1
|
Huang R, Bañuelos GS, Zhao J, Wang Z, Farooq MR, Yang Y, Song J, Zhang Z, Chen Y, Yin X, Shen L. Comprehensive evaluation of factors influencing selenium fertilization biofortification. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6100-6107. [PMID: 38445779 DOI: 10.1002/jsfa.13442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Dietary selenium (Se) deficiency, stemming from low Se concentrations in agricultural products, threatens human health. While Se-containing fertilizers can enhance the Se content in crops, the key factors governing Se biofortification with Se fertilization remain unclear. RESULTS This study constructed a global meta-analysis dataset based on field experiments comprising 364 entries on Se content in agricultural products and 271 entries on their yield. Random forest models and mixed effects meta-analyses revealed that plant types (i.e., cereals, vegetables, legumes, and forages) primarily influenced Se biofortification, with Se fertilization rates being the next significant factor. The random forest model, which included variables like plant types, Se fertilization rates, methods and types of Se application, initial soil conditions (including Se content, organic carbon content, and pH), soil types, mean annual precipitation, and temperature, explained 82.14% of the variation in Se content and 48.42% of the yield variation in agricultural products. For the same agricultural products, the increase in Se content decreased with higher rates of Se fertilization. The increase in Se content in their edible parts will be negligible for cereals, forages, legumes, and vegetable crops, when Se fertilization rates were 164, 103, 144, and 147 g Se ha-1, respectively. Conversely, while low Se fertilization rates enhanced yields, high rates led to a yield reduction, particularly in cereals. CONCLUSION Our findings highlight the need for balanced and precise Se fertilization strategies to optimize Se biofortification benefits and minimize the risk of yield reduction. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruilin Huang
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou, China
- Yangtze River Delta Functional Agricultural (Food) Research Institute, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou, China
| | - Gary S Bañuelos
- USDA Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA
| | - Jianrong Zhao
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou, China
| | - Zhangmin Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Muhammad Raza Farooq
- Yangtze River Delta Functional Agricultural (Food) Research Institute, Anhui Science and Technology University, Chuzhou, China
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Yuling Yang
- Yangtze River Delta Functional Agricultural (Food) Research Institute, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou, China
- School of Food Engineering, Anhui Science and Technology University, Bengbu, China
| | - Jiaping Song
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou, China
- Yangtze River Delta Functional Agricultural (Food) Research Institute, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou, China
| | - Zezhou Zhang
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou, China
- Yangtze River Delta Functional Agricultural (Food) Research Institute, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou, China
| | - Youtao Chen
- Yangtze River Delta Functional Agricultural (Food) Research Institute, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou, China
| | - Xuebin Yin
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou, China
- Yangtze River Delta Functional Agricultural (Food) Research Institute, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Functional Agriculture and Functional Food, Anhui Science and Technology University, Chuzhou, China
| | - Lidong Shen
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| |
Collapse
|
2
|
García-Latorre C, Reynolds-Marzal MD, De la Peña-Lastra S, Pinheiro N, Poblaciones MJ. Soil and Foliar Zinc Biofortification of Triticale (x Triticosecale) under Mediterranean Conditions: Effects on Forage Yield and Quality. PLANTS (BASEL, SWITZERLAND) 2024; 13:1917. [PMID: 39065445 PMCID: PMC11279992 DOI: 10.3390/plants13141917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
Zinc (Zn) deficiency represents a significant global concern, affecting both plant and human health, particularly in regions with Zn-depleted soils. Agronomic biofortification strategies, such as the application of Zn fertilizers, offer a cost-effective approach to increase Zn levels in crops. This study aimed to assess the efficacy of soil and foliar Zn biofortification, applied as an aqueous solution of 0.5% zinc sulphate (ZnSO4·7H2O), on triticale (x Triticosecale) grown under Mediterranean conditions. The study was conducted over two growing seasons (2017/18 and 2018/19) in southern Spain, evaluating the effects on biomass yield; forage quality, including crude protein, Van Soest detergent fiber, organic matter digestibility, and relative forage value; and nutrient accumulation. Soil treatment consisted in the application of 50 kg of ZnSO4·7H2O ha-1 solely at the beginning of the first campaign to assess the residual effect on the second year. In contrast, the foliar treatment consisted of two applications of 4 kg of ZnSO4·7H2O ha-1 per campaign, one at the beginning of tillering and the other at the appearance of the first node. The foliar application increased the Zn content of the forage to adequate levels, while the soil application resulted in a 33% increase in biomass production, which is particularly beneficial for farmers. Overall quality was favored by the combined soil + foliar application, and no adverse antagonistic effects on other nutrients were detected. Instead, a synergistic interaction between Se and Zn was observed, which improved the efficacy of this important micronutrient for livestock and human wellbeing.
Collapse
Affiliation(s)
- Carlos García-Latorre
- Department of Agronomy and Forest Environment Engineering, University of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain; (C.G.-L.); (M.D.R.-M.); (S.D.l.P.-L.)
| | - María Dolores Reynolds-Marzal
- Department of Agronomy and Forest Environment Engineering, University of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain; (C.G.-L.); (M.D.R.-M.); (S.D.l.P.-L.)
| | - Saúl De la Peña-Lastra
- Department of Agronomy and Forest Environment Engineering, University of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain; (C.G.-L.); (M.D.R.-M.); (S.D.l.P.-L.)
| | - Nuno Pinheiro
- National Institute for Agricultural and Veterinary Research (INIAV), Estrada de Gil Vaz, 7350-228 Elvas, Portugal;
| | - María José Poblaciones
- Department of Agronomy and Forest Environment Engineering, University of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain; (C.G.-L.); (M.D.R.-M.); (S.D.l.P.-L.)
| |
Collapse
|
3
|
Mrština T, Praus L, Száková J, Kaplan L, Tlustoš P. Foliar selenium biofortification of soybean: the potential for transformation of mineral selenium into organic forms. FRONTIERS IN PLANT SCIENCE 2024; 15:1379877. [PMID: 38756968 PMCID: PMC11096529 DOI: 10.3389/fpls.2024.1379877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
Introduction Selenium (Se) deficiency, stemming from malnutrition in humans and animals, has the potential to disrupt many vital physiological processes, particularly those reliant on specific selenoproteins. Agronomic biofortification of crops through the application of Se-containing sprays provides an efficient method to enhance the Se content in the harvested biomass. An optimal candidate for systematic enrichment, guaranteeing a broad trophic impact, must meet several criteria: (i) efficient accumulation of Se without compromising crop yield, (ii) effective conversion of mineral Se fertilizer into usable organically bound Se forms (Seorg), (iii) acceptance of a Se-enriched crop as livestock feed, and (iv), interest from the food processing industry in utilization of Se-enriched outputs. Hence, priority should be given to high-protein leafy crops, such as soybean. Methods A three-year study in the Czech Republic was conducted to investigate the response of field-grown soybean plants to foliar application of Na2SeO4 solutions (0, 15, 40, and 100 g/ha Se); measured outcomes included crop yield, Se distribution in aboveground biomass, and the chemical speciation of Se in seeds. Results and Discussion Seed yield was unaffected by applied SeO4 2-, with Se content reaching levels as high as 16.2 mg/kg. The relationship between SeO4 2-dose and Se content in seeds followed a linear regression model. Notably, the soybeans demonstrated an impressive 73% average recovery of Se in seeds. Selenomethionine was identified as the predominant species of Se in enzymatic hydrolysates of soybean, constituting up to 95% of Seorg in seeds. Minor Se species, such as selenocystine, selenite, and selenate, were also detected. The timing of Se spraying influenced both plant SeO4 2- biotransformation and total content in seeds, emphasizing the critical importance of optimizing the biofortification protocol. Future research should explore the economic viability, long-term ecological sustainability, and the broad nutritional implications of incorporating Se-enriched soybeans into food for humans and animals.
Collapse
Affiliation(s)
| | | | | | | | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Czech University of Life Sciences in Prague, Prague, Czechia
| |
Collapse
|
4
|
Wang F, Zhang J, Xu L, Ma A, Zhuang G, Huo S, Zou B, Qian J, Cui Y. Selenium volatilization in plants, microalgae, and microorganisms. Heliyon 2024; 10:e26023. [PMID: 38390045 PMCID: PMC10881343 DOI: 10.1016/j.heliyon.2024.e26023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The augmented prevalence of Se (Se) pollution can be attributed to various human activities, such as mining, coal combustion, oil extraction and refining, and agricultural irrigation. Although Se is vital for animals, humans, and microorganisms, excessive concentrations of this element can give rise to potential hazards. Consequently, numerous approaches have been devised to mitigate Se pollution, encompassing physicochemical techniques and bioremediation. The recognition of Se volatilization as a potential strategy for mitigating Se pollution in contaminated environments is underscored in this review. This study delves into the volatilization mechanisms in various organisms, including plants, microalgae, and microorganisms. By assessing the efficacy of Se removal and identifying the rate-limiting steps associated with volatilization, this paper provides insightful recommendations for Se mitigation. Constructed wetlands are a cost-effective and environmentally friendly alternative in the treatment of Se volatilization. The fate, behavior, bioavailability, and toxicity of Se within complex environmental systems are comprehensively reviewed. This knowledge forms the basis for developing management plans that aimed at mitigating Se contamination in wetlands and protecting the associated ecosystems.
Collapse
Affiliation(s)
- Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jie Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Anzhou Ma
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
5
|
Malka M, Du Laing G, Kurešová G, Hegedüsová A, Bohn T. Enhanced accumulation of phenolics in pea (Pisum sativum L.) seeds upon foliar application of selenate or zinc oxide. Front Nutr 2023; 10:1083253. [PMID: 37063310 PMCID: PMC10097936 DOI: 10.3389/fnut.2023.1083253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/13/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundSelenium (Se) and zinc (Zn) are essential antioxidant enzyme cofactors. Foliar Se/Zn application is a highly effective method of plant biofortification. However, little is known about the effect of such applications on the concentration of trace elements and phytochemicals with pro-oxidant or antioxidant activity in pea (Pisum sativum L.).MethodsA 2-year pot experiment (2014/2015) was conducted to examine the response of two pea varieties (Ambassador and Premium) to foliar-administered sodium selenate (0/50/100 g Se/ha) and zinc oxide (0/375/750 g Zn/ha) at the flowering stage. Concentrations of selected trace elements (Fe, Cu, and Mn), total phenolic content (TPC), total flavonoid content (TFC), and total antioxidant activity (ABTS, FRAP) of seeds were determined.Results and conclusionsSe/Zn treatments did not improve the concentration of trace elements, while they generally enhanced TPC. Among examined treatments, the highest TPC was found in Ambassador (from 2014) treated with 100 g Se/ha and 750 g Zn/ha (2,926 and 3,221 mg/100 g DW, respectively) vs. the control (1,737 mg/100 g DW). In addition, 50 g of Se/ha increased TFC vs. the control (261 vs. 151 mg/100 g DW) in Premium (from 2014), 750 g of Zn/ha increased ABTS vs. the control (25.2 vs. 59.5 mg/100 g DW) in Ambassador (from 2015), and 50 g of Se/ha increased FRAP vs. the control (26.6 vs. 18.0 mmol/100 g DW) in Ambassador (from 2015). In linear multivariable regression models, Zn, Mn, Cu, and TPC best explained ABTS (R = 0.577), while Se, Cu, and TPC best explained the FRAP findings (R = 0.696). This study highlights the potential of foliar biofortification with trace elements for producing pea/pea products rich in bioactive plant metabolites beneficial for human health.
Collapse
Affiliation(s)
- Maksymilian Malka
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Gabriela Kurešová
- Department of Plant Protection, Crop Research Institute, Prague, Czechia
| | - Alžbeta Hegedüsová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
- *Correspondence: Torsten Bohn
| |
Collapse
|
6
|
Malka M, Laing GD, Hegedűsová A, Bohn T. Foliar Selenate and Zinc Oxide Separately Applied to Two Pea Varieties: Effects on Growth Parameters and Accumulation of Minerals and Macronutrients in Seeds under Field Conditions. Foods 2023; 12:1286. [PMID: 36981212 PMCID: PMC10048356 DOI: 10.3390/foods12061286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Though selenium (Se) and zinc (Zn) constitute essential nutrients for human health, their deficiencies affect up to 15% and 17% of the global population, respectively. Agronomic biofortification of staple crops with Se/Zn may alleviate these challenges. Pea (Pisum sativum L.) is a nutritious legume crop that has great potential for Se/Zn biofortification. Herein, two varieties of pea (Ambassador, Premium) were biofortified via foliar application of sodium selenate (0/50/100 g of Se/ha) or zinc oxide (0/375/750 g of Zn/ha) during the flowering stage under field conditions. While no significant differences were found in Se accumulation between seed varieties upon Se treatments, selenate enhanced the accumulation of Se in the two seed varieties in a dose dependent manner. Selenium concentration was most elevated in seeds of Ambassador exposed to 100 g of Se/ha (3.93 mg/kg DW compared to the control (0.08 mg/kg DW), p < 0.001). 375 g of Zn/ha (35.7 mg/kg DW) and 750 g of Zn/ha (35.5 mg/kg DW) significantly and similarly enhanced Zn concentrations compared to the control (31.3 mg/kg DW) in Premium seeds, p < 0.001. Zinc oxide also improved accumulations of Fe, Cu, Mn, and Mg in Premium seeds. Se/Zn treatments did not significantly affect growth parameters and accumulations of soluble solids and protein in seeds. Positive and significant (p < 0.01) correlations were observed between Zn and Fe, Cu, Mn and Mg levels in Premium seeds, among others. Consuming 33 g/day of pea biofortified with Se at 50 g/ha and 266 g/day of pea biofortified with 375 g of Zn/ha could provide 100% of the RDA (55 μg) for Se and RDA (9.5 mg) for Zn in adults, respectively. These results are relevant for enhancing Se/Zn status in peas by foliar biofortification.
Collapse
Affiliation(s)
- Maksymilian Malka
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Alžbeta Hegedűsová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
| |
Collapse
|
7
|
Ithnin M, Othman A, Tahir NIM, Banisetti KB, Abd Halim MA, Rajesh MK. Oil Palm: Genome Designing for Improved Nutritional Quality. COMPENDIUM OF CROP GENOME DESIGNING FOR NUTRACEUTICALS 2023:1-41. [DOI: 10.1007/978-981-19-3627-2_22-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 09/02/2023]
|
8
|
Malka M, Du Laing G, Li J, Bohn T. Separate foliar sodium selenate and zinc oxide application enhances Se but not Zn accumulation in pea ( Pisum sativum L.) seeds. FRONTIERS IN PLANT SCIENCE 2022; 13:968324. [PMID: 36466269 PMCID: PMC9714566 DOI: 10.3389/fpls.2022.968324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/03/2022] [Indexed: 06/17/2023]
Abstract
Up to 15% and 17% of the world population is selenium (Se) and zinc (Zn) deficient, respectively. Pea (Pisum sativum L.) is an important staple legume with a high potential for Se and Zn biofortification in seeds. A 2-year pot experiment investigated two pea varieties (Ambassador and Premium) following foliar-applied sodium selenate (0/50/100 g of Se/ha) and zinc oxide (0/375/750 g of Zn/ha) at the flowering stage. Selenate and zinc oxide had minimal overall effects on growth parameters. Zinc oxide did not improve Zn accumulation in both seed varieties, while selenate improved Se accumulation in both seed varieties dose-dependently. Premium accumulated greater amounts of Se in seeds than Ambassador (p < 0.001). Selenium concentrations were highest in seeds of Premium treated with 100 g of Se/ha [7.84 mg/kg DW vs. the control (0.16 mg/kg DW), p < 0.001]. The predominant Se species in Se-enriched seeds was selenomethionine (40%-76% of total Se). Furthermore, a significant (p < 0.01) positive correlation was found between Zn and S concentrations in Ambassador (r 2 = 0.446) and Premium (r 2 = 0.498) seeds, but not between Se and S. Consuming as little as 55 g/day of pea biofortified by 50 g of Se/ha would cover 100% of the adult RDA (55 µg) for Se. Findings are important for improving foliar biofortification of pea with Se and Zn.
Collapse
Affiliation(s)
- Maksymilian Malka
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jun Li
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|
9
|
Malka M, Du Laing G, Bohn T. Separate Effects of Foliar Applied Selenate and Zinc Oxide on the Accumulation of Macrominerals, Macronutrients and Bioactive Compounds in Two Pea ( Pisum sativum L.) Seed Varieties. PLANTS (BASEL, SWITZERLAND) 2022; 11:2009. [PMID: 35956488 PMCID: PMC9370774 DOI: 10.3390/plants11152009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Selenium (Se) and zinc (Zn) are important cofactors for antioxidant enzymes. Foliar Se/Zn application is a highly efficient strategy of plant biofortification. However, its effects on the accumulation of macrominerals, macronutrients and bioactive compounds in the pea plant (Pisum sativum L.) have been poorly investigated. A two-year pot experiment was performed to study responses of two pea varieties (Ambassador, Premium) to foliar-applied sodium selenate (0/50/100 g Se/ha) and zinc oxide (0/375/750 g Zn/ha) at the flowering stage. Concentrations of Ca, Mg, K, Na, soluble solids (SSC), protein, chlorophyll a and b, total chlorophyll, total carotenoids and total condensed tannins (TCT) were determined in seeds. Mg concentration in Ambassador and chlorophyll a concentration in Premium were positively affected, in part, by selenate and zinc oxide, respectively. Selenate and zinc oxide increased, in part, protein concentration in Premium. Highest protein concentration was found in Premium treated with 375 g Zn/ha (27.6% DW) vs. the control (26.6% DW). Significant (all p < 0.001) positive correlations were found, among others, between concentrations of Zn and Mg (r2 = 0.735) and between Zn and protein (r2 = 0.437) for Ambassador, and between Mg and protein (r2 = 0.682), between Zn and Mg (r2 = 0.807), as well as between Zn and protein (r2 = 0.884) for Premium. TCT significantly (all p < 0.05) and positively correlated with SSC (r2 = 0.131), chlorophyll b (r2 = 0.128) and total chlorophyll (r2 = 0.109) for Ambassador. This study provides new nutritional data on Se/Zn biofortified peas, important for improving agronomic biofortification of pea plants.
Collapse
Affiliation(s)
- Maksymilian Malka
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium; (M.M.); (G.D.L.)
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium; (M.M.); (G.D.L.)
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
| |
Collapse
|
10
|
Selenium biofortification of different varieties of apples (Malus domestica) - Influence on protein content and the allergenic proteins Mal d 1 and Mal d 3. Food Chem 2021; 362:130134. [PMID: 34087709 DOI: 10.1016/j.foodchem.2021.130134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 11/22/2022]
Abstract
As allergy towards apples is widespread, the evaluation of various cultivation and postharvest influences on the allergenic potential is of great importance. Therefore, the analysis of the Mal d 1 content was the focus of this study, originally dealing with investigating the influence of a selenium biofortification on apple quality. The Mal d 1 content of apples was in most cases reduced when the fruits were biofortified with selenium. Apple variety and climatic conditions were identified as further influencing factors for the Mal d 1 content of the fruits. The separate analysis of the peel and the fruit flesh showed that the content of Mal d 1 in the fruit flesh was significantly lower in the biofortified samples than in the controls. In conclusion, the results indicate that the selenium biofortification of apples and biochemical mechanism behind can reduce the allergenic potential regarding the content of Mal d 1.
Collapse
|
11
|
Raina M, Sharma A, Nazir M, Kumari P, Rustagi A, Hami A, Bhau BS, Zargar SM, Kumar D. Exploring the new dimensions of selenium research to understand the underlying mechanism of its uptake, translocation, and accumulation. PHYSIOLOGIA PLANTARUM 2021; 171:882-895. [PMID: 33179766 DOI: 10.1111/ppl.13275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Selenium (Se) is a vital mineral for both plants and animals. It is widely distributed on the earth's crust and is taken up by the plants as selenite or selenate. Plants substantially vary in their physiological response to Se. The amount of Se in edible plants is genetically controlled. Its availability can be determined by measuring its phytoavailability in soil. The low concentration of Se in plants can help them in combating stress, whereas higher concentrations can be detrimental to plant health and in most cases it is toxic. Thus, solving the double-edged sword problem of nutritional Se deficiency and its elevated concentrations in environment requires a better understanding of Se uptake and metabolism in plants. The studies on Se uptake and metabolism can help in genetic biofortification of Se in plants and also assist in phytoremediation. Moreover, Se uptake and transport, especially biochemical pathways of assimilation and incorporation into proteins, offers striking mechanisms of toxicity and tolerance. These developments have led to a revival of Se research in higher plants with significant break throughs being made in the previous years. This review explores the new dimensions of Se research with major emphasis on key research events related to Se undertaken in last few years. Further, we also discussed future possibilities in Se research for crop improvement.
Collapse
Affiliation(s)
- Meenakshi Raina
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Akanksha Sharma
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Muslima Nazir
- Center of Research for Development (CORD), University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Punam Kumari
- Department of Biosciences and Biotechnology, Fakir Mohan University, Balasore, Odisha, India
| | - Anjana Rustagi
- Department of Botany, Gargi College, University of Delhi, New Delhi, India
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, India
| | - Brijmohan Singh Bhau
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, India
| | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
12
|
Łukaszewicz S, Borowiak-Sobkowiak B, Durak R, Dancewicz K, Politycka B. Interaction between Acyrthosiphon pisum and selenium-treated Pisum sativum. THE EUROPEAN ZOOLOGICAL JOURNAL 2021. [DOI: 10.1080/24750263.2020.1853831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- S. Łukaszewicz
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - B. Borowiak-Sobkowiak
- Department of Entomology and Environmental Protection, Poznań University of Life Sciences, Poznań, Poland
| | - R. Durak
- Department of Experimental Biology and Chemistry, University of Rzeszów, Rzeszów, Poland
| | - K. Dancewicz
- Department of Botany and Ecology, University of Zielona Góra, Zielona Góra, Poland
| | - B. Politycka
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
13
|
Jakabová S, Čurlej J, Fikselová M, Harangozo Ľ, Kozelová D, Hegedűs O, Hegedűsová A. The use of biofortification for production of selenium enriched garden pea. POTRAVINARSTVO 2020. [DOI: 10.5219/1359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biofortification of crops with selenium is one of the possible manners on how to increase selenium intake by humans. The effect of selenium fertilization in relation to selenium enrichment of pea and following the phytotoxicity symptoms in garden pea plants was studied. Pot experiments were established with a control variant without selenium addition and four variants where selenium was applied as sodium selenate into the soil in four different concentrations (1 - 6 mg Se.kg-1) before seeding. Garden pea was grown in pots for 60 days and then plant material was dried and submitted to analysis. The total content of selenium was determined by the ZET-AAS method in the roots, above-ground parts of the plant (stems, leaves, extracted pods), and in seeds of a pea. Dean-Dixon´s test and paired t-test (α = 0.05) were used for statistical evaluation of the results. Transfer factors were calculated as a ratio between selenium content (mg.kg-1) in individual plant material and soil. Transfer indexes were calculated as a ratio between selenium content (mg.kg-1) in seeds and roots. The results showed that with the increasing addition of the Se to the soil, its contents in all parts of the plant proportionally increased. The content of the Se increased in the roots 43 to 173-fold, in the above-ground parts 79 to 372-fold, and in the seeds Se was accumulated 130 to 415 times more compared to control. Transfer factors and transport indexes were expressed. Transfer factors for pea varied from 11.05 to 19.25 in the case of Se transfer to the whole pea biomass. In the case of the Se transfer from soil to pea seeds, the highest transfer showed variant with addition 1 mg Se.kg-1 and the transfer factor gradually decreased with increasing addition of Se. Based on the amount of biomass produced, the experiments statistically confirmed the phytotoxicity of higher doses (4 and 6 mg Se.kg-1) of selenium to plants. The highest transport index values are shown variants with the Se addition 1 and 2 mg Se.kg-1 (2.03 and 1.77, respectively). In these variants, Se was used the most efficiently. Our results showed that the best biofortification results were obtained in experimental variants with the lower selenium additions (1 and 2 mg Se.kg-1).
Collapse
|
14
|
Valea A, Georgescu CE. Selenoproteins in human body: focus on thyroid pathophysiology. Hormones (Athens) 2018; 17:183-196. [PMID: 29873029 DOI: 10.1007/s42000-018-0033-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/18/2018] [Indexed: 02/07/2023]
Abstract
Selenium (Se) has a multilevel, complex and dynamic effect on the human body as a major component of selenocysteine, incorporated into selenoproteins, which include the selenocysteine-containing enzymes iodothyronine deiodinases. At the thyroid level, these proteins play an essential role in antioxidant protection and hormone metabolism. This is a narrative review based on PubMed/Medline database research regarding thyroid physiology and conditions with Se and Se-protein interferences. In humans, Se-dependent enzyme functions are best expressed through optimal Se intake, although there is gap in our knowledge concerning the precise mechanisms underlying the interrelation. There is a good level of evidence linking low serum Se to autoimmune thyroid diseases and, to a lesser extent, differentiated thyroid cancer. However, when it comes to routine supplementation, the results are heterogeneous, except in the case of mild Graves' orbitopathy. Autoimmune hypothyroidism is associated with a state of higher oxidative stress, but not all studies found an improvement of thyroid function after Se was introduced as antioxidant support. Meanwhile, no routine supplementation is recommended. Low Se intake is correlated with an increased risk of developing antithyroid antibodies, its supplementation decreasing their titres; there is also a potential reduction in levothyroxine replacement dose required for hypothyroidism and/or the possibility that it prevents progression of subclinical hypothyroidism, although not all studies agree. In thyroid-associated orbitopathy, euthyroidism is more rapidly achieved if the micronutrient is added to traditional drugs, while controls appear to benefit from the microelement only if they are deficient; thus, a basal assay of Se appears advisable to better select patients who need substitution. Clearly, further Se status biomarkers are required. Future introduction of individual supplementation algorithms based on baseline micronutrient levels, underlying or at-risk clinical conditions, and perhaps selenoprotein gene polymorphisms is envisaged.
Collapse
Affiliation(s)
- Ana Valea
- Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Endocrinology Clinic, Clinical County Hospital, Cluj-Napoca, Romania.
- , Cluj-Napoca, Romania.
| | - Carmen Emanuela Georgescu
- Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Endocrinology Clinic, Clinical County Hospital, Cluj-Napoca, Romania
| |
Collapse
|
15
|
Žitná M, Juríková T, Hegedűsová A, Golian M, Mlček J, Ryant P. The Effect of Selenium Application on Plant Health Indicators of Garden Pea (Pisum sativum L.) Varieties. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2018. [DOI: 10.11118/actaun201866020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
Garousi F, Domokos-Szabolcsy É, Jánószky M, Kovács AB, Veres S, Soós Á, Kovács B. Selenoamino Acid-Enriched Green Pea as a Value-Added Plant Protein Source for Humans and Livestock. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2017; 72:168-175. [PMID: 28353095 DOI: 10.1007/s11130-017-0606-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Selenium deficiency in various degrees affects around 15% of the world's population, contributing to a variety of health problems. In this study, we examined the accumulation and biotransformation of soil applied Se-supplementation (sodium selenite and sodium selenate forms) at different concentrations, along with growth and yield formation of green pea, in a greenhouse experiment. Biotransformation of inorganic Se was evaluated using HPLC-ICP-MS for Se-species separation in the above ground parts of green pea. Results showed 3 mg kg-1 SeIV increased green pea growth biomarkers and also caused an increase in protein content in leaves by 17%. Selenomethionine represented 65% of the total selenium content in shoots, but was lower in pods and seeds (54 and 38%, respectively). Selenomethionine was the major species in all plant parts and the only organic selenium form in the lower SeIV concentration range. Elevating the dose of SeIV (≥30 mg kg-1) triggered detrimental effects on growth and protein content and caused higher accumulation of inorganic Se in forms of SeVI and SeIV. Selenocysteine, another organic form of proteinogenic amino acid, was determined when SeIV (≥10 mg kg-1) was applied in higher concentrations. Thus, agronomic biofortification using the appropriate chemical form and concentration of Se will have positive effects on green pea growth and its enriched shoots and seeds provide a value-added protein source for livestock and humans with significant increased selenomethionine.
Collapse
Affiliation(s)
- Farzaneh Garousi
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi str. 138, Debrecen, H-4032, Hungary.
| | - Éva Domokos-Szabolcsy
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Crop Sciences, Department of Agricultural Botany, Crop Physiology and Biotechnology, University of Debrecen, Böszörményi str. 138, Debrecen, H-4032, Hungary
| | - Mihály Jánószky
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi str. 138, Debrecen, H-4032, Hungary
| | - Andrea Balláné Kovács
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Agrochemistry and Soil Science, University of Debrecen, Böszörményi str. 138, Debrecen, Hungary
| | - Szilvia Veres
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Crop Sciences, Department of Agricultural Botany, Crop Physiology and Biotechnology, University of Debrecen, Böszörményi str. 138, Debrecen, H-4032, Hungary
| | - Áron Soós
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi str. 138, Debrecen, H-4032, Hungary
| | - Béla Kovács
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Science, University of Debrecen, Böszörményi str. 138, Debrecen, H-4032, Hungary
| |
Collapse
|
17
|
|
18
|
Gharibzahedi SMT, Jafari SM. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.02.017] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
19
|
Gupta M, Gupta S. An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. FRONTIERS IN PLANT SCIENCE 2017; 7:2074. [PMID: 28123395 PMCID: PMC5225104 DOI: 10.3389/fpls.2016.02074] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/29/2016] [Indexed: 05/18/2023]
Abstract
Selenium (Se) is an essential micronutrient for humans and animals, but lead to toxicity when taken in excessive amounts. Plants are the main source of dietary Se, but essentiality of Se for plants is still controversial. However, Se at low doses protects the plants from variety of abiotic stresses such as cold, drought, desiccation, and metal stress. In animals, Se acts as an antioxidant and helps in reproduction, immune responses, thyroid hormone metabolism. Selenium is chemically similar to sulfur, hence taken up inside the plants via sulfur transporters present inside root plasma membrane, metabolized via sulfur assimilatory pathway, and volatilized into atmosphere. Selenium induced oxidative stress, distorted protein structure and function, are the main causes of Se toxicity in plants at high doses. Plants can play vital role in overcoming Se deficiency and Se toxicity in different regions of the world, hence, detailed mechanism of Se metabolism inside the plants is necessary for designing effective Se phytoremediation and biofortification strategies.
Collapse
Affiliation(s)
- Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia IslamiaNew Delhi, India
| | | |
Collapse
|
20
|
Hegedüsová A, Mezeyová I, Hegedűs O, Musilová J, Paulen O. Selenium content increasing in the seeds of garden pea after foliar biofortification. POTRAVINARSTVO 2015. [DOI: 10.5219/559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Selenium plays an important role as an antioxidant in the prevention of cardiovascular disease. Content of selenium in the crops is constantly in the spotlight of professional public. Vegetables, as an important source of chemo protective substances, have irreplaceable position within the food of plant character. The aim of research work was to solve the Se content increasing in the seeds of garden pea (varieties Premium and Ambassador) through the foliar biofortification of the plants (50 g Se / ha and 100 g Se / ha) and to monitor its effect on production of photosynthetic pigments. In the seeds of fresh garden pea, the chlorophyll a and chlorophyll b content was determined by spectrophotometer depending on a variety and the doses of selenium. In lyophilized seeds there was measured content of selenium by ET-AAS methods. The statistically significant increase of selenium was confirmed with its increasing concentrations in case of both varieties. In the var. Ambassador there was increasing from 0.083 ±0.009 mg.kg-1 DM to 4.935 ±0.598 mg.kg-1 DM (60-fold) and in a var. Premium the values increase from 0.067±0.007 mg.kg-1 DM to 3.248 ±0.289 mg.kg-1 DM (48-fold) after application of 100 g Se / ha. After application of 50 g Se / ha in both varieties of peas there was reported 25-fold increasing in the selenium content in comparison with control. The content of photosynthetic pigments was also increased, or possibly left at level of un-fortificated variant (chla - Ambassador - 50 g Se / ha; chlb - Premium - 100 g Se / ha) by foliar biofortification. Chlorophyll a content was high significantly increased according to used statistical methods in varieties Premium, from the content of 24.527 ±5.156 mg.kg-1 FM to 66.953 ±6.454 mg.kg-1 FM, likewise the content of chlorophyll b from the value of 19.708 ±5.977 mg.kg-1 FM to 37.488 ±6.146 mg.kg-1 FM (after 50 g / ha application). Foliar biofortification of different vegetable species can provide large-scale intake of minerals with antioxidant properties for human as well as an increase of certain biologically active substances as a result of their synergies
Collapse
|
21
|
Ismael DS. Total polyphenol content and antioxidant capacity of cowpea effect of variet and locality. POTRAVINARSTVO 2015. [DOI: 10.5219/508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leguminous seeds belong to plant foods which are generally rich in phenolic compounds. Cowpea seeds are a major source of plant proteins and vitamins for man, feed for animals. Polyphenolic compounds are secondary metabolites of amino acids present in many plant species, including legume. Their content depends on various factors, such as cultivar, pedoclimatic and cultivation conditions. The influence of cultivar, locality on the total polyphenols (TPC) and antioxidant activity (TAC) of Cowpea seeds was studied. Cowpea cultivars were cultivated under different climatic conditions in Iraq Republic. The main objective of the present work was to consider the changes of total polyphenols content in dependence on variety and to evaluate an antioxidant potential of three Cowpea varieties (white, light brown and red color) in different localities of Erbil City in Kurdistan Region Iraq and to evaluate the content of bioactive compounds (polyphenolics) in legumes commonly utilized in the human diet in Iraq, to compare their antioxidant capacity and to evaluate the influence of grown locality on observed parameters. Total polyphenols were determined by the Lachman´s method and expressed as mg of Gallic acid equivalent per kg dry matter. Total antioxidant capacity was measured by the Brand-Williams method using a compound DPPH (2,2-diphenyl-1-picrylhydrazyl). Analysis of variance indicated significant differences (p <0.05) among locality and color for phenolic contents and antioxidant capacity. The various varieties of white color cowpea had significant influence on TPC and TAC and affected by locality too. From tested seeds the highest polyphenol content was measured in red color (802.323 ±15.937 - 825.700 ±8.494 mg.kg-1 GAE). The lowest value was in white color (480.195 ±15.286 - 721.952 ±25.004 mg.kg-1GAE).The similar trend was observed at values of TAC. The highest TAC value was determined in red color (28.709 ±15.937 - 34.777 ±8.494% DPPH). The lowest value was in white color (6.065 ±0.836% - 9.578 ±0.884% DPPH). The various varieties had significant influence on TPC and TAC according to used statistical analyses. Correlation between the phenolic contents and antioxidant activity was significantly positive (r = 0.783645). Our results confirmed that legumes can be a good source of bioactive compounds in the human nutrition.
Collapse
|
22
|
Hegedüsová A, Mezeyová I, Timoracká M, Šlosár M, Musilová J, Juríková T. Total polyphenol content and antioxidant capacity changes in dependence on chosen garden pea varieties. POTRAVINARSTVO 2015. [DOI: 10.5219/412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The green pea is ranged between the crops with high antioxidant potential. This potential is connected with phytochemical components mainly with polyphenols. All these bioactive chemicals have disease - fighting properties. In real human diet there is no usually possibility of fresh garden pea consumption during the whole year. The total polyphenol content is significantly changed among other things by processing methods. Focus on variety, bio-fortification and other specific agricultural inputs, could be the right method of total polyphenol contents and total antioxidant capacity increasing. The main objective of the present work was to consider the changes of total polyphenols content in dependence on variety and to evaluate an antioxidant potential six garden pea varieties arranged by the ripening point of view. Variety “Exzeleus” belongs to very early type, ́Premium ́ is early maturing,”Flavora” is middle ripening variety and the last three varieties “Utrio”, “Jumbo” and “Ambassador” are middle late types of varieties. Every variety was grown in four replications, i.e. on 24 m2 total plot in Botanical garden of Slovak University of Agriculture in Nitra during 2013. Total polyphenols were determined by the Lachmans method and expressed as mg of gallic acid equivalent per kg fresh mater. Total antioxidant capacity was measured by the Brand - Williams method using a compound DPPH (2.2-diphenyl-1-pikrylhydrazyl)). The highest value was reached in case of variety “Jumbo” 1179.995±28.081 mg/kg, the lowest value in case of “Premium” 674.505 ±26.541 mg/kg. When evaluating an antioxidant capacity in chosen varieties of garden pea, the interval estimated by our trail ranged from 0.523 ±0.206% (“Exzeleus”) to 6.844 ±0.591% (“Flavora”) Following the both observed parameters, TPC and TAC, variety “Flavora” (as a member of middle ripening varieties) seems to be the most optimal from the human nutrition point of view. The various varieties had significant influence on TPC and TAC according to used statistical analyzes. Within the all observed varieties, when they were arranged by ripening, there was estimated significant difference only in case of garden pea varieties early – middle late. Other couples didn’t show any statistical important differences in total polyphenol content.
Collapse
|
23
|
Poblaciones MJ, Rodrigo S, Santamaria O, Chen Y, McGrath SP. Selenium accumulation and speciation in biofortified chickpea (Cicer arietinum L.) under Mediterranean conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:1101-6. [PMID: 23983062 DOI: 10.1002/jsfa.6372] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/14/2013] [Accepted: 08/23/2013] [Indexed: 05/02/2023]
Abstract
BACKGROUND Millions of people have Se-deficient diets and Se-biofortified crops could prevent such deficiency. The aim of the present study was to evaluate the potential of chickpea for use in Se fertilization programs in order to increase available Se. Two foliar Se fertilizers (sodium selenate and sodium selenite) at four rates (0, 10, 20, 40 g ha(-1)) were tested in the 2010/2011 and 2011/2012 growing seasons in a field experiment conducted under semiarid Mediterranean conditions. RESULTS Sodium selenate was much more effectively taken by plants than sodium selenite, and there was a strong and linear relationship between total Se content and Se rate for both. For each gram of Se fertilizer, applied either as sodium selenate or sodium selenite, the increases of total Se concentration in grain were 126 and 87, and 25 and 19 µg Se kg(-1) dry weight, in 2010/2011 and 2011/2012, respectively. Se was found to be incorporated into chickpea grains mainly (>70%) as selenomethionine. CONCLUSION Se-enriched chickpeas would be a good candidate for inclusion in biofortification programs under semiarid Mediterranean conditions and for promotion as a 'functional food'.
Collapse
Affiliation(s)
- Maria J Poblaciones
- Department of Ingeniería del Medio Agronómico y Forestal, Escuela de Ingenierías Agrarias, University of Extremadura, 06007, Badajoz, Spain
| | | | | | | | | |
Collapse
|
24
|
Poblaciones MJ, Rodrigo S, Santamaría O, Chen Y, McGrath SP. Agronomic selenium biofortification in Triticum durum under Mediterranean conditions: from grain to cooked pasta. Food Chem 2013; 146:378-84. [PMID: 24176357 DOI: 10.1016/j.foodchem.2013.09.070] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 11/29/2022]
Abstract
To improve the nutritional value of durum wheat and derived products, two foliar Se fertilisers (sodium selenate and selenite) were tested at four rates (0-10-20-40gha(-1)) in 2010/2011 and 2011/2012 in southwestern Spain. There was a strong and linear relationship between total Se or selenomethionine (Se-Met) accumulation in grain and Se dose for both fertilisers, although selenate was much more efficient. Se-Met was the main Se species (≈90%) of the total Se extracted from all materials. Milling caused a 27% loss of Se due to the removal of Se located in bran and germ. In the pasta making process and the cooking process the loss of Se, mainly as selenite, was about 7%. Durum wheat may be a good candidate to be included in Se biofortification programs under rainfed Mediterranean conditions, as foodstuffs derived from it could efficiently increase the Se content in the human diet.
Collapse
Affiliation(s)
- M J Poblaciones
- Department of Agronomy and Forest Environment Engineering, University of Extremadura Avda., Adolfo Suárez s/n, 06007 Badajoz, Spain.
| | | | | | | | | |
Collapse
|