1
|
Yin L, Yuan L, Luo Z, Tang Y, Lin X, Wang S, Liang P, Huang L, Jiang B. COX-2 optimizes cardiac mitochondrial biogenesis and exerts a cardioprotective effect during sepsis. Cytokine 2024; 182:156733. [PMID: 39128194 DOI: 10.1016/j.cyto.2024.156733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Septic cardiomyopathy is a component of multiple organ dysfunction in sepsis. Mitochondrial dysfunction plays an important role in septic cardiomyopathy. Studies have shown that cyclooxygenase-2 (COX-2) had a protective effect on the heart, and prostaglandin E2 (PGE2), the downstream product of COX-2, was increasingly recognized to have a protective effect on mitochondrial function. OBJECTIVE This study aims to demonstrate that COX-2/PGE2 can protect against septic cardiomyopathy by regulating mitochondrial function. METHODS Cecal ligation and puncture (CLP) was used to establish a mouse model of sepsis and RAW264.7 macrophages and H9C2 cells were used to simulate sepsis in vitro. The NS-398 and celecoxib were used to inhibit the activity of COX-2. ZLN005 and SR18292 were used to activate or inhibit the PGC-1α activity. The mitochondrial biogenesis was examined through the Mitotracker Red probe, mtDNA copy number, and ATP content detection. RESULTS The experimental data suggested that COX-2 inhibition attenuated PGC-1α expression thus decreasing mitochondrial biogenesis, whereas increased PGE2 could promote mitochondrial biogenesis by activating PGC-1α. The results also showed that the effect of COX-2/PGE2 on PGC-1α was mediated by the activation of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB). Finally, the effect of COX-2/PGE2 on the heart was also verified in the septic mice. CONCLUSION Collectively, these results suggested that COX-2/PGE2 pathway played a cardioprotective role in septic cardiomyopathy through improving mitochondrial biogenesis, which has changed the previous understanding that COX-2/PGE2 only acted as an inflammatory factor.
Collapse
Affiliation(s)
- Leijing Yin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Ludong Yuan
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Zhengyang Luo
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Yuting Tang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Xiaofang Lin
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Shuxin Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Lingjin Huang
- Department of Cardiothoracic Surgery, Xiangya Hospital Central South University, Changsha, PR China.
| | - Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, PR China; Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha, Hunan Province, PR China; National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan Province, PR China.
| |
Collapse
|
2
|
Lakshmi S, Rubeena AS, Subramaniyan SB, Raman T, Vaseeharan B, Arockiaraj J, Karthikeyan S, Anbazhagan V, Preetham E. Hybrid of Metapenaeus dobsoni lectin and platinum nanoparticles exert antimicrobial and immunostimulatory effects to reduce bacterial bioburden in infected Nile tilapia. Sci Rep 2023; 13:525. [PMID: 36631627 PMCID: PMC9834305 DOI: 10.1038/s41598-022-26719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
A novel antibacterial immunostimulant using Platinum nanoparticles (PtNPs) and lectin from Metapenaeus dobsoni (Md-Lec) was developed. The Md-Lec and PtNPs (Pt-lec) hybrid formed through non-covalent interaction exhibits antimicrobial activity against fish specific pathogens by affecting membrane integrity and producing excess reactive oxygen species. The therapeutic efficacy of Pt-lec was demonstrated through rescuing Aeromonas hydrophila infected Nile Tilapia. Pt-lec prevents the infection spreading and reduces the bacterial bioburden in less than 12 h, and as a result of this the fish were restored to normalcy. To assess immunostimulation, we studied the expression of three different immune related genes, namely LEC, Myd88 and COX-2 in the gills, liver, spleen and kidney of fish under various experimental conditions. Our results showed that Pt-lec treatment appeared to be better when compared to lectin alone in enhancing the expression of Myd88 and COX-2, but LEC was not as expected. These results suggest that Pt-lec has the ability to protect Nile Tilapia against bacterial infection by restricting bacterial bioburden through their direct effects on the bacterial membrane and indirectly through their effects on host immune-related gene expression. This hybrid could have potential "green" application in fish farming in rescuing infected animals when compared to widely and unregulated antibiotics.
Collapse
Affiliation(s)
- Sreeja Lakshmi
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kerala, India
| | - Abdul Salam Rubeena
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kerala, India
- Department of Biosciences, MES College Marampally, Ernakulam, Kerala, 683105, India
| | - Siva Bala Subramaniyan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Thiagarajan Raman
- Department of Zoology, Ramakrishna Mission Vivekananda College, Chennai, Tamil Nadu, 600004, India
| | - Baskaralingam Vaseeharan
- Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6th Floor, Alagappa University, Karaikudi, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | | | - Veerappan Anbazhagan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India.
| | - Elumalai Preetham
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kerala, India.
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Lakeside Campus Fine Arts Avenue, Cochin, India.
| |
Collapse
|
3
|
Lakshmi S, Rubeena AS, Subramaniyan SB, Raman T, Vaseeharan B, Arockiaraj J, Karthikeyan S, Anbazhagan V, Preetham E. Hybrid of Metapenaeus dobsoni lectin and platinum nanoparticles exert antimicrobial and immunostimulatory effects to reduce bacterial bioburden in infected Nile tilapia. Sci Rep 2023; 13:525. [DOI: 52.lakshmi s, rubeena as, subramaniyan sb, raman t, vaseeharan b, arockiaraj j, karthikeyan s, anbazhagan v, preetham e (2023) hybrid of metapenaeus dobsoni lectin and platinum nanoparticles exert antimicrobial and immunostimulatory effects to reduce bacterial bioburden in infected nile tilapia.scientific reports 13:525.https:/doi.org/10.1038/s41598-022-26719-5 (if = 4.996)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/19/2022] [Indexed: 10/16/2023] Open
Abstract
AbstractA novel antibacterial immunostimulant using Platinum nanoparticles (PtNPs) and lectin from Metapenaeus dobsoni (Md-Lec) was developed. The Md-Lec and PtNPs (Pt-lec) hybrid formed through non-covalent interaction exhibits antimicrobial activity against fish specific pathogens by affecting membrane integrity and producing excess reactive oxygen species. The therapeutic efficacy of Pt-lec was demonstrated through rescuing Aeromonas hydrophila infected Nile Tilapia. Pt-lec prevents the infection spreading and reduces the bacterial bioburden in less than 12 h, and as a result of this the fish were restored to normalcy. To assess immunostimulation, we studied the expression of three different immune related genes, namely LEC, Myd88 and COX-2 in the gills, liver, spleen and kidney of fish under various experimental conditions. Our results showed that Pt-lec treatment appeared to be better when compared to lectin alone in enhancing the expression of Myd88 and COX-2, but LEC was not as expected. These results suggest that Pt-lec has the ability to protect Nile Tilapia against bacterial infection by restricting bacterial bioburden through their direct effects on the bacterial membrane and indirectly through their effects on host immune-related gene expression. This hybrid could have potential “green” application in fish farming in rescuing infected animals when compared to widely and unregulated antibiotics.
Collapse
|
4
|
Baradaran Rahim V, Khammar MT, Rakhshandeh H, Samzadeh-Kermani A, Hosseini A, Askari VR. Crocin protects cardiomyocytes against LPS-Induced inflammation. Pharmacol Rep 2019; 71:1228-1234. [PMID: 31670059 DOI: 10.1016/j.pharep.2019.07.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/23/2019] [Accepted: 07/19/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Sepsis causes organ dysfunctions via elevation of oxidative stress and inflammation. Lipopolysaccharide (LPS) is the major surface molecule of most gram-negative bacteria and routinely used as a sepsis model in investigation studies. Crocin is an active compound of saffron which has different pharmacological properties such as anti-oxidant and anti-inflammatory. In this research, the protective effect of crocin was evaluated against LPS-induced toxicity in the embryonic cardiomyocyte cell line (H9c2). METHODS The cells were pre-treated with different concentration of crocin (10, 20 and 40 μM) for 24 h, and then LPS was added (10 μg/ml) for another 24 h. Afterward, the percentage of cell viability and the levels of inflammatory cytokines (TNF-α, PGE2, IL-1β, and IL-6), gene expression levels (TNF-α, COX-2, IL-1β, IL-6, and iNOS), and the level of nitric oxide (NO) and thiol were measured. RESULTS Our results showed that LPS reduced cell viability, increased the levels of cytokines, gene-expression, nitric oxide, and thiol. Crocin attenuated the LPS-induced toxicity in H9c2 cells via reducing the levels of inflammatory factors (TNF-α, PGE2, IL-1β, and IL-6, p < 0.001), gene expression (TNF-α, COX-2, IL-1β, IL-6, and iNOS, p < 0.001), and NO (p < 0.001), whereas increased the level of thiol content (p < 0.001). CONCLUSION The observed results revealed that crocin has preventive effects on the LPS induced sepsis and its cardiac toxicity in-vitro model. Probably, these findings are related to anti-inflammatory and anti-oxidant properties of crocin. However, performing further animal studies are necessary to support the therapeutic effects of crocin in septic shock cardiac dysfunction.
Collapse
Affiliation(s)
- Vafa Baradaran Rahim
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taghi Khammar
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Lin CH, Lin CC. Sitagliptin attenuates inflammatory responses in lipopolysaccharide-stimulated cardiomyocytes via nuclear factor-κB pathway inhibition. Exp Ther Med 2016; 11:2609-2615. [PMID: 27284355 DOI: 10.3892/etm.2016.3255] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/10/2016] [Indexed: 12/14/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) and GLP-1 receptors (GLP-1Rs) are responsible for glucose homeostasis, and have been shown to reduce inflammation in preclinical studies. The aim of the present study was to determine whether sitagliptin, an inhibitor of the enzyme dipeptidyl peptidase-4 (DPP-4), as a GLP-1 receptor agonist, exerts an anti-inflammatory effect on cardiomyoblasts during lipopolysaccharide (LPS) stimulation. Exposure to LPS increased the expression levels of tumor necrosis factor (TNF)-α, interleukin-6 (IL)-6 and IL-1β in H9c2 cells, and also resulted in elevations in cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression and nuclear factor-κB (NF-κB) nuclear translocation. Treatment with the DPP-4 inhibitor sitagliptin dose-dependently downregulated the mRNA levels of IL-6, COX-2 and iNOS in LPS-stimulated H9c2 cells. In addition, sitagliptin inhibited the increased protein expression of IL-6, TNF-α and IL-1β. NF-κB mRNA expression was reduced and its translocation to the nucleus was suppressed by treatment with sitagliptin. The present results demonstrated that sitagliptin exerts a beneficial effect on cardiomyoblasts exposed to LPS by inhibiting expression of inflammatory mediators and suppressing NF-κB activation. These findings indicate that the DPP-4 inhibitor sitagliptin may serve a function in cardiac remodeling attributed to sepsis-induced inflammation.
Collapse
Affiliation(s)
- Chien-Hung Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan R.O.C.; Department of Pediatrics, Zhongxing Branch, Taipei City Hospital, Taipei 11241, Taiwan R.O.C
| | - Chung-Ching Lin
- Seeing Bioscience Co., Ltd., Datong, Taipei 22067, Taiwan R.O.C
| |
Collapse
|
6
|
Zhang XF, Zhu Y, Liang WB, Zhang JJ. Transcription factor Ets-1 inhibits glucose-stimulated insulin secretion of pancreatic β-cells partly through up-regulation of COX-2 gene expression. Endocrine 2014; 46:470-6. [PMID: 24287791 DOI: 10.1007/s12020-013-0114-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
Increased cyclooxygenase-2 (COX-2) expression is associated with pancreatic β-cell dysfunction. We previously demonstrated that the transcription factor Ets-1 significantly up-regulated COX-2 gene promoter activity. In this report, we used the pancreatic β-cell line INS-1 and isolated rat islets to investigate whether Ets-1 could induce β-cell dysfunction through up-regulating COX-2 gene expression. We investigated the effects of ETS-1 overexpression and the effects of ETS-1 RNA interference on endogenous COX-2 expression in INS-1 cells. We used site-directed mutagenesis and a dual luciferase reporter assay to study putative Ets-1 binding sites in the COX-2 promoter. The effect of ETS-1 1 overexpression on the insulin secretion function of INS-1 cells and rat islets and the potential reversal of these effects by a COX-2 inhibitor were determined in a glucose-stimulated insulin secretion (GSIS) assay. ETS-1 overexpression significantly induces endogenous COX-2 expression, but ETS-1 RNA interference has no effect on basal COX-2 expression in INS-1 cells. Ets-1 protein significantly increases COX-2 promoter activity through the binding site located in the -195/-186 region of the COX-2 promoter. ETS-1 overexpression significantly inhibited the GSIS function of INS-1 cells and islet cells and COX-2 inhibitor treatment partly reversed this effect. These findings indicated that ETS-1 overexpression induces β-cell dysfunction partly through up-regulation of COX-2 gene expression. Moreover, Ets-1, the transcriptional regulator of COX-2 expression, may be a potential target for the prevention of β-cell dysfunction mediated by COX-2.
Collapse
Affiliation(s)
- Xiong-Fei Zhang
- Department of Biochemistry, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | | | | | | |
Collapse
|
7
|
The NO/ONOO-cycle as the central cause of heart failure. Int J Mol Sci 2013; 14:22274-330. [PMID: 24232452 PMCID: PMC3856065 DOI: 10.3390/ijms141122274] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023] Open
Abstract
The NO/ONOO-cycle is a primarily local, biochemical vicious cycle mechanism, centered on elevated peroxynitrite and oxidative stress, but also involving 10 additional elements: NF-κB, inflammatory cytokines, iNOS, nitric oxide (NO), superoxide, mitochondrial dysfunction (lowered energy charge, ATP), NMDA activity, intracellular Ca(2+), TRP receptors and tetrahydrobiopterin depletion. All 12 of these elements have causal roles in heart failure (HF) and each is linked through a total of 87 studies to specific correlates of HF. Two apparent causal factors of HF, RhoA and endothelin-1, each act as tissue-limited cycle elements. Nineteen stressors that initiate cases of HF, each act to raise multiple cycle elements, potentially initiating the cycle in this way. Different types of HF, left vs. right ventricular HF, with or without arrhythmia, etc., may differ from one another in the regions of the myocardium most impacted by the cycle. None of the elements of the cycle or the mechanisms linking them are original, but they collectively produce the robust nature of the NO/ONOO-cycle which creates a major challenge for treatment of HF or other proposed NO/ONOO-cycle diseases. Elevated peroxynitrite/NO ratio and consequent oxidative stress are essential to both HF and the NO/ONOO-cycle.
Collapse
|
8
|
Hao E, Lang F, Chen Y, Zhang H, Cong X, Shen X, Su G. Resveratrol alleviates endotoxin-induced myocardial toxicity via the Nrf2 transcription factor. PLoS One 2013; 8:e69452. [PMID: 23894482 PMCID: PMC3718737 DOI: 10.1371/journal.pone.0069452] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/08/2013] [Indexed: 01/29/2023] Open
Abstract
Background/Aims Septic cardiomyopathy is a severe condition that remains a challenge for clinical management. This study investigated whether the natural polyphenolic compound resveratrol could be used as a prophylactic treatment to alleviate sepsis-related myocardial injury; the underlying molecular mechanisms were deciphered by both in vitro and in vivo experiments. Methods A mouse model of endotoxin-induced cardiomyopathy was developed by intraperitoneal injection of LPS, and resveratrol was administered prophylatically to the animals. Serum LDH and CK activities were measured to detect myocardial injury, and echocardiography was performed to monitor cardiac structure and function. Various cytokines/chemokines and the Nrf2 antioxidant defense system were examined in the heart tissue. The effects of resveratrol on LPS-induced Nrf2 activation, ROS generation, and apoptotic cell death were further investigated in cultured primary human cardiomyocytes. An Nrf2 specific siRNA was used to define its role in resveratrol-mediated cardiomyocyte protective effect. Results Resveratrol pretreatment significantly attenuated LPS-induced myocardial injury in mice, which was associated with suppressed proinflammatory cytokine production and enhanced Nrf2 activation in the heart. In cultured primary human cardiomyocytes, resveratrol activated Nrf2, inhibited LPS-induced ROS generation, and effectively protected the cells from LPS-induced apoptotic cell death. Knockdown of Nrf2 abrogated resveratrol-mediated protection of the cells from LPS-induced cell death. Conclusion Resveratrol effectively alleviates endotoxin-induced cardiac toxicity through mechanisms that involve the Nrf2 antioxidant defense pathway. Our data suggest that resveratrol might be developed as a useful prophylactic management for septic cardiomyopathy.
Collapse
Affiliation(s)
- Enkui Hao
- Department of Cardiology, Jinan Central Hospital, Affiliated with Shandong University, Jinan, China
| | - Fangfang Lang
- Department of Obstetrics and Gynecology, Jinan Central Hospital, Affiliated with Shandong University, Jinan, China
| | - Yong Chen
- Department of Pharmacy, People’s Hospital of Rizhao, Rizhao, China
| | - Huilin Zhang
- Central Laboratory, Jinan Central Hospital, Affiliated with Shandong University, Jinan, China
| | - Xiao Cong
- Department of Cardiology, Jinan Central Hospital, Affiliated with Shandong University, Jinan, China
| | - Xiaoqian Shen
- Department of Cardiology, Jinan Central Hospital, Affiliated with Shandong University, Jinan, China
| | - Guohai Su
- Department of Cardiology, Jinan Central Hospital, Affiliated with Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
9
|
Zhang XF, Zhu Y, Liang WB, Zhang JJ. The ETS-Domain Transcription Factor Elk-1 Regulates COX-2 Gene Expression and Inhibits Glucose-Stimulated Insulin Secretion in the Pancreatic β -Cell Line INS-1. Int J Endocrinol 2013; 2013:843462. [PMID: 23818898 PMCID: PMC3684088 DOI: 10.1155/2013/843462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/14/2013] [Indexed: 12/27/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) expression is associated with many aspects of physiological and pathological conditions, including pancreatic β -cell dysfunction. Prostaglandin E2 (PGE2) production, as a consequence of COX-2 gene induction, has been reported to impair β -cell function. The molecular mechanisms involved in the regulation of COX-2 gene expression are not fully understood. We previously demonstrated that transcription factor Elk-1 significantly upregulated COX-2 gene promoter activity. In this report, we used pancreatic β -cell line (INS-1) to explore the relationships between Elk-1 and COX-2. We first investigated the effects of Elk-1 on COX-2 transcriptional regulation and expression in INS-1 cells. We thus undertook to study the binding of Elk-1 to its putative binding sites in the COX-2 promoter. We also analysed glucose-stimulated insulin secretion (GSIS) in INS-1 cells that overexpressed Elk-1. Our results demonstrate that Elk-1 efficiently upregulates COX-2 expression at least partly through directly binding to the -82/-69 region of COX-2 promoter. Overexpression of Elk-1 inhibits GSIS in INS-1 cells. These findings will be helpful for better understanding the transcriptional regulation of COX-2 in pancreatic β -cell. Moreover, Elk-1, the transcriptional regulator of COX-2 expression, will be a potential target for the prevention of β -cell dysfunction mediated by PGE2.
Collapse
Affiliation(s)
- Xiong-Fei Zhang
- Department of Biochemistry, Wenzhou Medical College, Wenzhou 325035, China
| | - Yi Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
- Jiangsu Province Academy of Clinical Medicine, Institute of Tumor Biology, 300 Guangzhou Road, Nanjing 210029, China
| | - Wen-Biao Liang
- Transfusion Laboratory, Jiangsu Province Blood Center, Nanjing 210029, China
| | - Jing-Jing Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
- Jiangsu Province Academy of Clinical Medicine, Institute of Tumor Biology, 300 Guangzhou Road, Nanjing 210029, China
- *Jing-Jing Zhang:
| |
Collapse
|
10
|
Yin H, Zhou Y, Zhu M, Hou S, Li Z, Zhong H, Lu J, Meng T, Wang J, Xia L, Xu Y, Wu Y. Role of mitochondria in programmed cell death mediated by arachidonic acid-derived eicosanoids. Mitochondrion 2012; 13:209-24. [PMID: 23063711 DOI: 10.1016/j.mito.2012.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/24/2012] [Accepted: 10/02/2012] [Indexed: 01/28/2023]
Abstract
Arachidonic acid-derived eicosanoids from cyclooxygenases, lipoxygenases, and cytochrome P450 are important lipid mediators involved in numerous homeostatic and pathophysiological processes. Most eicosanoids act primarily on their respective cell surface G-protein coupled receptors to elicit downstream signaling in an autocrine and paracrine fashion. Emerging evidence indicates that these hormones are also critical in apoptosis in a cell/tissue specific manner. In this review, we summarize the formation of eicosanoids and their roles as mediators in apoptosis, specifically on the roles of mitochondria in mediating these events and the signaling pathways involved. The biological relevance of eicosanoid-mediated apoptosis is also discussed.
Collapse
Affiliation(s)
- Huiyong Yin
- Laboratory of Lipid Metabolism in Human Nutrition and Related Diseases, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|