs) brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Expression of Notch1 and its target molecular Hes1 were also analyzed by western-blotting and RT-PCR. RESULTS Salidroside treatment ameliorated I/R induced neurobehavioral impairment, and reduced infarct volume. Salidroside also restored NeuN positive cells loss after I/R injury. Cerebral I/R injury significantly increased the expression of 5-Bromo-2'-Deoxyuridine (BrdU) and doublecotin (DCX), elevated the number of BrdU/Nestin/DCX triple-labeled cells in SVZ, and BrdU/Nestin/glial fibrillary acidic protein (GFAP) triple-labeled cells in striatum. Salidroside treatment further promoted the proliferation of BrdU/DCX labeled neuroblasts and BrdU/Nestin/GFAP labeled reactive astrocytes. Furthermore, salidroside elevated the mRNA expression and protein concentration of BDNF and NGF in ischemia periphery area, as well. Mechanistically, salidroside elevated Notch1/Hes1 mRNA expression in SVZ. The protein levels of them were also increased after salidroside administration. CONCLUSIONS Salidroside enhances the endogenous neural regeneration after cerebral I/R. The mechanism of the effect may involve the regulation of BDNF/NGF and Notch signaling pathway.
Collapse
Affiliation(s)
- Jiabing Zheng
- Fujian Medical Universtity Union Hospital, Fuzhou, Fujian Province, People's Republic of China
| | - Jizhou Zhang
- Institute of Materia Medica, Fujian Academy of Chinese Medical Sciences, Fuzhou, Fujian Province, People's Republic of China
| | - Jing Han
- Institute of Materia Medica, Fujian Academy of Chinese Medical Sciences, Fuzhou, Fujian Province, People's Republic of China
| | - Zhichang Zhao
- Fujian Medical Universtity Union Hospital, Fuzhou, Fujian Province, People's Republic of China
| | - Kan Lin
- Fujian Medical Universtity Union Hospital, Fuzhou, Fujian Province, People's Republic of China.
| |
Collapse
|
2
|
Fei SF, Hou C, Jia F. Effects of salidroside on atherosclerosis: potential contribution of gut microbiota. Front Pharmacol 2024; 15:1400981. [PMID: 39092226 PMCID: PMC11292615 DOI: 10.3389/fphar.2024.1400981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Much research describes gut microbiota in atherosclerotic cardiovascular diseases (ASCVD) for that the composition of the intestinal microbiome or its metabolites can directly participate in the development of endothelial dysfunction, atherosclerosis and its adverse complications. Salidroside, a natural phenylpropane glycoside, exhibits promising biological activity against the progression of ASCVD. Recent studies suggested that the gut microbiota played a crucial role in mediating the diverse beneficial effects of salidroside on health. Here, we describe the protective effects of salidroside against the progression of atherosclerosis. Salidroside regulates the abundance of gut microbiotas and gut microbe-dependent metabolites. Moreover, salidroside improves intestinal barrier function and maintains intestinal epithelial barrier function integrity. In addition, salidroside attenuates the inflammatory responses exacerbated by gut microbiota disturbance. This review delves into how salidroside functions to ameliorate atherosclerosis by focusing on its interaction with gut microbiota, uncovering the potential roles of gut microbiota in the diverse biological impacts of salidroside.
Collapse
Affiliation(s)
| | | | - Fang Jia
- Department of Cardiovascular Medicine, The First People’s Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
3
|
Xu W, Yang T, Zhang J, Li H, Guo M. Rhodiola rosea: a review in the context of PPPM approach. EPMA J 2024; 15:233-259. [PMID: 38841616 PMCID: PMC11147995 DOI: 10.1007/s13167-024-00367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
A natural "medicine and food" plant, Rhodiola rosea (RR) is primarily made up of organic acids, phenolic compounds, sterols, glycosides, vitamins, lipids, proteins, amino acids, trace elements, and other physiologically active substances. In vitro, non-clinical and clinical studies confirmed that it exerts anti-inflammatory, antioxidant, and immune regulatory effects, balances the gut microbiota, and alleviates vascular circulatory disorders. RR can prolong life and has great application potential in preventing and treating suboptimal health, non-communicable diseases, and COVID-19. This narrative review discusses the effects of RR in preventing organ damage (such as the liver, lung, heart, brain, kidneys, intestines, and blood vessels) in non-communicable diseases from the perspective of predictive, preventive, and personalised medicine (PPPM/3PM). In conclusion, as an adaptogen, RR can provide personalised health strategies to improve the quality of life and overall health status.
Collapse
Affiliation(s)
- Wenqian Xu
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | | | - Jinyuan Zhang
- The Third People’s Hospital of Henan Province, Zhengzhou, China
| | - Heguo Li
- Department of Spleen, Stomach, Liver and Gallbladder, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Min Guo
- Department of Spleen, Stomach, Liver and Gallbladder, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
4
|
Hu D, Long X, Luobu T, Wang Q. Current status of research on endophytes of traditional Tibetan medicinal plant and their metabolites. 3 Biotech 2023; 13:338. [PMID: 37705864 PMCID: PMC10495306 DOI: 10.1007/s13205-023-03720-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/29/2023] [Indexed: 09/15/2023] Open
Abstract
The Qinghai-Tibet Plateau, known as the "Third Pole of the World," has a rich variety of medicinal plants that play an important role in the field of medicine due to its unique geographical environment. However, due to the limited resources of Tibetan medicinal plants and the fragility of the ecological environment of the Qinghai-Tibet Plateau, more and more Tibetan medicinal plants are on the verge of extinction. As a reservoir of biologically active metabolites, endophytes of medicinal plants produce a large number of compounds with potential applications in modern medicine (including antibacterial, immunosuppressive, antiviral, and anticancer) and are expected to be substitutes for Tibetan medicinal plants. This paper reviews 12 Tibetan medicinal plants from the Qinghai-Tibet Plateau, highlighting the diversity of their endophytes, the diversity of their metabolites and their applications. The results show that the endophytes of Tibetan medicinal plants are remarkably diverse, and the efficacy of their metabolites involves various aspects, such as antioxidant, anti-disease and anti-parasitic. In addition, conservation measures for the resources of Tibetan medicinal plants are summarised to provide a reference for an in-depth understanding of the endophytes of Tibetan medicinal plants and to stimulate the scientific community to bioprospect for the endophytes of Tibetan medicinal plants, as well as to provide ideas for their rational exploitation.
Collapse
Affiliation(s)
- Danni Hu
- Wuhan University of Technology, Wuhan, China
| | | | - Tudan Luobu
- Pharmacy Department, Tibetan Hospital of Gongga County, Shannan, China
| | - Qi Wang
- Wuhan University of Technology, Wuhan, China
| |
Collapse
|
5
|
Feng H, Zhang D, Yin Y, Kang J, Zheng R. Salidroside ameliorated the pulmonary inflammation induced by cigarette smoke via mitigating M1 macrophage polarization by JNK/c-Jun. Phytother Res 2023; 37:4251-4264. [PMID: 37254460 DOI: 10.1002/ptr.7905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/05/2023] [Accepted: 05/19/2023] [Indexed: 06/01/2023]
Abstract
Pulmonary inflammation induced by cigarette smoke (CS) promoted the development of chronic obstructive pulmonary disease (COPD), and macrophage polarization caused by CS modulated inflammatory response. Previous studies indicated that salidroside exerted therapeutic effects in COPD, but the anti-inflammatory mechanisms were not clear. This study aimed to explore the effects and mechanisms of salidroside on macrophage polarization induced by CS. Wistar rats received passively CS exposure and were treated intraperitoneally with salidroside at a low, medium or high dose. Lung tissues were stained with hematoxylin-eosin. Emphysema and inflammatory scores were evaluated by histomorphology. Lung function, cytokines, and cell differential counts in BALF were detected. The macrophage polarization was determined by immunohistochemistry in lung tissues. Alveolar macrophages (AMs) were isolated and treated with cigarette smoke extract (CSE), salidroside or inhibitors of relative pathways. The polarization status was determined by qPCR, and the protein level was detected by Western blotting. CS exposure induced emphysema and lung function deterioration. The inflammatory scores, cytokines level and neutrophils counts were elevated after CS exposure. Salidroside treatment partly ameliorated above abnormal. CS exposure activated M1 and M2 polarization of AMs in vivo and in vitro, and salidroside mitigated M1 polarization induced by CS. CSE activated the JNK/c-Jun in AMs and the M1 polarization of AMs was inhibited by the inhibitors of JNK and AP-1. Salidroside treatment deactivated the JNK/c-Jun, which indicated that salidroside mitigated the M1 polarization of AMs induced by CS via inhibiting JNK/c-Jun. Salidroside treatment ameliorated the pulmonary inflammation and M1 polarization of AMs induced by CS, and the process might be mediated by the deactivation of JNK/c-Jun.
Collapse
Affiliation(s)
- Haoshen Feng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Dan Zhang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jian Kang
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Diseases, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Rui Zheng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
6
|
Zhao W, Song D, Wang P, Tian Y, Chang S, Li W. Mechanism and Experimental Verification of the Use of Rhodiola crenulata to Cytokine Storm Based on Network Pharmacology and Molecular Docking. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221142790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective: To identify the potential biological mechanisms by which Rhodiola crenulata (RC) treats cytokine storm (CS) using network pharmacology, molecular docking, and experimental verification. Methods: The ingredients and targets of RC were collected from the Organchem database. CS-related genes were collected using the GeneCards and OMIM databases. Cytoscape 3.7.2 software was used to construct the RC-CS network diagram. These data were inputted into the STRING database to construct a protein–protein interaction network. we performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment analysis using DAVID and R software. Molecular docking of the active ingredient and pathway-related targets was carried out using AutoDock Vina and PyMOL, and then a CS model was established in rats induced by lipopolysaccharide for in vivo experimental verification. Results: The network pharmacology results showed that kaempferol was the most important active component of RC in the treatment of CS, and IL6 and STAT3 were identified as key targets. Molecular docking results showed that RC active components kaempferol had a good binding ability to IL6/STAT3. At the same time, compared with the model group, different doses of kaempferol could down-regulate the expression of inflammatory factors ( P < .05), and protect against systemic inflammatory response multiple organ damage. Conclusion: This study preliminarily revealed that RC can prevent and treat CS by regulating the expression of inflammatory factors, inhibiting the systemic inflammatory response induced by lipopolysaccharide, and providing a theoretical basis for the study of its pharmacodynamic material basis and mechanism of action.
Collapse
Affiliation(s)
- Wanhua Zhao
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Dan Song
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Pingyi Wang
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Yu Tian
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Senhao Chang
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Wenhua Li
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| |
Collapse
|
7
|
Abdelghafour MM, Orbán Á, Deák Á, Lamch Ł, Frank É, Nagy R, Ziegenheim S, Sipos P, Farkas E, Bari F, Janovák L. Biocompatible poly(ethylene succinate) polyester with molecular weight dependent drug release properties. Int J Pharm 2022; 618:121653. [PMID: 35278604 DOI: 10.1016/j.ijpharm.2022.121653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 01/05/2023]
Abstract
In the present study, we demonstrate that well-known molecular weight-dependent solubility properties of a polymer can also be used in the field of controlled drug delivery. To prove this, poly(ethylene succinate) (PES) polyesters with polycondensation time regulated molecular weights were synthesized via catalyst-free direct polymerization in an equimolar ratio of ethylene glycol and succinic acid monomers at 185 °C. DSC and contact angle measurements revealed that increasing the molecular weight (Mw, 4.3-5.05 kDa) through the polymerization time (40-80 min) increased the thermal stability (Tm= ∼61-80 °C) and slightly the hydrophobicity (Θw= ∼27-41°) of the obtained aliphatic polyester. Next, this biodegradable polymer was used for the encapsulation of Ca2+ channel blocker Nimodipine (NIMO) to overcome the poor water solubility and enhance the bioavailability of the drug. The drug/ polymer compatibility was proved by the means of solubility (δ) and Flory-Huggins interaction (miscibility) parameters (χ). The nanoprecipitation encapsulation of NIMO into PES with increasing Mw resulted in the formation of spherical 270 ± 103 nm NIMO-loaded PES nanoparticles (NPs). Furthermore, based on the XRD measurements, the encapsulated form of NIMO-loaded PES NPs showed lower drug crystallinity, which enhanced not only the water solubility but even the water stability of the NIMO in an aqueous medium. The in-vitro drug release experiments demonstrated that the release of NIMO drug could be accelerated or even prolonged by the molecular weights of PES as well. Due to the low crystallinity of PES polyester and low particle size of the encapsulated NIMO drug led to enhance solubility and releasing process of NIMO from PES with lower Mw (4.3 kDa and 4.5 kDa) compared to pure crystalline NIMO. However, further increasing the molecular weight (5.05 kDa) was already reduced the amount of drug release that provides the prolonged therapeutic effect and enhances the bioavailability of the NIMO drug.
Collapse
Affiliation(s)
- Mohamed M Abdelghafour
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720, Rerrich Béla tér 1, Szeged, Hungary; Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ágoston Orbán
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720, Rerrich Béla tér 1, Szeged, Hungary
| | - Ágota Deák
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720, Rerrich Béla tér 1, Szeged, Hungary
| | - Łukasz Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Éva Frank
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Roland Nagy
- Department of MOL Department of Hydrocarbon and Coal Processing, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, H-8200 Veszprém, Hungary
| | - Szilveszter Ziegenheim
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Pál Sipos
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Eszter Farkas
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, Korányi Fasor 9, H-6720 Szeged, Hungary; HCEMM-USZ Cerebral Blood Flow and Metabolism Research Group, University of Szeged, Dugonics Square 13, H-6720 Szeged, Hungary; Department of Cell Biology and Molecular Medicine, Faculty of Science and Informatics & Faculty of Medicine, University of Szeged, Somogyi Str. 4, H-6720 Szeged, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, Korányi Fasor 9, H-6720 Szeged, Hungary
| | - László Janovák
- Department of Physical Chemistry and Materials Science, University of Szeged, H-6720, Rerrich Béla tér 1, Szeged, Hungary.
| |
Collapse
|
8
|
Yi Q, Liang P, Liang D, Cao L, Sha S, Jiang X, Chang Q. Improvement of polydopamine-loaded salidroside on osseointegration of titanium implants. Chin Med 2022; 17:26. [PMID: 35189918 PMCID: PMC8862395 DOI: 10.1186/s13020-022-00569-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/05/2022] [Indexed: 02/08/2023] Open
Abstract
Background Microarc oxidation (MAO) on the surface of medical pure titanium can improve its histocompatibility, and loading drugs on the surface can resist excessive intimal hyperplasia. Methods In this study, salidroside (SAL) was loaded on the surface of porous titanium (Ti) with polydopamine (PDA) carrier. The effects of SAL on the osteogenesis and angiogenesis of Ti implants were studied by phalloidin staining, alizarin red staining, ALP staining, wound-healing assay, cell transwell assay, matrigel tube formation, and osteogenic and angiogenic genes and proteins expression detected by PCR and western blot in vitro. The bone defect model experiments in rats was established in vivo including X-ray, micro CT, hematoxylin and eosin staining (HE), immunohistochemistry (IHC), Goldner's trichrome analysis, Safranin O-fast green staining and determination of contents of TNF-α and IL-6 in serum. Results EDS and EDS mapping showed that SAL could be loaded on the surface of the MAO coating by PDA. A drug release experiment showed that SAL loaded on the Ti coating could release slowly and stably without sudden release risk. In vitro cell experiments showed that the SAL coating could promote the proliferation, morphology, calcification and alkaline phosphate activity of MC3T3-E1 cells. At the same time, it promoted the migration and tube formation of HUVEC cells. The SAL coating promoted osteogenesis and angiogenesis by promoting the expression of genes and proteins related to. In vivo experiments, HE and IHC showed that SAL significantly promoted the expression of COL-1 and CD31. Goldner's trichrome and Safranin O-fast green staining showed that SAL coating could increase the new bone tissue around the implantation site. The SAL coating had anti-inflammatory activity by reducing the levels of TNF-α and IL-6 in vivo. Conclusion Therefore, SAL could improve osteogenesis and angiogenesis in conjunction with the Ti-PDA coating.
Collapse
Affiliation(s)
- Qingqing Yi
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, China
| | - Pengchen Liang
- School of Microelectronics, Shanghai University, Shanghai, 201800, China
| | - Dongyu Liang
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, China
| | - Liou Cao
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, China
| | - Shuang Sha
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qing Chang
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, China.
| |
Collapse
|
9
|
Feng X, Lu J, Wu Y, Xu H. MiR-18a-3p improves cartilage matrix remodeling and inhibits inflammation in osteoarthritis by suppressing PDP1. J Physiol Sci 2022; 72:3. [PMID: 35148687 PMCID: PMC10717587 DOI: 10.1186/s12576-022-00827-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/19/2022] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) is a degenerative disease characterized by synovial inflammation. MiR-18a-3p was reported to be downregulated in knee anterior cruciate ligament of OA patients. In the present study, the specific functions and mechanism of miR-18a-3p in OA were explored. An in vitro model of OA was established using 10 ng/ml IL-1β to treat ATDC5 cells, and medial meniscus instability surgery was performed on Wistar rats to establish in vivo rat model of OA. RT-qPCR revealed that miR-18a-3p was downregulated in IL-1β-stimulated ATDC5 cells. MiR-18a-3p overexpression inhibited secretion of inflammatory cytokines and concentration of matrix metalloproteinases, as shown by ELISA and western blotting. The binding relation between miR-18a-3p and pyruvate dehydrogenase phosphatase catalytic subunit 1 (PDP1) was detected by luciferase reporter assays. MiR-18a-3p targeted PDP1 and negatively regulated PDP1 expression. Results of rescue assays revealed that PDP1 upregulation reserved the suppressive effect of miR-18a-3p overexpression on levels of inflammatory cytokines and matrix metalloproteinases in IL-1β-stimulated ATDC5 cells. H&E staining was used to observe pathological changes of synovial tissues in the knee joint of Wistar rats. Safranin O-fast green/hematoxylin was used to stain cartilage samples of knee joints. MiR-18a-3p overexpression suppressed OA progression in vivo. Overall, miR-18a-3p improves cartilage matrix remodeling and suppresses inflammation in OA by targeting PDP1.
Collapse
Affiliation(s)
- Xiaoguang Feng
- Department of Orthopedics, Changzhou Cancer Hospital Affiliated to Soochow University, No.68 Honghe Road, Xinbei District, Changzhou, 213000, Jiangsu, China
| | - Jiajun Lu
- Department of Orthopedics, Changzhou Cancer Hospital Affiliated to Soochow University, No.68 Honghe Road, Xinbei District, Changzhou, 213000, Jiangsu, China
| | - Yixiong Wu
- Department of Orthopedics, Changzhou Cancer Hospital Affiliated to Soochow University, No.68 Honghe Road, Xinbei District, Changzhou, 213000, Jiangsu, China
| | - Haiyun Xu
- Department of Orthopedics, Changzhou Cancer Hospital Affiliated to Soochow University, No.68 Honghe Road, Xinbei District, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
10
|
Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, Zhou H, Li Y. Macrophage Polarization and Its Role in Liver Disease. Front Immunol 2022; 12:803037. [PMID: 34970275 PMCID: PMC8712501 DOI: 10.3389/fimmu.2021.803037] [Citation(s) in RCA: 277] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages are important immune cells in innate immunity, and have remarkable heterogeneity and polarization. Under pathological conditions, in addition to the resident macrophages, other macrophages are also recruited to the diseased tissues, and polarize to various phenotypes (mainly M1 and M2) under the stimulation of various factors in the microenvironment, thus playing different roles and functions. Liver diseases are hepatic pathological changes caused by a variety of pathogenic factors (viruses, alcohol, drugs, etc.), including acute liver injury, viral hepatitis, alcoholic liver disease, metabolic-associated fatty liver disease, liver fibrosis, and hepatocellular carcinoma. Recent studies have shown that macrophage polarization plays an important role in the initiation and development of liver diseases. However, because both macrophage polarization and the pathogenesis of liver diseases are complex, the role and mechanism of macrophage polarization in liver diseases need to be further clarified. Therefore, the origin of hepatic macrophages, and the phenotypes and mechanisms of macrophage polarization are reviewed first in this paper. It is found that macrophage polarization involves several molecular mechanisms, mainly including TLR4/NF-κB, JAK/STATs, TGF-β/Smads, PPARγ, Notch, and miRNA signaling pathways. In addition, this paper also expounds the role and mechanism of macrophage polarization in various liver diseases, which aims to provide references for further research of macrophage polarization in liver diseases, contributing to the therapeutic strategy of ameliorating liver diseases by modulating macrophage polarization.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Tian T, Zhou BW, Wu LH, Zhang F, Chou GX, Feng CG, Lin GQ. Non-targeted screening of pyranosides in Rhodiola crenulata using an all ion fragmentation-exact neutral loss strategy combined with liquid chromatography-quadrupole time-of-flight mass spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:1039-1050. [PMID: 33779008 DOI: 10.1002/pca.3045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/08/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Pyranosides as one kind of natural glycosides contain a pyran ring linked to an aglycone in the structure. They occur widely in plants and possess diverse biological activities. The discovery of new pyranosides not only contributes to research on natural products but also may promote pharmaceutical development. OBJECTIVES A non-targeted liquid chromatography-quadrupole time-of-flight mass spectrometry method coupled with an all ion fragmentation-exact neutral loss (AIF-ENL) strategy was developed for the screening of pyranosides in plants. METHODS Pyranosides in various types were collected as a model. The AIF-ENL strategy comprised three steps: AIF spectrum acquisition and generation, ENL-based searching and identification, and confirmation of structural type using target second-stage mass spectrometry (MS/MS). The strategy was systematically evaluated based on the matrix effects, fragmentation stability, scan rate and screening efficiency and finally applied to Rhodiola crenulata (Hook. f. et Thoms) H. Ohba. RESULTS The method was proved to be an efficient tool for the screening of pyranosides. When it was applied to R. crenulata, a total of 24 pyranoside candidates were detected. Among them, six were tentatively identified on the basis of the agreement of their elemental composition with the reported. The other 18 were detected in R. crenulata for the first time. CONCLUSION The method offers a new platform for discovering pyranosides. In addition, the developed non-targeted strategy can also be used for other natural products, such as flavonoids and coumarins, as long as there is a common fragmentation behaviour in their MS/MS to generate characteristic neutral losses or fragments.
Collapse
Affiliation(s)
- Tian Tian
- The Research Centre of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo-Wen Zhou
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Li-Hong Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fang Zhang
- The Research Centre of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Gui-Xin Chou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen-Guo Feng
- The Research Centre of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Guo-Qiang Lin
- The Research Centre of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
12
|
Chen W, Liu Y, Chen J, Ma Y, Song Y, Cen Y, You M, Yang G. The Notch signaling pathway regulates macrophage polarization in liver diseases. Int Immunopharmacol 2021; 99:107938. [PMID: 34371331 DOI: 10.1016/j.intimp.2021.107938] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022]
Abstract
The liver is not only the main metabolic site of exogenous compounds and drugs, but also an important immune organ in the human body. When a large number of nonself substances (such as drugs, alcohol, pathogens, microorganisms and their metabolites) enter the liver, they will cause serious liver diseases, including liver fibrosis, liver cirrhosis, liver failure, and hepatocellular carcinoma (HCC). Macrophages are the first line of defense against the invasion of exogenous pathogens and significant cellular components of the innate immune system. Macrophages have strong heterogeneity and plasticity. When different pathogens invade the body, they cause different types of polarization of macrophages through different molecular mechanisms. Notch signaling is considered to be the key regulator of the biological function of macrophages. Activating Notch signaling can regulate the differentiation of macrophages into M1 and play a role in promoting inflammation and antitumor activity, while blocking Notch signaling can polarize macrophages to M2, suppressing inflammation and promoting tumor growth. However, there are few studies on regulation of macrophage polarization by the Notch signaling pathway in liver diseases. Therefore, in this review, we will introduce the role of the Notch signaling pathway in regulating macrophage polarization in liver diseases.
Collapse
Affiliation(s)
- Wenyan Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yining Liu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jing Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yemei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yawen Song
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yanli Cen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Mingdan You
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Guanghong Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China.
| |
Collapse
|
13
|
Leng YR, Zhang MH, Luo JG, Zhang H. Pathogenesis of NASH and Promising Natural Products. Chin J Nat Med 2021; 19:12-27. [PMID: 33516448 DOI: 10.1016/s1875-5364(21)60002-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 02/08/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) is a common clinical condition that can lead to advanced liver diseases. The mechanism of the diaease progression, which is lacking effective therapy, remains obsure. Therefore, there is a need to understand the pathogenic mechanisms responsible for disease development and progression in order to develop innovative therapies. To accomplish this goal, experimental animal models that recapitulate the human disease are necessary. Currently, an increasing number of studies have focused on natural constituents from medicinal plants which have been emerged as a new hope for NASH. This review summarized the pathogenesis of NASH, animal models commonly used, and the promising targets for therapeutics. We also reviewed the natural constituents as potential NASH therapeutic agents.
Collapse
Affiliation(s)
- Ying-Rong Leng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mei-Hui Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jian-Guang Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hao Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
14
|
Panossian A, Brendler T. The Role of Adaptogens in Prophylaxis and Treatment of Viral Respiratory Infections. Pharmaceuticals (Basel) 2020; 13:E236. [PMID: 32911682 PMCID: PMC7558817 DOI: 10.3390/ph13090236] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of our review is to demonstrate the potential of herbal preparations, specifically adaptogens for prevention and treatment of respiratory infections, as well as convalescence, specifically through supporting a challenged immune system, increasing resistance to viral infection, inhibiting severe inflammatory progression, and driving effective recovery. The evidence from pre-clinical and clinical studies with Andrographis paniculata, Eleutherococcus senticosus, Glycyrrhiza spp., Panax spp., Rhodiola rosea, Schisandra chinensis, Withania somnifera, their combination products and melatonin suggests that adaptogens can be useful in prophylaxis and treatment of viral infections at all stages of progression of inflammation as well as in aiding recovery of the organism by (i) modulating innate and adaptive immunity, (ii) anti-inflammatory activity, (iii) detoxification and repair of oxidative stress-induced damage in compromised cells, (iv) direct antiviral effects of inhibiting viral docking or replication, and (v) improving quality of life during convalescence.
Collapse
Affiliation(s)
- Alexander Panossian
- Phytomed AB, Vaxtorp, 31275 Halland, Sweden
- EuropharmaUSA, Green Bay, WI 54311, USA
| | - Thomas Brendler
- Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg 2000, South Africa;
- Traditional Medicinals Inc., Rohnert Park, CA 94928, USA
- Plantaphile, Collingswood, NJ 08108, USA
| |
Collapse
|
15
|
Fang L, Wang KK, Huang Q, Cheng F, Huang F, Liu WW. Nucleolin Mediates LPS-induced Expression of Inflammatory Mediators and Activation of Signaling Pathways. Curr Med Sci 2020; 40:646-653. [PMID: 32862374 DOI: 10.1007/s11596-020-2229-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 05/05/2020] [Indexed: 12/19/2022]
Abstract
In this study, we investigated the effects of nucleolin on lipopolysaccharide (LPS)-induced activation of MAPK and NF-KappaB (NF-κB) signaling pathways and secretion of TNF-α, IL-1β and HMGB1 in THP-1 monocytes. Immunofluorescence assay and Western blotting were used to identify the nucleolin expression in cell membrane, cytoplasm and nucleus of THP-1 monocytes. Inactivation of nucleolin was induced by neutralizing antibody against nucleolin. THP-1 monocytes were pretreated with anti-nucleolin antibody for 1 h prior to LPS challenge. The irrelevant IgG group was used as control. Secretion of inflammatory mediators (TNF-α, IL-1β and HMGB1) and activation of MAPK and NF-κB/I-κB signaling pathways were examined to assess the effects of nucleolin on LPS-mediated inflammatory response. Nucleolin existed in cell membrane, cytoplasm and nucleus of THP-1 monocytes. Pretreatment of anti-nucleolin antibody significantly inhibited the LPS-induced secretion of TNF-α, IL-1β and HMGB1. P38, JNK, ERK and NF-κB subunit p65 inhibitors could significantly inhibit the secretion of IL-1β, TNF-α and HMGB1 induced by LPS. Moreover, the phosphorylation of p38, JNK, ERK and p65 (or nuclear translocation of p65) was significantly increased after LPS challenge. In contrast, pretreatment of anti-nucleolin antibody could significantly inhibit the LPS-induced phosphorylation of p38, JNK, ERK and p65 (or nuclear translocation of p65). However, the irrelevant IgG, as a negative control, had no effect on LPS-induced secretion of TNF-α and IL-1β and phosphorylation of p38, JNK, ERK and p65 (or nuclear translocation of p65). We demonstrated that nucleolin mediated the LPS-induced activation of MAPK and NF-κB signaling pathways, and regulated the secretion of inflammatory mediators (TNF-α, IL-1β and HMGB1).
Collapse
Affiliation(s)
- Li Fang
- Department of Cardiology, the First Hospital of Changsha, Changsha, 410008, China.
| | - Kang-Kai Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Qing Huang
- Department of Cardiology, the First Hospital of Changsha, Changsha, 410008, China
| | - Feng Cheng
- Department of Cardiology, the First Hospital of Changsha, Changsha, 410008, China
| | - Fang Huang
- Department of Cardiology, the First Hospital of Changsha, Changsha, 410008, China
| | - Wei-Wei Liu
- Department of Cardiology, the First Hospital of Changsha, Changsha, 410008, China
| |
Collapse
|
16
|
Huang S, Huang Z, Fu Z, Shi Y, Dai Q, Tang S, Gu Y, Xu Y, Chen J, Wu X, Ren F. A Novel Drug Delivery Carrier Comprised of Nimodipine Drug Solution and a Nanoemulsion: Preparation, Characterization, in vitro, and in vivo Studies. Int J Nanomedicine 2020; 15:1161-1172. [PMID: 32110014 PMCID: PMC7036601 DOI: 10.2147/ijn.s226591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/03/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose Nimodipine (NIMO) is used clinically to treat ischemic damage resulting from subarachnoid hemorrhage. However, clinical application of NIMO is limited by poor aqueous solubility and low safety. To overcome these limitations, a novel two-vial NIMO-loaded nanoemulsion (NIMO-TNE) was designed in this study. Methods NIMO-TNE was prepared by mixing a nimodipine-polyethylene glycol 400 (NIMO-PEG400) solution and a commercially available 20% injectable blank nanoemulsion (BNE). Drug distribution in NIMO-TNE, physical stability, and dilution stability were evaluated in vitro, and pharmacokinetics and pharmacodynamics were evaluated in vivo. Safety was assessed using the hemolysis test and the intravenous irritation test, and acute toxicity of NIMO-TNE was compared with that of commercial Nimotop injection. Results Drug loading (DL) in NIMO-TNE was enhanced 5-fold compared with that in Nimotop injection. The mean particle size of NIMO-TNE was 241.53 ± 1.48 nm. NIMO-TNE and NIMO-TNE diluted in 5% glucose injection and 0.9% sodium chloride was stable for a sufficient duration to allow for clinical use. In addition, NIMO-TNE exhibited a similar pharmacokinetic profile and similar brain ischemia reduction in a rat middle cerebral artery occlusion (MCAO) model compared to Nimotop injection. Furthermore, NIMO-TNE did not induce hemolysis at 37°C, and NIMO-TNE induced less intravenous irritation than Nimotop injection. Moreover, NIMO-TNE could be injected at a 23-fold higher dose than the LD50 of Nimotop injection with no obvious toxicity or side effects. Conclusion NIMO-TNE is a promising formulation suitable for intravenous injection, is easy to prepare, and exhibits excellent safety.
Collapse
Affiliation(s)
- Saixu Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China.,Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China.,Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Zhiyong Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China.,Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China.,Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Zhiqin Fu
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Yamin Shi
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China.,Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian, People's Republic of China
| | - Qi Dai
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China.,Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Shuyan Tang
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Yongwei Gu
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Youfa Xu
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Jianming Chen
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China.,Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian, People's Republic of China
| | - Xin Wu
- Shanghai Weier Biological Medicine Science and Technology Co. Ltd., Shanghai, People's Republic of China
| | - Fuzheng Ren
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China.,Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
17
|
Li H, Xi Y, Xin X, Tian H, Hu Y. Salidroside improves high-fat diet-induced non-alcoholic steatohepatitis by regulating the gut microbiota-bile acid-farnesoid X receptor axis. Biomed Pharmacother 2020; 124:109915. [PMID: 31986416 DOI: 10.1016/j.biopha.2020.109915] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Our previous studies found that salidroside can effectively treat non-alcoholic steatohepatitis (NASH). Here, we discuss the mechanism of salidroside in the treatment of NASH with a focus on the gut microbiota-bile acid-farnesoid X receptor axis. METHODS A NASH mouse model was created by providing mice with a high-fat diet (HFD) for 14 weeks. Mice were randomly divided into the HFD group, HFD + salidroside treatment group, and HFD + obeticholic acid treatment group (n = 8 in each group) and were intragastrically administered corresponding drugs for 4 weeks. Hematoxylin-eosin staining was performed to evaluate the histopathological changes associated with the various treatments. In addition, liver triglyceride (TG) content, serum alanine aminotransferase (ALT) activity, serum inflammatory factors, gut microbiota diversity, and the bile acid profile were evaluated. Western blotting and RT-PCR were performed to detect the expressions of FXR and fibroblast growth factor 15 (FGF15). RESULTS The HFD group displayed obvious signs of hepatic steatosis. The liver TG, serum ALT, and IL-1a, IL-12, MCP-1, KC, MIP-1a, and MIP-1β were significantly higher in the HFD group than the control group (P < 0.01). Intestinal bacteria and bile acid profiles changed significantly in the HFD group (P < 0.05). Further, the expressions of FXR and FGF15 decreased significantly in the HFD group (P < 0.05). After treatment with salidroside, liver steatosis, TG content, and serum inflammatory factors significantly improved and HFD-induced intestinal bacteria, bile acid disorder, and FXR deficiency were significantly alleviated (P < 0.05). CONCLUSION Salidroside can improve NASH via the gut microbiota-bile acid-FXR axis.
Collapse
Affiliation(s)
- Hongshan Li
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Liver Disease Department, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315010, China; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, 315010, China.
| | - Yingfei Xi
- Medical School of Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xin Xin
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huajie Tian
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiyang Hu
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
18
|
Xie H, Shen CY, Jiang JG. The sources of salidroside and its targeting for multiple chronic diseases. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|