1
|
Fazekas LA, Szabo B, Szegeczki V, Filler C, Varga A, Godo ZA, Toth G, Reglodi D, Juhasz T, Nemeth N. Impact Assessment of Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) and Hemostatic Sponge on Vascular Anastomosis Regeneration in Rats. Int J Mol Sci 2023; 24:16695. [PMID: 38069018 PMCID: PMC10706260 DOI: 10.3390/ijms242316695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The proper regeneration of vessel anastomoses in microvascular surgery is crucial for surgical safety. Pituitary adenylate cyclase-activating polypeptide (PACAP) can aid healing by decreasing inflammation, apoptosis and oxidative stress. In addition to hematological and hemorheological tests, we examined the biomechanical and histological features of vascular anastomoses with or without PACAP addition and/or using a hemostatic sponge (HS). End-to-end anastomoses were established on the right femoral arteries of rats. On the 21st postoperative day, femoral arteries were surgically removed for evaluation of tensile strength and for histological and molecular biological examination. Effects of PACAP were also investigated in tissue culture in vitro to avoid the effects of PACAP degrading enzymes. Surgical trauma and PACAP absorption altered laboratory parameters; most notably, the erythrocyte deformability decreased. Arterial wall thickness showed a reduction in the presence of HS, which was compensated by PACAP in both the tunica media and adventitia in vivo. The administration of PACAP elevated these parameters in vitro. In conclusion, the application of the neuropeptide augmented elastin expression while HS reduced it, but no significant alterations were detected in collagen type I expression. Elasticity and tensile strength increased in the PACAP group, while it decreased in the HS decreased. Their combined use was beneficial for vascular regeneration.
Collapse
Affiliation(s)
- Laszlo Adam Fazekas
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary; (L.A.F.); (B.S.); (A.V.)
| | - Balazs Szabo
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary; (L.A.F.); (B.S.); (A.V.)
| | - Vince Szegeczki
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (V.S.); (C.F.); (T.J.)
| | - Csaba Filler
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (V.S.); (C.F.); (T.J.)
| | - Adam Varga
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary; (L.A.F.); (B.S.); (A.V.)
| | - Zoltan Attila Godo
- Department of Information Technology, Faculty of Informatics, University of Debrecen, Kassai ut 26, H-4028 Debrecen, Hungary;
| | - Gabor Toth
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dom ter 8, H-6720 Szeged, Hungary;
| | - Dora Reglodi
- HUN-REN-PTE PACAP Research Group, Department of Anatomy, Medical School, University of Pecs, Szigeti ut 12, H-7624 Pecs, Hungary;
| | - Tamas Juhasz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (V.S.); (C.F.); (T.J.)
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary; (L.A.F.); (B.S.); (A.V.)
| |
Collapse
|
2
|
Ho E, Deng Y, Akbar D, Da K, Létourneau M, Morshead CM, Chatenet D, Shoichet MS. Tunable Surface Charge Enables the Electrostatic Adsorption-Controlled Release of Neuroprotective Peptides from a Hydrogel-Nanoparticle Drug Delivery System. ACS APPLIED MATERIALS & INTERFACES 2023; 15:91-105. [PMID: 36520607 DOI: 10.1021/acsami.2c17631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We exploit the electrostatic interactions between the positively charged neuroprotective peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), and negatively charged poly(lactic-co-glycolic acid) (PLGA) nanoparticles to control PACAP release from the surface of nanoparticles dispersed in a hyaluronan-methylcellulose (HAMC) hydrogel composite. PACAP is a promising therapeutic for the treatment of neurological disorders, yet it has been difficult to deliver in vivo. Herein, the PACAP release rate was tuned by manipulating peptide adsorption onto the surface of blank nanoparticles by modifying either nanoparticle loading in the hydrogel or nanoparticle surface charge. This peptide-nanoparticle interaction was controlled by the pH-responsive carboxylic acid end terminal groups of PLGA. We further validated this system with the controlled release of a novel stabilized PACAP analog: Ac-[Ala15, Ala20]PACAP-propylamide, which masks its recognition to peptidases in circulation. Both wild-type and stabilized PACAP released from the vehicle increased the production of neuroprotective Interleukin-6 from cultured primary astrocytes. Using computational fluid dynamics methods, PACAP release from the composite was predicted based on experimentally derived adsorption isotherms, which exhibited similar release profiles to experimental data. This versatile adsorption-based system was used to deliver PACAP locally to the brains of stroke-injured mice over a 10 day period in vivo, highlighting its effectiveness for the controlled release of PACAP to the central nervous system.
Collapse
Affiliation(s)
- Eric Ho
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, OntarioM5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| | - Yaoqi Deng
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| | - Dania Akbar
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| | - Kevin Da
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| | - Myriam Létourneau
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QuebecH7 V 1B7, Canada
| | - Cindi M Morshead
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, OntarioM5S 3G9, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, OntarioM5S 3E1, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, OntarioM5S 3E1, Canada
| | - David Chatenet
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QuebecH7 V 1B7, Canada
| | - Molly S Shoichet
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, OntarioM5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, OntarioM5S 3E1, Canada
| |
Collapse
|
3
|
Effects of pituitary adenylate cyclase activating polypeptide (PACAP) in corneal epithelial regeneration and signal transduction in rats. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractCorneal epithelium responds to insults with a rapid wound healing, which is essential for maintaining vision. The proper balance of apoptotic and proliferation-stimulating pathways is critical for normal regeneration. Pituitary adenylate cyclase activating polypeptide (PACAP) is an important growth factor during the development of the nervous system and exerts cytoprotective effects in injuries. The aim of the present study was to investigate the effects of PACAP on corneal epithelial wound healing in rats and on two important protective signaling molecules, Akt and ERK1/2, both of which have been reported to play important roles during cell survival and regeneration, including corneal wound healing. Wistar rats received PACAP treatment in form of eyedrops, containing 1, 5 and 10 µg PACAP27, immediately and every two hours after corneal abrasion. Corneas were stained with fluorescein dye and further processed for histological staining or Western blot analysis for Akt and ERK1/2 expression. Our results showed that topical PACAP application enhanced corneal wound healing, as the area of injury was significantly less in PACAP-treated groups. Furthermore, both ERK1/2 and Akt signaling was induced upon PACAP administration in both injured and intact corneas. In summary, the present results show that PACAP enhances corneal wound healing in a rat model of corneal abrasion.
Collapse
|
4
|
Pituitary Adenylate Cyclase-Activating Polypeptide Protects Corneal Epithelial Cells against UV-B-Induced Apoptosis via ROS/JNK Pathway Inhibition. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PACAP is widely expressed throughout the body. It exerts a beneficial role in the eye, including the cornea. The corneal epithelium is regularly exposed to diverse types of insults, including ultraviolet B (UV-B) radiation. Previously, we showed the protective role played by PACAP in counteracting UV-B ray insults in human corneal endothelial cells; however, its involvement in corneal epithelium protection against ROS induced by UV-B radiation, and the underlying mechanisms, remain to be determined. Here, we demonstrated that the peptide treatment reduced UV-B-induced ROS generation by playing an anti-apoptotic role via JNK-signaling pathway inhibition. Overall, our results can provide guidance in the therapeutic use of PACAP for the treatment of epithelial corneal damage.
Collapse
|
5
|
Lu P, Shi Y, Ye D, Lu X, Tang X, Cheng L, Xu Y, Huang J. Intravitreal Injection of PACAP Attenuates Acute Ocular Hypertension-Induced Retinal Injury Via Anti-Apoptosis and Anti-Inflammation in Mice. Invest Ophthalmol Vis Sci 2022; 63:18. [PMID: 35293951 PMCID: PMC8944396 DOI: 10.1167/iovs.63.3.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose Pituitary adenylate cyclase-activating polypeptide (PACAP) has shown potent neuroprotective effects in central nervous system and retina disorders. However, whether PACAP can attenuate retinal neurodegeneration induced by acute ocular hypertension (AOH) and the underlying mechanisms remain unknown. In this study, we aimed to investigate the effects of PACAP on the survival and function of retinal ganglion cells (RGCs), apoptosis, and inflammation in a mouse model of AOH injury. Methods PACAP was injected into the vitreous body immediately after inducing AOH injury. Hematoxylin and eosin staining and optical coherence tomography were used to evaluate the loss of retina tissue. Pattern electroretinogram was used to evaluate the function of RGCs. TUNEL assay was used to detect apoptosis. Immunofluorescence and western blot were employed to evaluate protein expression levels. Results PACAP treatment significantly reduced the losses of whole retina and inner retina thicknesses, Tuj1-positive RGCs, and the amplitudes of pattern electroretinograms induced by AOH injury. Additionally, PACAP treatment remarkably reduced the number of TUNEL-positive cells and inhibited the upregulation of Bim, Bax, and cleaved caspase-3 and downregulation of Bcl-xL after AOH injury. Moreover, PACAP markedly inhibited retinal reactive gliosis and vascular inflammation, as demonstrated by the downregulation of GFAP, Iba1, CD68, and CD45 in PACAP-treated mice. Furthermore, upregulated expression of NF-κB and phosphorylated NF-κB induced by AOH injury was attenuated by PACAP treatment. Conclusions PACAP could prevent the loss of retinal tissue and improve the survival and function of RGCs. The neuroprotective effect of PACAP is probably associated with its potent anti-apoptotic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Peng Lu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuxun Shi
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dan Ye
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xi Lu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyu Tang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lu Cheng
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingjing Huang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
6
|
Solés-Tarrés I, Cabezas-Llobet N, Lefranc B, Leprince J, Alberch J, Vaudry D, Xifró X. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Protects Striatal Cells and Improves Motor Function in Huntington’s Disease Models: Role of PAC1 Receptor. Front Pharmacol 2022; 12:797541. [PMID: 35153755 PMCID: PMC8832515 DOI: 10.3389/fphar.2021.797541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/31/2021] [Indexed: 12/21/2022] Open
Abstract
Huntington’s disease (HD) is a hereditary neurodegenerative disorder caused by the expression of mutant huntingtin (mHtt). One of the main features of HD is the degeneration of the striatum that leads to motor discoordination. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that acts through three receptors named PAC1R, VPAC1R, and VPAC2R. In the present study, we first investigated the effect of PACAP on STHdhQ7/Q7 and STHdhQ111/Q111 cells that express wild-type Htt with 7 and mHtt with 111 glutamines, respectively. Then we explored the capacity of PACAP to rescue motor symptoms in the R6/1, a murine model of HD. We found that PACAP treatment (10–7 M) for 24 h protects STHdhQ111/Q111 cells from mHtt-induced apoptosis. This effect is associated with an increase in PAC1R transcription, phosphorylation of ERK and Akt, and an increase of intracellular c-fos, egr1, CBP, and BDNF protein content. Moreover, the use of pharmacological inhibitors revealed that activation of ERK and Akt mediates these antiapoptotic and neurotrophic effects of PACAP. To find out PAC1R implication, we treated STHdh cells with vasoactive intestinal peptide (VIP), which exhibits equal affinity for VPAC1R and VPAC2R, but lower affinity for PAC1R, in contrast to PACAP which has same affinity for the three receptors. VIP reduced cleaved caspase-3 protein level, without promoting the expression of c-fos, egr1, CBP, and the neurotrophin BDNF. We next measured the protein level of PACAP receptors in the striatum and cortex of R6/1 mice. We observed a specific reduction of PAC1R at the onset of motor symptoms. Importantly, the intranasal administration of PACAP to R6/1 animals restored the motor function and increased the striatal levels of PAC1R, CBP, and BDNF. In conclusion, PACAP exerts antiapoptotic and neurotrophic effects in striatal neurons mainly through PAC1R. This effect in HD striatum allows the recovery of motor function and point out PAC1R as a therapeutic target for treatment of HD.
Collapse
Affiliation(s)
- Irene Solés-Tarrés
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, University of Girona, Girona, Spain
| | - Núria Cabezas-Llobet
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, University of Girona, Girona, Spain
| | - Benjamin Lefranc
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, UNIROUEN, Inserm, Normandie University, Rouen, France
- Regional Cell Imaging Platform of Normandy (PRIMACEN), UNIROUEN, Normandie University, Rouen, France
| | - Jérôme Leprince
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, UNIROUEN, Inserm, Normandie University, Rouen, France
- Regional Cell Imaging Platform of Normandy (PRIMACEN), UNIROUEN, Normandie University, Rouen, France
| | - Jordi Alberch
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - David Vaudry
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, UNIROUEN, Inserm, Normandie University, Rouen, France
- Regional Cell Imaging Platform of Normandy (PRIMACEN), UNIROUEN, Normandie University, Rouen, France
| | - Xavier Xifró
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, University of Girona, Girona, Spain
- *Correspondence: Xavier Xifró,
| |
Collapse
|
7
|
A Broad Overview on Pituitary Adenylate Cyclase-Activating Polypeptide Role in the Eye: Focus on Its Repairing Effect in Cornea. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is a neuropeptide with widespread distribution throughout the central and peripheral nervous system as well as in many other peripheral organs. It plays cytoprotective effects mediated mainly through the activation of specific receptors. PACAP is known to play pleiotropic effects on the eye, including the cornea, protecting it against different types of insult. This review firstly provides an overview of the anatomy of the cornea and summarizes data present in literature about PACAP’s role in the eye and, in particular, in the cornea, either in physiological or pathological conditions.
Collapse
|
8
|
Activity-Dependent Neuroprotective Protein (ADNP)-Derived Peptide (NAP) Counteracts UV-B Radiation-Induced ROS Formation in Corneal Epithelium. Antioxidants (Basel) 2022; 11:antiox11010128. [PMID: 35052632 PMCID: PMC8773440 DOI: 10.3390/antiox11010128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
The corneal epithelium, the outermost layer of the cornea, acts as a dynamic barrier preventing access to harmful agents into the intraocular space. It is subjected daily to different insults, and ultraviolet B (UV-B) irradiation represents one of the main causes of injury. In our previous study, we demonstrated the beneficial effects of pituitary adenylate cyclase-activating polypeptide (PACAP) against UV-B radiation damage in the human corneal endothelium. Some of its effects are mediated through the activation of the intracellular factor, known as the activity-dependent protein (ADNP). In the present paper, we have investigated the role of ADNP and the small peptide derived from ADNP, known as NAP, in the corneal epithelium. Here, we have demonstrated, for the first time, ADNP expression in human and rabbit corneal epithelium as well as its protective effect by treating the corneal epithelial cells exposed to UV-B radiations with NAP. Our results showed that NAP treatment prevents ROS formation by reducing UV-B-irradiation-induced apoptotic cell death and JNK signalling pathway activation. Further investigations are needed to deeply investigate the possible therapeutic use of NAP to counteract corneal UV-B damage.
Collapse
|
9
|
Apostol CR, Bernard K, Tanguturi P, Molnar G, Bartlett MJ, Szabò L, Liu C, Ortiz JB, Saber M, Giordano KR, Green TRF, Melvin J, Morrison HW, Madhavan L, Rowe RK, Streicher JM, Heien ML, Falk T, Polt R. Design and Synthesis of Brain Penetrant Glycopeptide Analogues of PACAP With Neuroprotective Potential for Traumatic Brain Injury and Parkinsonism. FRONTIERS IN DRUG DISCOVERY 2022; 1. [PMID: 35237767 PMCID: PMC8887546 DOI: 10.3389/fddsv.2021.818003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is an unmet clinical need for curative therapies to treat neurodegenerative disorders. Most mainstay treatments currently on the market only alleviate specific symptoms and do not reverse disease progression. The Pituitary adenylate cyclase-activating polypeptide (PACAP), an endogenous neuropeptide hormone, has been extensively studied as a potential regenerative therapeutic. PACAP is widely distributed in the central nervous system (CNS) and exerts its neuroprotective and neurotrophic effects via the related Class B GPCRs PAC1, VPAC1, and VPAC2, at which the hormone shows roughly equal activity. Vasoactive intestinal peptide (VIP) also activates these receptors, and this close analogue of PACAP has also shown to promote neuronal survival in various animal models of acute and progressive neurodegenerative diseases. However, PACAP's poor pharmacokinetic profile (non-linear PK/PD), and more importantly its limited blood-brain barrier (BBB) permeability has hampered development of this peptide as a therapeutic. We have demonstrated that glycosylation of PACAP and related peptides promotes penetration of the BBB and improves PK properties while retaining efficacy and potency in the low nanomolar range at its target receptors. Furthermore, judicious structure-activity relationship (SAR) studies revealed key motifs that can be modulated to afford compounds with diverse selectivity profiles. Most importantly, we have demonstrated that select PACAP glycopeptide analogues (2LS80Mel and 2LS98Lac) exert potent neuroprotective effects and anti-inflammatory activity in animal models of traumatic brain injury and in a mild-toxin lesion model of Parkinson's disease, highlighting glycosylation as a viable strategy for converting endogenous peptides into robust and efficacious drug candidates.
Collapse
Affiliation(s)
- Christopher R Apostol
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Kelsey Bernard
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States
| | | | - Gabriella Molnar
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Mitchell J Bartlett
- Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Lajos Szabò
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Chenxi Liu
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - J Bryce Ortiz
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Maha Saber
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Katherine R Giordano
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Tabitha R F Green
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - James Melvin
- Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Biological Sciences, University of Bath, Bath, United Kingdom
| | - Helena W Morrison
- College of Nursing, University of Arizona, Tucson, AZ, United States
| | - Lalitha Madhavan
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Rachel K Rowe
- Barrow Neurological Institute at Phoenix Children's Hospital, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Child Health, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - John M Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Michael L Heien
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| | - Torsten Falk
- Graduate Interdisciplinary Program in Physiological Sciences, The University of Arizona, Tucson, AZ, United States.,Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States.,Department of Neurology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Robin Polt
- Department of Chemistry and Biochemistry, BIO5, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
10
|
Mandwie M, Karunia J, Niaz A, Keay KA, Musumeci G, Rennie C, McGrath K, Al-Badri G, Castorina A. Metformin Treatment Attenuates Brain Inflammation and Rescues PACAP/VIP Neuropeptide Alterations in Mice Fed a High-Fat Diet. Int J Mol Sci 2021; 22:ijms222413660. [PMID: 34948457 PMCID: PMC8706124 DOI: 10.3390/ijms222413660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/28/2022] Open
Abstract
High-fat diet (HFD)-induced comorbid cognitive and behavioural impairments are thought to be the result of persistent low-grade neuroinflammation. Metformin, a first-line medication for the treatment of type-2 diabetes, seems to ameliorate these comorbidities, but the underlying mechanism(s) are not clear. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) are neuroprotective peptides endowed with anti-inflammatory properties. Alterations to the PACAP/VIP system could be pivotal during the development of HFD-induced neuroinflammation. To unveil the pathogenic mechanisms underlying HFD-induced neuroinflammation and assess metformin’s therapeutic activities, (1) we determined if HFD-induced proinflammatory activity was present in vulnerable brain regions associated with the development of comorbid behaviors, (2) investigated if the PACAP/VIP system is altered by HFD, and (3) assessed if metformin rescues such diet-induced neurochemical alterations. C57BL/6J male mice were divided into two groups to receive either standard chow (SC) or HFD for 16 weeks. A further HFD group received metformin (HFD + M) (300 mg/kg BW daily for 5 weeks) via oral gavage. Body weight, fasting glucose, and insulin levels were measured. After 16 weeks, the proinflammatory profile, glial activation markers, and changes within the PI3K/AKT intracellular pathway and the PACAP/VIP system were evaluated by real-time qPCR and/or Western blot in the hypothalamus, hippocampus, prefrontal cortex, and amygdala. Our data showed that HFD causes widespread low-grade neuroinflammation and gliosis, with regional-specific differences across brain regions. HFD also diminished phospho-AKT(Ser473) expression and caused significant disruptions to the PACAP/VIP system. Treatment with metformin attenuated these neuroinflammatory signatures and reversed PI3K/AKT and PACAP/VIP alterations caused by HFD. Altogether, our findings demonstrate that metformin treatment rescues HFD-induced neuroinflammation in vulnerable brain regions, most likely by a mechanism involving the reinstatement of PACAP/VIP system homeostasis. Data also suggests that the PI3K/AKT pathway, at least in part, mediates some of metformin’s beneficial effects.
Collapse
Affiliation(s)
- Mawj Mandwie
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.M.); (J.K.); (A.N.); (G.A.-B.)
| | - Jocelyn Karunia
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.M.); (J.K.); (A.N.); (G.A.-B.)
| | - Aram Niaz
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.M.); (J.K.); (A.N.); (G.A.-B.)
| | - Kevin A. Keay
- Laboratory of Neural Structure and Function, School of Medical Science (Neuroscience), University of Sydney, Sydney, NSW 2006, Australia;
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95125 Catania, Italy;
| | - Claire Rennie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (C.R.); (K.M.)
| | - Kristine McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (C.R.); (K.M.)
| | - Ghaith Al-Badri
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.M.); (J.K.); (A.N.); (G.A.-B.)
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (M.M.); (J.K.); (A.N.); (G.A.-B.)
- Laboratory of Neural Structure and Function, School of Medical Science (Neuroscience), University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence:
| |
Collapse
|
11
|
Van C, Condro MC, Ko HH, Hoang AQ, Zhu R, Lov K, Ricaflanca PT, Diep AL, Nguyen NNM, Lipshutz GS, MacKenzie-Graham A, Waschek JA. Targeted deletion of PAC1 receptors in retinal neurons enhances neuron loss and axonopathy in a model of multiple sclerosis and optic neuritis. Neurobiol Dis 2021; 160:105524. [PMID: 34610465 DOI: 10.1016/j.nbd.2021.105524] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/26/2021] [Accepted: 10/01/2021] [Indexed: 01/24/2023] Open
Abstract
Chronic inflammation drives synaptic loss in multiple sclerosis (MS) and is also commonly observed in other neurodegenerative diseases. Clinically approved treatments for MS provide symptomatic relief but fail to halt neurodegeneration and neurological decline. Studies in animal disease models have demonstrated that the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP, ADCYAP1) exhibits anti-inflammatory, neuroprotective and regenerative properties. Anti-inflammatory actions appear to be mediated primarily by two receptors, VPAC1 and VPAC2, which also bind vasoactive intestinal peptide (VIP). Pharmacological experiments indicate that another receptor, PAC1 (ADCYAP1R1), which is highly selective for PACAP, provides protection to neurons, although genetic evidence and other mechanistic information is lacking. To determine if PAC1 receptors protect neurons in a cell-autonomous manner, we used adeno-associated virus (AAV2) to deliver Cre recombinase to the retina of mice harboring floxed PAC1 alleles. Mice were then subjected to chronic experimental autoimmune encephalomyelitis (EAE), a disease model that recapitulates major clinical and pathological features of MS and associated optic neuritis. Unexpectedly, deletion of PAC1 in naïve mice resulted in a deficit of retinal ganglionic neurons (RGNs) and their dendrites, suggesting a homeostatic role of PAC1. Moreover, deletion of PAC1 resulted in increased EAE-induced loss of a subpopulation of RGNs purported to be vulnerable in animal models of glaucoma. Increased axonal pathology and increased secondary presence of microglia/macrophages was also prominently seen in the optic nerve. These findings demonstrate that neuronal PAC1 receptors play a homeostatic role in protecting RGNs and directly protects neurons and their axons against neuroinflammatory challenge. SIGNIFICANCE STATEMENT: Chronic inflammation is a major component of neurodegenerative diseases and plays a central role in multiple sclerosis (MS). Current treatments for MS do not prevent neurodegeneration and/or neurological decline. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to have anti-inflammatory, neuroprotective and regenerative properties but the cell type- and receptor-specific mechanisms are not clear. To test whether the protective effects of PACAP are direct on the PAC1 receptor subtype on neurons, we delete PAC1 receptors from neurons and investigate neuropathologigical changes in an animal model of MS. The findings demonstrate that PAC1 receptors on neurons play a homeostatic role in maintaining neuron health and can directly protect neurons and their axons during neuroinflammatory disease.
Collapse
Affiliation(s)
- Christina Van
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America; Molecular Biology Interdepartmental Program at University of California, Los Angeles, Los Angeles, CA 90095, United States of America.
| | - Michael C Condro
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America.
| | - Henly H Ko
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - Anh Q Hoang
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America.
| | - Ruoyan Zhu
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America.
| | - Kenny Lov
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - Patrick T Ricaflanca
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America
| | - Anna L Diep
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America.
| | - Nhat N M Nguyen
- Calabasas High School, Calabasas, CA 91302, United States of America.
| | - Gerald S Lipshutz
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America; Molecular Biology Interdepartmental Program at University of California, Los Angeles, Los Angeles, CA 90095, United States of America; Departments of Surgery, Medical Pharmacology, Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States of America.
| | - Allan MacKenzie-Graham
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America.
| | - James A Waschek
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA 90095, United States of America.
| |
Collapse
|
12
|
iPSCs: A Preclinical Drug Research Tool for Neurological Disorders. Int J Mol Sci 2021; 22:ijms22094596. [PMID: 33925625 PMCID: PMC8123805 DOI: 10.3390/ijms22094596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
The development and commercialization of new drugs is an articulated, lengthy, and very expensive process that proceeds through several steps, starting from target identification, screening new leading compounds for testing in preclinical studies, and subsequently in clinical trials to reach the final approval for therapeutic use. Preclinical studies are usually performed using both cell cultures and animal models, although they do not completely resume the complexity of human diseases, in particular neurodegenerative conditions. To this regard, stem cells represent a powerful tool in all steps of drug discovery. The recent advancement in induced Pluripotent Stem Cells (iPSCs) technology has opened the possibility to obtain patient-specific disease models for drug screening and development. Here, we report the use of iPSCs as a disease model for drug development in the contest of neurological disorders, including Alzheimer’s (AD) and Parkinson’s disease (PD), Amyotrophic lateral Sclerosis (ALS), and Fragile X syndrome (FRAX).
Collapse
|
13
|
Effects of Pacap on Schwann Cells: Focus on Nerve Injury. Int J Mol Sci 2020; 21:ijms21218233. [PMID: 33153152 PMCID: PMC7663204 DOI: 10.3390/ijms21218233] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022] Open
Abstract
Schwann cells, the most abundant glial cells of the peripheral nervous system, represent the key players able to supply extracellular microenvironment for axonal regrowth and restoration of myelin sheaths on regenerating axons. Following nerve injury, Schwann cells respond adaptively to damage by acquiring a new phenotype. In particular, some of them localize in the distal stump to form the Bungner band, a regeneration track in the distal site of the injured nerve, whereas others produce cytokines involved in recruitment of macrophages infiltrating into the nerve damaged area for axonal and myelin debris clearance. Several neurotrophic factors, including pituitary adenylyl cyclase-activating peptide (PACAP), promote survival and axonal elongation of injured neurons. The present review summarizes the evidence existing in the literature demonstrating the autocrine and/or paracrine action exerted by PACAP to promote remyelination and ameliorate the peripheral nerve inflammatory response following nerve injury.
Collapse
|
14
|
Yan Q, Huang H, Lu S, Ou B, Feng J, Shan W, Li H, Wang Z, Hong A, Ma Y. PACAP ameliorates fertility in obese male mice via PKA/CREB pathway‐dependent Sirt1 activation and p53 deacetylation. J Cell Physiol 2020; 235:7465-7483. [DOI: 10.1002/jcp.29651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/04/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Qiuxia Yan
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
- Center for Reproductive Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's HospitalQingyuan China
| | - Hongke Huang
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - Shiyin Lu
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - Biqian Ou
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - Jia Feng
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - Wailan Shan
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - Huixian Li
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - Zixian Wang
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - An Hong
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| | - Yi Ma
- Department of Cellular BiologyInstitute of BiomedicineNational Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan UniversityGuangzhou China
| |
Collapse
|
15
|
Cherait A, Maucotel J, Lefranc B, Leprince J, Vaudry D. Intranasal Administration of PACAP Is an Efficient Delivery Route to Reduce Infarct Volume and Promote Functional Recovery After Transient and Permanent Middle Cerebral Artery Occlusion. Front Endocrinol (Lausanne) 2020; 11:585082. [PMID: 33551991 PMCID: PMC7855853 DOI: 10.3389/fendo.2020.585082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022] Open
Abstract
Intranasal (IN) administration appears to be a suitable route for clinical use as it allows direct delivery of bioactive molecules to the central nervous system, reducing systemic exposure and sides effects. Nevertheless, only some molecules can be transported to the brain from the nasal cavity. This led us to compare the efficiency of an IN, intravenous (IV), and intraperitoneal (IP) administration of pituitary adenylate cyclase-activating polypeptide (PACAP) after transient or permanent middle cerebral artery occlusion (MCAO) in C57BL/6 mice. The results show that the neuroprotective effect of PACAP is much more efficient after IN administration than IV injection while IP injection had no effect. IN administration of PACAP reduced the infarct volume when injected within 6 h after the reperfusion and improved functional recovery up to at least 1 week after the ischemia.
Collapse
Affiliation(s)
- Asma Cherait
- Normandie Univ, UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
- Department of Natural and Life Sciences, Faculty of Sciences, University of Algiers, Algiers, Algeria
- Laboratory of Valorization and Bioengineering of Natural Resources, University of Algiers, Algiers, Algeria
- *Correspondence: David Vaudry, ; Asma Cherait,
| | - Julie Maucotel
- Normandie Univ, UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
- Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France
| | - Benjamin Lefranc
- Normandie Univ, UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
- Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France
| | - Jérôme Leprince
- Normandie Univ, UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
- Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France
| | - David Vaudry
- Normandie Univ, UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, Rouen, France
- Normandie Univ, UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France
- *Correspondence: David Vaudry, ; Asma Cherait,
| |
Collapse
|
16
|
Lamine A, Poujol de Molliens M, Létourneau M, Hébert TE, Vaudry D, Fournier A, Chatenet D. The amidated PACAP 1-23 fragment is a potent reduced-size neuroprotective agent. Biochim Biophys Acta Gen Subj 2019; 1863:129410. [PMID: 31401178 DOI: 10.1016/j.bbagen.2019.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Neurodegenerative disorders, such as Parkinson's disease (PD), are characterized by neuronal death involving, among other events, mitochondrial dysfunction and excitotoxicity. Along these lines, several attempts have been made to slow this pathology but none have been yet discovered. Based on its capacity to cross the blood-brain barrier and provide neuronal protection in vitro and in vivo, the pituitary adenylate cyclase-activating polypeptide (PACAP) represents a promising lead molecule. Pharmacological studies showed that PACAP interacts with three different G protein-coupled receptors, i.e. PAC1, VPAC1 and VPAC2. However, only PAC1 is associated with neuronal anti-apoptotic actions, whilst VPAC activation might cause adverse effects. In the context of the development of PAC1-selective agonists, PACAP(1-23) (PACAP23) appears as the shortest known PACAP bioactive fragment. METHODS Hence, the capacity of this peptide to bind PACAP receptors and protect neuroblastoma cells was evaluated under conditions of mitochondrial dysfunction and glutamate excitotoxicity. In addition, its ability to activate downstream signaling events involving G proteins (Gαs and Gαq), EPAC, and calcium was also assessed. RESULTS Compared to the endogenous peptide, PACAP23 showed a reduced affinity towards PAC1, although this fragment exerted potent neuroprotection. However, surprisingly, some disparities were observed for PACAP23 signaling compared to full length PACAP, suggesting that downstream signaling related to neuroprotection is distinctly regulated following subtle differences in their PAC1 interactions. CONCLUSIONS Altogether, this study demonstrates the potent neuroprotective action of amidated PACAP23. GENERAL SIGNIFICANCE PACAP23 represents an attractive template for development of shorter PACAP-derived neuroprotective molecules.
Collapse
Affiliation(s)
- A Lamine
- INRS - Centre Armand-Frappier, Laboratoire d'études moléculaires et pharmacologiques des peptides, 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada; INSERM-U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, IRIB, Université de Rouen, 76821 Mont-Saint-Aignan, France
| | - M Poujol de Molliens
- INRS - Centre Armand-Frappier, Laboratoire d'études moléculaires et pharmacologiques des peptides, 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada; INRS - Centre Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada
| | - M Létourneau
- INRS - Centre Armand-Frappier, Laboratoire d'études moléculaires et pharmacologiques des peptides, 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada; INRS - Centre Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada
| | - T E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - D Vaudry
- INSERM-U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, IRIB, Université de Rouen, 76821 Mont-Saint-Aignan, France
| | - A Fournier
- INRS - Centre Armand-Frappier, Laboratoire d'études moléculaires et pharmacologiques des peptides, 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada.
| | - D Chatenet
- INRS - Centre Armand-Frappier, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), 531 boul. des Prairies, Ville de Laval, QC H7V 1B7, Canada.
| |
Collapse
|
17
|
Park KM, Kim KJ, Jin M, Han Y, So KH, Hyun SH. The use of pituitary adenylate cyclase-activating polypeptide in the pre-maturation system improves in vitro developmental competence from small follicles of porcine oocytes. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1844-1853. [PMID: 31480175 PMCID: PMC6819676 DOI: 10.5713/ajas.19.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/26/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE We investigated how pituitary adenylate cyclase-activating polypeptide (PACAP) affects embryonic development during pre-in vitro maturation (pre-IVM) using porcine oocytes isolated from small follicles. METHODS We divided the follicles into the experimental groups by size (SF, small follicles; MF, medium follicles) and treated with and without PACAP and cultured for 18 hours (Pre-SF[-]PACAP; without PACAP, Pre-SF[+]PACAP; with PACAP) before undergoing IVM. The gene expression related to extracellular matrix formation (amphiregulin, epiregulin, and hyaluronan synthase 2 [HAS2]) and apoptosis (Bcl-2-associated X [BAX], B-cell lymphoma 2, and cysteine-aspartic acid protease 3) was investigated after maturation. The impact on developmental competence was assessed by the cleavage and blastocyst rate and total cell number of blastocysts in embryos generated from parthenogenesis (PA) and in vitro fertilization (IVF). RESULTS Cleavage rates in the Pre-SF(+)PACAP after PA were significantly higher than SF and Pre-SF(-)PACAP (p<0.05). The cleavage rates between MF and Pre- SF(+)PACAP groups yielded no notable differences after IVF. Pre-SF(+)PACAP displayed the higher rate of blastocyst formation and greater total cell number than SF and Pre-SF(-)PACAP (p<0.05). Cumulus cells showed significant upregulation of HAS2 mRNA in the Pre-SF(+)PACAP compared to the SF (p<0.05). In comparison to other groups, the Pre-SF(+)PACAP group displayed a downregulation in mRNA expression of BAX in matured oocytes (p<0.05). CONCLUSION The PACAP treatment during pre-IVM improved the developmental potential of porcine oocytes derived from SF by regulating cumulus expansion and apoptosis of oocytes.
Collapse
Affiliation(s)
- Kyu-Mi Park
- Institute for Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea.,Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Kyu-Jun Kim
- Institute for Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea.,Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Minghui Jin
- Institute for Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea.,Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Yongquan Han
- Institute for Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea.,Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Kyoung-Ha So
- Institute for Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea.,Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Sang-Hwan Hyun
- Institute for Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Korea.,Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
18
|
Denes V, Hideg O, Nyisztor Z, Lakk M, Godri Z, Berta G, Geck P, Gabriel R. The Neuroprotective Peptide PACAP1-38 Contributes to Horizontal Cell Development in Postnatal Rat Retina. Invest Ophthalmol Vis Sci 2019; 60:770-778. [PMID: 30795011 DOI: 10.1167/iovs.18-25719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose PACAP1-38, a member of the secretin/glucagon superfamily, is expressed in the developing retina with documented neuroprotective effects. However, its function in retinal cell differentiation has yet to be elucidated. Our goals, therefore, were to identify PAC1 expressing cells morphologically, investigate the PACAP1-38 action functionally, and establish PACAP1-38 regulated events developmentally during the first postnatal week in rat retina. Methods P1 retinal sections or whole mounts of Wistar rats were used to reveal PAC1 and calbindin immunoreactive structures. P1, P3, or P7 pups were injected intravitreally with 100 pmol PACAP1-38. Tissues were harvested 24 hours post-treatment, then processed for calbindin immunohistochemistry to determine horizontal cell number, or 6, 12, 24 hours post-treatment for real-time PCR and immunoblots to detect PCNA expression. To localize proliferating cells, anti-PCNA antibody was applied. Results We showed various PAC1 expressing cells in RPE, NBL, and GCL in P1 retina including calbindin positive horizontal cells. We found that PACAP1-38 induced a marked cell number increase at P3 and P7 and showed upregulated cell proliferation as its mechanism; however, it was ineffective at P1. PACAP1-38 induced proliferative cells localized in the NBL, and double-marker studies demonstrated that the induced proliferative cells were horizontal cells. Conclusions PACAP1-38 appears to act in retinal differentiation by inducing mitosis selectively in a time and cell specific manner through PAC1. The control of horizontal cell proliferation raises the novel possibilities that (1) PACAP1-38 may be a major player in retinal patterning and (2) PACAP signaling may be critical in retinoblastoma.
Collapse
Affiliation(s)
- Viktoria Denes
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Orsolya Hideg
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Zsolt Nyisztor
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Monika Lakk
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Zoltan Godri
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, Pécs, Hungary
| | - Peter Geck
- Department of Immunology, School of Medicine, Tufts University, Boston, Massachusetts, United States
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| |
Collapse
|
19
|
Van C, Condro MC, Lov K, Zhu R, Ricaflanca PT, Ko HH, Diep AL, Hoang AQ, Pisegna J, Rohrer H, Waschek JA. PACAP/PAC1 Regulation of Inflammation via Catecholaminergic Neurons in a Model of Multiple Sclerosis. J Mol Neurosci 2018; 68:439-451. [PMID: 30058008 DOI: 10.1007/s12031-018-1137-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/20/2018] [Indexed: 12/30/2022]
Abstract
The sympathetic nervous system (SNS) serves to maintain homeostasis of vital organ systems throughout the body, and its dysfunction plays a major role in human disease. The SNS also links the central nervous system to the immune system during different types of stress via innervation of the lymph nodes, spleen, thymus, and bone marrow. Previous studies have shown that pituitary adenylate cyclase-activating polypeptide (PACAP, gene name adcyap1) exhibits anti-inflammatory properties in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Because PACAP is known to regulate SNS function, we hypothesized that part of the immunoprotective action of PACAP is due to its neuromodulatory effects on sympathetic neurons. To examine this, we used an inducible, targeted approach to conditionally disrupt not only the PACAP-preferring PAC1 receptor gene (adcyap1r1) in dopamine β-hydroxylase-expressing cells, which includes postganglionic sympathetic neurons, but also catecholaminergic neurons in the brain and adrenomedullary chromaffin cells. In contrast to our previous EAE studies using PACAP global knockout mice which developed severe and prolonged EAE, we found that mice with conditional loss of PAC1 receptors in catecholaminergic cells developed a delayed time course of EAE with reduced helper T cell type 1 (Th1) and Th17 and enhanced Th2 cell polarization. At later time points, similar to mice with global PACAP loss, mice with conditional loss of PAC1 exhibited more severe clinical disease than controls. The latter was associated with a reduction in the abundance of thymic regulatory T cells (Tregs). These studies indicate that PAC1 receptor signaling acts in catecholaminergic cells in a time-dependent manner. At early stages of disease development, it enhances the ability of the SNS to polarize the Th response towards a more inflammatory state. Then, after disease is established, it enhances the ability of the SNS to dampen the inflammatory response via Tregs. The lack of concordance in results between global PACAP KO mice and mice with the PAC1 deletion targeted to catecholaminergic cells during early EAE may be explained by the fact that PACAP acts to regulate inflammation via multiple receptor subtypes and multiple targets, including inflammatory cells.
Collapse
Affiliation(s)
- Christina Van
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael C Condro
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kenny Lov
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ruoyan Zhu
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Patrick T Ricaflanca
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Henly H Ko
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna L Diep
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anh Q Hoang
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph Pisegna
- Center for Ulcer Research and Education (CURE): Digestive Diseases Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hermann Rohrer
- Max Planck Institute for Brain Research, Frankfurt, Germany.,Institute for Clinical Neuroanatomy, Goethe University, Frankfurt, Germany
| | - James A Waschek
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Nyisztor Z, Denes V, Kovacs-Valasek A, Hideg O, Berta G, Gabriel R. Pituitary Adenylate Cyclase Activating Polypeptide (PACAP1-38) Exerts Both Pro and Anti-Apoptotic Effects on Postnatal Retinal Development in Rat. Neuroscience 2018; 385:59-66. [PMID: 29906550 DOI: 10.1016/j.neuroscience.2018.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
Abstract
PACAP1-38, a ubiquitous and multifunctional regulator has been in the focus of neurotoxicity research due to its impressive neuroprotective potential. Although the literature extensively demonstrated its repressive effect on the apoptotic machinery in neurodegenerative models, there is a striking absence of analysis on its role in normal development. We performed quantitative analyses on caspase activity in developing retina upon 100, 50, 25 or 1 pmol intravitreal PACAP1-38 injection from postnatal day 1 (P1) through P7 in Wistar rats. Retinas were harvested at 6, 12, 18, 24 or 48 h post-injection. Apoptotic activity was revealed using fluorescent caspase 3/7 enzyme assay, western blots and TUNEL assay. Unexpectedly, we found that 100 pmol PACAP1-38 increased the activity of caspase 3/7 at P1 and P5 whereas it had no effect at P7. At P3, as a biphasic effect, PACAP1-38 repressed active caspase 3/7 at 18 h post-injection while increased their activity in 24 h post-injection. Amounts, smaller than 100 pmol, could not inhibit apoptosis whereas 50, 25 or 1 pmol PACAP1-38 could evoke significant elevation in caspase 3/7 activity. TUNEL-positive cells appeared in the proximal part of inner nuclear as well as ganglion cell layers in response to PACAP1-38 treatment. The fundamental novelty of these results is that PACAP1-38 induces apoptosis during early postnatal retinogenesis. The dose as well as stage-dependent response suggests that PACAP1-38 has a Janus face in apoptosis regulation. It not only inhibits development-related apoptosis, but as a long-term effect, facilitates it.
Collapse
Affiliation(s)
- Zsolt Nyisztor
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Viktoria Denes
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.
| | - Andrea Kovacs-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Orsolya Hideg
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Gergely Berta
- Institute of Medical Biology, School of Medicine, University of Pécs, Pécs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| |
Collapse
|
21
|
Waschek JA, Baca SM, Akerman S. PACAP and migraine headache: immunomodulation of neural circuits in autonomic ganglia and brain parenchyma. J Headache Pain 2018. [PMID: 29536279 PMCID: PMC5849772 DOI: 10.1186/s10194-018-0850-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The discovery that intravenous (IV) infusions of the neuropeptide PACAP-38 (pituitary adenylyl cyclase activating peptide-38) induced delayed migraine-like headaches in a large majority of migraine patients has resulted in considerable excitement in headache research. In addition to suggesting potential therapeutic targets for migraine, the finding provides an opportunity to better understand the pathological events from early events (aura) to the headache itself. Although PACAP-38 and the closely related peptide VIP (vasoactive intestinal peptide) are well-known as vasoactive molecules, the dilation of cranial blood vessels per se is no longer felt to underlie migraine headaches. Thus, more recent research has focused on other possible PACAP-mediated mechanisms, and has raised some important questions. For example, (1) are endogenous sources of PACAP (or VIP) involved in the triggering and/or propagation of migraine headaches?; (2) which receptor subtypes are involved in migraine pathophysiology?; (3) can we identify specific anatomical circuit(s) where PACAP signaling is involved in the features of migraine? The purpose of this review is to discuss the possibility, and supportive evidence, that PACAP acts to induce migraine-like symptoms not only by directly modulating nociceptive neural circuits, but also by indirectly regulating the production of inflammatory mediators. We focus here primarily on postulated extra-dural sites because potential mechanisms of PACAP action in the dura are discussed in detail elsewhere (see X, this edition).
Collapse
Affiliation(s)
- James A Waschek
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Serapio M Baca
- Department of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Simon Akerman
- Department of Oral and Maxillofacial Pathology, Radiology and Medicine, New York University College of Dentistry, New York, NY, 10010, USA. .,Department of Neural and Pain Sciences, University of Maryland Baltimore, Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
22
|
Maugeri G, Longo A, D'Amico AG, Rasà DM, Reibaldi M, Russo A, Bonfiglio V, Avitabile T, D'Agata V. Trophic effect of PACAP on human corneal endothelium. Peptides 2018; 99:20-26. [PMID: 29126993 DOI: 10.1016/j.peptides.2017.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
Abstract
Cornea's posterior surface includes endothelium maintaining stromal hydration and clarity. Due to their limited proliferative capability, the loss of endothelial cells can outcome in permanent opacity. In the last years, different studies have demonstrated the protective effect of pituitary adenylate cyclase-activating polypeptide (PACAP) in different ocular diseases. However, its role on human corneal endothelial cells (HCECs) has not been investigated, yet. Here, we have developed a culture protocol to differentiate HCECs from donor's cornea. PACAP treatment prevented damage induced by growth factors deprivation of cells grown on transwell supports as revealed by TERR measurements. Moreover, this peptide significantly increased tight junction proteins expression by conferring resistance to endothelial barrier. This effect is also related to promotion of cell viability as demonstrated by MTT assay. Furthermore, PACAP stimulated repairing of corneal endothelium lesion as shown by wound healing analysis. In conclusion, our data suggest that this peptide could represent an important trophic factor in maintaining functionality of human corneal endothelium.
Collapse
Affiliation(s)
- Grazia Maugeri
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Agata Grazia D'Amico
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, Italy
| | - Daniela Maria Rasà
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Andrea Russo
- Eye Clinic, University of Catania, Catania, Italy
| | | | | | - Velia D'Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
23
|
PACAP Protects the Adolescent and Adult Mice Brain from Ethanol Toxicity and Modulates Distinct Sets of Genes Regulating Similar Networks. Mol Neurobiol 2016; 54:7534-7548. [PMID: 27826748 DOI: 10.1007/s12035-016-0204-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/11/2016] [Indexed: 12/30/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid neuropeptide which has been shown to exert various neuroprotective actions in vitro and in vivo; however, the ability of endogenous PACAP to prevent cell death in vivo remains to be elucidated. To explore the capacity of endogenous PACAP to prevent ethanol toxicity, adolescent and adult PACAP knockout (KO) mice were injected with ethanol in a binge drinking-like manner. Biochemical analyses revealed that ethanol administration induced an increase in the production of reactive oxygen species and the activity of caspase-3 in PACAP KO mice in an age-independent manner. In order to characterize the mechanisms underlying the sensitivity of PACAP KO mice, a whole-genome microarray analysis was performed to compare gene regulations induced by ethanol in adolescent and adult wild-type and PACAP KO mice. Gene expression substantially differed between adolescent and adult wild-type mice, suggesting distinct effects of ethanol according to the state of brain maturation. Interestingly, in adolescent and adult PACAP KO mice, the set of genes regulated were also markedly different but seemed to inhibit some similar regulatory network processes associated in particular with DNA repair and cell cycle. These data imply that ethanol induces serious DNA damages and cell cycle alteration in PACAP KO mice. This hypothesis, based on the transcriptomic data, could be confirmed by functional studies which showed that cell proliferation decreased in adolescent and adult PACAP KO mice treated with ethanol but recovered after a 30-day withdrawal period. These data, obtained with PACAP KO animals, demonstrate that endogenous PACAP protects the brain of adolescent and adult mice from alcohol toxicity and modulates distinct sets of genes according to the maturation status of the brain.
Collapse
|
24
|
Condro MC, Matynia A, Foster NN, Ago Y, Rajbhandari AK, Van C, Jayaram B, Parikh S, Diep AL, Nguyen E, May V, Dong HW, Waschek JA. High-resolution characterization of a PACAP-EGFP transgenic mouse model for mapping PACAP-expressing neurons. J Comp Neurol 2016; 524:3827-3848. [PMID: 27197019 DOI: 10.1002/cne.24035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 02/10/2016] [Accepted: 05/12/2016] [Indexed: 12/23/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP, gene name Adcyap1) regulates a wide variety of neurological and physiological functions, including metabolism and cognition, and plays roles in of multiple forms of stress. Because of its preferential expression in nerve fibers, it has often been difficult to trace and identify the endogenous sources of the peptide in specific populations of neurons. Here, we introduce a transgenic mouse line that harbors in its genome a bacterial artificial chromosome containing an enhanced green fluorescent protein (EGFP) expression cassette inserted upstream of the PACAP ATG translation initiation codon. Analysis of expression in brain sections of these mice using a GFP antibody reveals EGFP expression in distinct neuronal perikarya and dendritic arbors in several major brain regions previously reported to express PACAP from using a variety of approaches, including radioimmunoassay, in situ hybridization, and immunohistochemistry with and without colchicine. EGFP expression in neuronal perikarya was modulated in a manner similar to PACAP gene expression in motor neurons after peripheral axotomy in the ipsilateral facial motor nucleus in the brainstem, providing an example in which the transgene undergoes proper regulation in vivo. These mice and the high-resolution map obtained are expected to be useful in understanding the anatomical patterns of PACAP expression and its plasticity in the mouse. J. Comp. Neurol. 524:3827-3848, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael C Condro
- Department of Psychiatry, University of California, Los Angeles, USA 90095
| | - Anna Matynia
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, USA 90095.,Brain Research Institute, University of California, Los Angeles, USA 90095
| | - Nicholas N Foster
- Institute of Neuro Imaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA USA 90089
| | - Yukio Ago
- Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan 565-0871
| | - Abha K Rajbhandari
- Department of Psychiatry, University of California, Los Angeles, USA 90095.,Department of Psychology, University of California, Los Angeles, USA 90095
| | - Christina Van
- Department of Psychiatry, University of California, Los Angeles, USA 90095
| | - Bhavaani Jayaram
- Department of Psychiatry, University of California, Los Angeles, USA 90095
| | - Sachin Parikh
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, USA 90095.,Brain Research Institute, University of California, Los Angeles, USA 90095
| | - Anna L Diep
- Department of Psychiatry, University of California, Los Angeles, USA 90095
| | - Eileen Nguyen
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, USA 90095.,Brain Research Institute, University of California, Los Angeles, USA 90095
| | - Victor May
- Department of Neurological Sciences, University of Vermont, USA 05405
| | - Hong-Wei Dong
- Institute of Neuro Imaging and Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA USA 90089
| | - James A Waschek
- Department of Psychiatry, University of California, Los Angeles, USA 90095
| |
Collapse
|
25
|
Maugeri G, D'Amico AG, Reitano R, Magro G, Cavallaro S, Salomone S, D'Agata V. PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression. Front Pharmacol 2016; 7:139. [PMID: 27303300 PMCID: PMC4885839 DOI: 10.3389/fphar.2016.00139] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/12/2016] [Indexed: 11/30/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal
peptide (VIP) through the binding of vasoactive intestinal peptide receptors (VIPRs),
perform a wide variety of effects in human cancers, including glioblastoma multiforme
(GBM). This tumor is characterized by extensive areas of hypoxia, which triggers the
expression of hypoxia-inducible factors (HIFs). HIFs not only mediate angiogenesis
but also tumor cell migration and invasion. Furthermore, HIFs activation is linked to
epidermal growth factor receptor (EGFR) overexpression. Previous studies have shown
that VIP interferes with the invasive nature of gliomas by regulating cell migration.
However, the role of VIP family members in GBM infiltration under low oxygen tension
has not been clarified yet. Therefore, in the present study we have investigated, for
the first time, the molecular mechanisms involved in the anti-invasive effect of
PACAP or VIP in U87MG glioblastoma cells exposed to hypoxia induced by treatment with
desferrioxamine (DFX). The results suggest that either PACAP or VIP exert an
anti-infiltrative effect under low oxygen tension by modulating HIFs and EGFR
expression, key elements involved in cell migration and angiogenesis. These peptides
act through the inhibition of PI3K/Akt and MAPK/ERK signaling pathways, which are
known to have a crucial role in HIFs regulation.
Collapse
Affiliation(s)
- Grazia Maugeri
- Sections of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Agata Grazia D'Amico
- Sections of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy; San Raffaele Open University of RomeRome, Italy
| | - Rita Reitano
- Sections of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Gaetano Magro
- Section of Anatomic Pathology, Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele", University of Catania Catania, Italy
| | | | - Salvatore Salomone
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Velia D'Agata
- Sections of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| |
Collapse
|
26
|
Abstract
Neuronal apoptosis and survival are tightly controlled processes that regulate cell fate during the development of the central nervous system and its homeostasis throughout adulthood. A new study in primary cultures of cerebellar granule neurons identified common transcriptional cascades during rescue from apoptosis by insulin-like growth factor-1 (Igf1) and pituitary adenylyl cyclase-activating polypeptide (Pacap), thus suggesting the existence of a high degree of conservation of cell survival pathways.
Collapse
Affiliation(s)
- S Cavallaro
- Department of Biomedical Sciences, Institute of Neurological Sciences, Italian National Research Council, Via Paolo Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
27
|
Lakk M, Denes V, Gabriel R. Pituitary Adenylate Cyclase-Activating Polypeptide Receptors Signal via Phospholipase C Pathway to Block Apoptosis in Newborn Rat Retina. Neurochem Res 2015; 40:1402-9. [PMID: 25975365 DOI: 10.1007/s11064-015-1607-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/03/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
Abstract
Glutamate induced cell death mechanisms gained considerable attention lately as excessive release of extracellular glutamate was reported to cause neurodegeneration in brain areas including the retina. Conversely, pituitary adenylate cyclase-activating polypeptide (PACAP) was shown to provide neuroprotection through anti-apoptotic effects in the glutamate-model and also in other degeneration assays. Although PACAP is known to orchestrate complex intracellular signaling primarily through cAMP production, the mechanism that mediates the anti-apoptotic effect in glutamate excitotoxicity remains to be clarified. To study this mechanism we induced retinal neurodegeneration in newborn Wistar rats by subcutaneous monosodium-glutamate injection. 100 pmol PACAP and enzyme inhibitors were administered intravitreally. Levels of caspase 3, 9, and phospho-protein kinase A were assessed by Western blots. Changes in cAMP levels were detected employing a competitive immunoassay. We found that cAMP blockade by an adenylyl-cyclase inhibitor (2',4'-dideoxy-adenosine) did not abrogate the neuroprotective effect of PACAP1-38. We show that following intravitreal PACAP1-38 treatment cAMP was unaltered, consistent with the inhibitor results and phospho-protein kinase A, an effector of the cAMP pathway was also unaffected. On the other hand, blockade of the alternative phosphatidylcholine-specific PLC pathway using an inhibitor (D609CAS) abrogated the neuroprotective effects of PACAP1-38. Our results highlight PACAP1-38 ability in protecting retinal cells against apoptosis through diverse signaling cascades. It seems that at picomolar concentrations, PACAP does not trigger cAMP production, but nonetheless, exerts a significant anti-apoptotic effect through PLC activation. In conclusion, PACAP1-38 may signal via both AC and PLC activation producing the same protective outcome.
Collapse
Affiliation(s)
- Monika Lakk
- Department of Experimental Zoology and Neurobiology, University of Pécs, 6 Ifjúság Street, 7601, Pécs, Hungary
| | | | | |
Collapse
|
28
|
Giunta S, Castorina A, Marzagalli R, Szychlinska MA, Pichler K, Mobasheri A, Musumeci G. Ameliorative effects of PACAP against cartilage degeneration. Morphological, immunohistochemical and biochemical evidence from in vivo and in vitro models of rat osteoarthritis. Int J Mol Sci 2015; 16:5922-44. [PMID: 25782157 PMCID: PMC4394513 DOI: 10.3390/ijms16035922] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA); the most common form of degenerative joint disease, is associated with variations in pro-inflammatory growth factor levels, inflammation and hypocellularity resulting from chondrocyte apoptosis. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide endowed with a range of trophic effects in several cell types; including chondrocytes. However; its role in OA has not been studied. To address this issue, we investigated whether PACAP expression is affected in OA cartilage obtained from experimentally-induced OA rat models, and then studied the effects of PACAP in isolated chondrocytes exposed to IL-1β in vitro to mimic the inflammatory milieu of OA cartilage. OA induction was established by histomorphometric and histochemical analyses. Changes in PACAP distribution in cartilage, or its concentration in synovial fluid (SF), were assessed by immunohistochemistry and ELISA. Results showed that PACAP abundance in cartilage tissue and SF was high in healthy controls. OA induction decreased PACAP levels both in affected cartilage and SF. Invitro, PACAP prevented IL-1β-induced chondrocyte apoptosis, as determined by MTT assay; Hoechst staining and western blots of apoptotic-related proteins. These changes were also accompanied by decreased i-NOS and COX-2 levels, suggesting an anti-inflammatory effect. Altogether, these findings support a potential role for PACAP as a chondroprotective agent for the treatment of OA.
Collapse
Affiliation(s)
- Salvatore Giunta
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Alessandro Castorina
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Rubina Marzagalli
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Karin Pichler
- Department of Pediatrics, Clinic for Pediatrics I Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria.
| | - Ali Mobasheri
- The D-BOARD European Consortium for Biomarker Discovery, Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
- Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), King AbdulAziz University, Jeddah 21589, Saudi Arabia.
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| |
Collapse
|
29
|
Irwin M, Greig A, Tvrdik P, Lucero MT. PACAP modulation of calcium ion activity in developing granule cells of the neonatal mouse olfactory bulb. J Neurophysiol 2014; 113:1234-48. [PMID: 25475351 DOI: 10.1152/jn.00594.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ca(2+) activity in the CNS is critical for the establishment of developing neuronal circuitry prior to and during early sensory input. In developing olfactory bulb (OB), the neuromodulators that enhance network activity are largely unknown. Here we provide evidence that pituitary adenylate cyclase-activating peptide (PACAP)-specific PAC1 receptors (PAC1Rs) expressed in postnatal day (P)2-P5 mouse OB are functional and enhance network activity as measured by increases in calcium in genetically identified granule cells (GCs). We used confocal Ca(2+) imaging of OB slices from Dlx2-tdTomato mice to visualize GABAergic GCs. To address whether the PACAP-induced Ca(2+) oscillations were direct or indirect effects of PAC1R activation, we used antagonists for the GABA receptors (GABARs) and/or glutamate receptors (GluRs) in the presence and absence of PACAP. Combined block of GABARs and GluRs yielded a 66% decrease in the numbers of PACAP-responsive cells, suggesting that 34% of OB neurons are directly activated by PACAP. Similarly, immunocytochemistry using anti-PAC1 antibody showed that 34% of OB neurons express PAC1R. Blocking either GluRs or GABARs alone indirectly showed that PACAP stimulates release of both glutamate and GABA, which activate GCs. The appearance of PACAP-induced Ca(2+) activity in immature GCs suggests a role for PACAP in GC maturation. To conclude, we find that PACAP has both direct and indirect effects on neonatal OB GABAergic cells and may enhance network activity by promoting glutamate and GABA release. Furthermore, the numbers of PACAP-responsive GCs significantly increased between P2 and P5, suggesting that PACAP-induced Ca(2+) activity contributes to neonatal OB development.
Collapse
Affiliation(s)
- Mavis Irwin
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ann Greig
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Petr Tvrdik
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah; Interdepartmental Neuroscience Program, University of Utah School of Medicine, Salt Lake City, Utah; and
| | - Mary T Lucero
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah; Interdepartmental Neuroscience Program, University of Utah School of Medicine, Salt Lake City, Utah; and Department of Neuroscience and Physiology, American University of the Caribbean, Cupecoy, Sint Maarten, Netherlands Antilles
| |
Collapse
|
30
|
Jóźwiak-Bębenista M, Kowalczyk E, Nowak JZ. The cyclic AMP effects and neuroprotective activities of PACAP and VIP in cultured astrocytes and neurons exposed to oxygen-glucose deprivation. Pharmacol Rep 2014; 67:332-8. [PMID: 25712659 DOI: 10.1016/j.pharep.2014.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/24/2014] [Accepted: 10/02/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are endogenous peptides, widely expressed in the central and peripheral nervous system. The adenylyl cyclase (AC)/cyclic AMP (cAMP) is their main intracellular signal transduction pathway. Numerous data suggest that PACAP and VIP have considerable neuroprotective potential, indicating the possibility for their use as new therapeutic strategies in stroke treatment. The aim of this study was to evaluate the effect of oxygen-glucose deprivation (OGD) - an established in vitro model for ischemic cell stress - on PACAP and VIP-evoked receptor-mediated cAMP generation in glial and neuronal cells, and to determine whether PACAP and VIP have neuroprotective activity under these conditions. METHODS The formation of [(3)H]cAMP by PACAP, VIP and forskolin (a direct activator of AC) was measured in [(3)H]adenine prelabeled primary rat glial and neuronal cells under normoxia and OGD conditions. The effects of PACAP and VIP on cell viability were measured using the MTT conversion method, and were compared to tacrolimus (FK506), a well known neuroprotective agent. RESULTS The OGD model inhibited the PACAP and VIP-induced cAMP formation in rat astrocytes and neurons. Incubation of neuronal cells with PACAP prevented OGD-induced cell death, more efficiently than VIP and FK506. CONCLUSION The obtained results showed that hypoxia/ischemia may trigger down-regulation of the brain AC-coupled PACAP/VIP receptors, with a consequent decrease of PACAP- and/or VIP-ergic-dependent cAMP-driven signaling. Moreover, our findings indicate that PACAP and VIP can prevent the deleterious effect of OGD on rat neuronal cells.
Collapse
Affiliation(s)
- Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology, The Interfaculty Chair of Basic and Clinical Pharmacology, Medical University of Lodz, Łódź, Poland.
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, The Interfaculty Chair of Basic and Clinical Pharmacology, Medical University of Lodz, Łódź, Poland
| | - Jerzy Z Nowak
- Department of Pharmacology and Toxicology, The Interfaculty Chair of Basic and Clinical Pharmacology, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
31
|
Waschek JA. VIP and PACAP: neuropeptide modulators of CNS inflammation, injury, and repair. Br J Pharmacol 2014; 169:512-23. [PMID: 23517078 DOI: 10.1111/bph.12181] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/26/2013] [Accepted: 03/08/2013] [Indexed: 01/14/2023] Open
Abstract
Inflammatory processes play both regenerative and destructive roles in multiple sclerosis, stroke, CNS trauma, amyotrophic lateral sclerosis and aging-related neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's. Endogenous defence mechanisms against these pathologies include those that are directly neuroprotective, and those that modulate the expression of inflammatory mediators in microglia, astrocytes, and invading inflammatory cells. While a number of mechanisms and molecules have been identified that can directly promote neuronal survival, less is known about how the brain protects itself from harmful inflammation, and further, how it co-opts the healing function of the immune system to promote CNS repair. The two closely related neuroprotective peptides, vasoactive intestinal peptide (VIP) and pituitary adenylyl cyclase-activating peptide (PACAP), which are up-regulated in neurons and immune cells after injury and/or inflammation, are known to protect neurons, but also exert powerful in vivo immunomodulatory actions, which are primarily anti-inflammatory. These peptide actions are mediated by high-affinity receptors expressed not only on neurons, but also astrocytes, microglia and peripheral inflammatory cells. Well-established immunomodulatory actions of these peptides are to inhibit macrophage and microglia production and release of inflammatory mediators such as TNF-α and IFN-γ, and polarization of T-cell responses away from Th1 and Th17, and towards a Th2 phenotype. More recent studies have revealed that these peptides can also promote the production of both natural and inducible subsets of regulatory T-cells. The neuroprotective and immunomodulatory actions of VIP and PACAP suggest that receptors for these peptides may be therapeutic targets for neurodegenerative and neuroinflammatory diseases and other forms of CNS injury.
Collapse
Affiliation(s)
- J A Waschek
- Department of Psychiatry and Semel Institute, University of California at Los Angeles, Los Angeles, CA 90095-7332, USA.
| |
Collapse
|
32
|
Manecka DL, Lelièvre V, Anouar Y. Inhibition of constitutive TNF production is associated with PACAP-mediated differentiation in PC12 cells. FEBS Lett 2014; 588:3008-14. [PMID: 24928446 DOI: 10.1016/j.febslet.2014.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 06/01/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
The pituitary adenylate cyclase-activating polypeptide (PACAP) is a trophic neuropeptide that promotes cell survival and neuritogenesis in the central and peripheral nervous system. Our previous transcriptomic studies revealed the down-regulation of the cytokine tumor necrosis factor (TNF) during PACAP-induced PC12 cell differentiation. Here we show that TNF is constitutively expressed in PC12 cells in a manner dependent on NF-κB transcription factor, and that PACAP rapidly inhibits TNF expression and secretion. The inhibition occurs through suppression of RelB subunit of NF-κB, and is likely to prevent the deleterious effects of the cytokine on survival and neurite outgrowth during PC12 cell differentiation.
Collapse
Affiliation(s)
- Destiny-Love Manecka
- Inserm, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France; Institute for Research and Innovation in Biomedicine, Normandy University, University of Rouen, Mont-Saint-Aignan, France
| | | | - Youssef Anouar
- Inserm, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France; Institute for Research and Innovation in Biomedicine, Normandy University, University of Rouen, Mont-Saint-Aignan, France.
| |
Collapse
|
33
|
Shu Q, Xu Y, Zhuang H, Fan J, Sun Z, Zhang M, Xu G. Ras homolog enriched in the brain is linked to retinal ganglion cell apoptosis after light injury in rats. J Mol Neurosci 2014; 54:243-51. [PMID: 24664437 DOI: 10.1007/s12031-014-0281-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
Ras homolog enriched in the brain (Rheb) is a small GTPase of the Ras family. It has been confirmed that Rheb activation not only regulates cell growth and migration but also induces neuron apoptosis after toxic stimuli. However, the function of Rheb in the retina is still not fully understood. To find out whether Rheb was involved in retinal neuron death, the expression profile of Rheb in light-damaged retinal ganglion cells (RGCs) of adult rats was investigated. Western blotting showed the expression of Rheb was significantly upregulated in the injured retina. Rheb was mainly detected in apoptotic RGCs by using double immunofluorescent staining. Active caspase-3 was upregulated and co-labeled with Rheb. Meanwhile, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) showed that Rheb-positive RGCs underwent apoptosis after light exposure, which suggested that Rheb might be relevant to RGC apoptosis following phototoxicity. Furthermore, Western blotting and immunofluorescence showed that the expression profiles of CyclinD1 and cyclin-dependent kinase 4 (CDK4) were parallel with that of Rheb in a time-space dependent manner. Based on this study, it is speculated that Rheb might play an important role in physiological and pathological process in light-induced retina damage, which might provide a potential therapeutic avenue of retinal degeneration.
Collapse
Affiliation(s)
- Qinmeng Shu
- Department of Ophthalmology and Vision Sciences and Key Laboratory of Myopia of State Health Ministry, Eye and ENT Hospital, Shanghai Medical College, Fudan University, No.83 Fenyang Road, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
34
|
Pituitary adenylate cyclase-activating polypeptide protects against β-amyloid toxicity. Neurobiol Aging 2014; 35:2064-71. [PMID: 24726470 DOI: 10.1016/j.neurobiolaging.2014.03.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/28/2014] [Accepted: 03/15/2014] [Indexed: 11/21/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurotrophin. However, its role in human Alzheimer's disease (AD) is largely unknown. We examined PACAP expression in postmortem human AD and triple transgenic mouse (3xTG, Psen1/APPSwe/TauP301L) brains. We established an in vitro model of primary neuronal cell culture to study the protective effects of PACAP against β-amyloid (Aβ) toxicity. We further studied the PACAP-Sirtuin 3 (Sirt3) pathway on mitochondrial function. PACAP expression was reduced in AD and 3xTG mouse brains. This reduction was inversely correlated with Aβ and tau protein levels. Treatment with PACAP effectively protected neurons against Aβ toxicity. PACAP stimulated mitochondrial Sirt3 production. Similar to PACAP, Sirt3 was reduced in AD and 3xTG brains. Knocking down Sirt3 compromised the neuroprotective effects of PACAP, and this was reversed by over-expressing Sirt3. PACAP is reduced in AD and may represent a novel therapeutic strategy.
Collapse
|
35
|
Dénes V, Czotter N, Lakk M, Berta G, Gábriel R. PAC1-expressing structures of neural retina alter their PAC1 isoform splicing during postnatal development. Cell Tissue Res 2013; 355:279-88. [PMID: 24352804 DOI: 10.1007/s00441-013-1761-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 11/05/2013] [Indexed: 10/25/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP), a member of the secretin/glucagon/vasoactive intestinal peptide family, exerts various effects on neuronal development as mediated by the differential expression of PAC1 receptor (PAC1-R) isoforms. The expression changes of PAC1-R isoforms (Hip, Hop1) reported in correlation with retinal development suggest an isoform switch during the second postnatal week. Our aim is to determine the exact period of the isoform shift and to describe the PAC1-R-immunoreactive structures appearing from postnatal day 5 (P5) to P10 in the rat retina. The ratio of Hip and Hop1 receptors was assessed and changes in their expression were followed by Taqman and SybrGreen-based quantitative polymerase chain reaction. For the detection of PAC1-R-expressing retinal structures, anti-PAC1-R, anti-calbindin, anti-protein kinase C, anti-glutamine synthetase, anti-HPC1 and anti-Brn3a antibodies were utilized. At the transcript level, a marked decrease to an undetectable level was measured in Hip mRNA expression from P6 to P9. Hop1 expression appeared to be unchanged from P6 to P9, followed by a significant elevation at P10. A Hip/Hop1 isoform shift occurred between P6 and P7. Immunostaining showed strong PAC1-R labeling from P5 to P10 in ganglion, amacrine, horizontal and rod bipolar neurons and in glial Muller cell processes. The Hop1 isoform was predominantly expressed in various types of retinal cell beginning at P7, because of a dramatic reduction in Hip mRNA level. As the Hop1 receptor is coupled to different signaling cascades, this isoform shift might alter the physiological role of PACAP during this particular period.
Collapse
Affiliation(s)
- V Dénes
- Department of Experimental Zoology and Neurobiology, University of Pécs, 6 Ifjúság Street, 7601, Pécs, Hungary,
| | | | | | | | | |
Collapse
|
36
|
Upregulation of CREM-1 relates to retinal ganglion cells apoptosis after light-induced damage in vivo. J Mol Neurosci 2013; 52:331-8. [PMID: 24166353 DOI: 10.1007/s12031-013-0153-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
Abstract
Previous studies have shown activation of cyclic AMP response element-binding protein (CREB) family is involved in the retinal ganglion cells (RGCs) protection. However, the function of cyclic AMP response element modulator-1 (CREM-1), one member of the CREB family, is still with limited acquaintance. To investigate whether CREM-1 is involved in RGCs death, we performed a light-induced retinal damage model in adult rats. Upregulation of CREM-1 was observed in retina after light-induced damage by performing western blot. Immunofluorescent labeling indicated that upregulated CREM-1 was localized mainly in the RGCs. We also investigated co-localization of CREM-1 with active-caspase-3 and TUNEL (apoptotic markers) in the retina after light-induced damage. In addition, the expression patterns of B cell lymphoma/leukemia-2 and Bcl-2 associated X protein were parallel with that of CREM-1. Collectively, we hypothesized upregulation of CREM-1 in the retina was associated with RGCs death after light-induced damage.
Collapse
|
37
|
Nemeth A, Szabadfi K, Fulop B, Reglodi D, Kiss P, Farkas J, Szalontai B, Gabriel R, Hashimoto H, Tamas A. Examination of calcium-binding protein expression in the inner ear of wild-type, heterozygous and homozygous pituitary adenylate cyclase-activating polypeptide (PACAP)-knockout mice in kanamycin-induced ototoxicity. Neurotox Res 2013; 25:57-67. [PMID: 24155155 DOI: 10.1007/s12640-013-9428-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 11/24/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with diverse biological effects. It also occurs and exerts protective effects in sensory organs; however, little is known about its effects in the auditory system. Recently, we have shown that PACAP protects cochlear cells against oxidative-stress-induced apoptosis and homozygous PACAP-deficient animals show stronger expression of Ca(2+)-binding proteins in the hair cells of the inner ear, but there are no data about the consequences of the lack of endogenous PACAP in different ototoxic insults such as aminoglycoside-induced toxicity. In this study, we examined the effect of kanamycin treatment on Ca(2+)-binding protein expression in hair cells of wild-type, heterozygous and homozygous PACAP-deficient mice. We treated 5-day-old mice with kanamycin, and 2 days later, we examined the Ca(2+)-binding protein expression of the hair cells with immunohistochemistry. We found stronger expression of Ca(2+)-binding proteins in the hair cells of control heterozygous and homozygous PACAP-deficient mice compared with wild-type animals. Kanamycin induced a significant increase in Ca(2+)-binding protein expression in wild-type and heterozygous PACAP-deficient mice, but the baseline higher expression in homozygous PACAP-deficient mice did not show further changes after the treatment. Elevated endolymphatic Ca(2+) is deleterious for the cochlear function, against which the high concentration of Ca(2+)-buffers in hair cells may protect. Meanwhile, the increased immunoreactivity of Ca(2+)-binding proteins in the absence of PACAP provide further evidence for the important protective role of PACAP in ototoxicity, but further investigations are necessary to examine the exact role of endogenous PACAP in ototoxic insults.
Collapse
Affiliation(s)
- A Nemeth
- Department of Oto-rhino-laryngology, University of Pecs, Pecs, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
STC1 induction by PACAP is mediated through cAMP and ERK1/2 but not PKA in cultured cortical neurons. J Mol Neurosci 2013; 46:75-87. [PMID: 21975601 DOI: 10.1007/s12031-011-9653-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 09/15/2011] [Indexed: 10/17/2022]
Abstract
The neuroprotective actions of PACAP (pituitary adenylate cyclase-activating polypeptide) in vitro and in vivo suggest that activation of its cognate G protein coupled receptor PAC1 or downstream signaling molecules,and thus activation of PACAP target genes, could be of therapeutic benefit. Here, we show that cultured rat cortical neurons predominantly expressed the PAC1hop and null variants. PACAP receptor activation resulted in the elevation of the two second messengers cAMP and Ca(2+) and expression of the putative neuroprotectant stanniocalcin 1(STC1). PACAP signaling to the STC1 gene proceeded through the extracellular signal-regulated kinases 1 and 2(ERK1/2), but not through the cAMP-dependent protein kinase (PKA), and was mimicked by the adenylate cyclase activator forskolin. PACAP- and forskolin-mediated activation of ERK1/2 occurred through cAMP, but not PKA.These results suggest that STC1 gene induction proceeds through cAMP and ERK1/2, independently of PKA, the canonical cAMP effector. In contrast, PACAP signaling to the BDNF gene proceeded through PKA, suggesting that two different neuroprotective cAMP pathways co-exist in differentiated cortical neurons. The selective activation of a potentially neuroprotective cAMP-dependent pathway different from the canonical cAMP pathway used in many physiological processes, such as memory storage, has implications for pharmacological activation of neuroprotection in vivo.
Collapse
|
39
|
Ding Y, Cheng H, Yu R, Tang C, Liu X, Chen J. Effects of cyclopeptide C*HSDGIC* from the cyclization of PACAP (1-5) on the proliferation and UVB-induced apoptosis of the retinal ganglion cell line RGC-5. Peptides 2012; 36:280-5. [PMID: 22706041 DOI: 10.1016/j.peptides.2012.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that confers potent neurotrophic and neuroprotective effects. Cyclopeptide C*HSDGIC* (CHC), which results from the cyclization of PACAP (1-5) with disulfide, has been demonstrated to represent a potent agonist for the PACAP-specific receptor PAC1 which mediates the majority of PACAP's effects. In this study, the expression of PAC1 in a rat retinal ganglion cell line (RGC-5) was confirmed using a western blot analysis, and it was determined that CHC promoted the proliferation of RGC-5 cells using the cell counting kit-8 (CCK8) assay and flow cytometry. Furthermore, the treatment of CHC attenuated the decrease of cell viability in cells exposed to UVB irradiation. Flow cytometry and a JC-1 assay revealed that the CHC treatment protected the RGC-5 cells against UVB-induced apoptosis. In addition, similar to PACAP, the anti-apoptotic effect of CHC was related to the down-regulation of caspase-3. In summary, these results demonstrate for the first time that PAC1 is present in RGC-5 cells and that CHC, a cyclopeptide from PACAP, promotes RGC-5 cell proliferation and attenuates UVB-induced apoptosis.
Collapse
Affiliation(s)
- Yong Ding
- Department of Ophthalmology, Affiliated First Hospital of Jinan University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
40
|
Tamas A, Reglodi D, Farkas O, Kovesdi E, Pal J, Povlishock JT, Schwarcz A, Czeiter E, Szanto Z, Doczi T, Buki A, Bukovics P. Effect of PACAP in central and peripheral nerve injuries. Int J Mol Sci 2012; 13:8430-8448. [PMID: 22942712 PMCID: PMC3430243 DOI: 10.3390/ijms13078430] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 01/07/2023] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a bioactive peptide with diverse effects in the nervous system. In addition to its more classic role as a neuromodulator, PACAP functions as a neurotrophic factor. Several neurotrophic factors have been shown to play an important role in the endogenous response following both cerebral ischemia and traumatic brain injury and to be effective when given exogenously. A number of studies have shown the neuroprotective effect of PACAP in different models of ischemia, neurodegenerative diseases and retinal degeneration. The aim of this review is to summarize the findings on the neuroprotective potential of PACAP in models of different traumatic nerve injuries. Expression of endogenous PACAP and its specific PAC1 receptor is elevated in different parts of the central and peripheral nervous system after traumatic injuries. Some experiments demonstrate the protective effect of exogenous PACAP treatment in different traumatic brain injury models, in facial nerve and optic nerve trauma. The upregulation of endogenous PACAP and its receptors and the protective effect of exogenous PACAP after different central and peripheral nerve injuries show the important function of PACAP in neuronal regeneration indicating that PACAP may also be a promising therapeutic agent in injuries of the nervous system.
Collapse
Affiliation(s)
- Andrea Tamas
- PTE-MTA “Lendulet” PACAP Research Team, Department of Anatomy, University of Pecs, Szigeti. u. 12, H-7624 Pecs, Hungary; E-Mails: (D.R.); (E.C.)
| | - Dora Reglodi
- PTE-MTA “Lendulet” PACAP Research Team, Department of Anatomy, University of Pecs, Szigeti. u. 12, H-7624 Pecs, Hungary; E-Mails: (D.R.); (E.C.)
| | - Orsolya Farkas
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Erzsebet Kovesdi
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Jozsef Pal
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - John T. Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 E. Marshall Street Richmond, Richmond, VA 23219, USA; E-Mail:
| | - Attila Schwarcz
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Endre Czeiter
- PTE-MTA “Lendulet” PACAP Research Team, Department of Anatomy, University of Pecs, Szigeti. u. 12, H-7624 Pecs, Hungary; E-Mails: (D.R.); (E.C.)
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Zalan Szanto
- Department of Surgery, Medical School, University of Pecs, Ret u. 2., H-7623 Pecs, Hungary; E-Mail:
| | - Tamas Doczi
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Andras Buki
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| | - Peter Bukovics
- MTA-PTE Clinical Neuroscience MR Research Group, Department of Neurosurgery, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; E-Mails: (O.F.); (E.K.); (J.P.); (A.S.); (T.D.); (A.B.); (P.B.)
| |
Collapse
|
41
|
Szanto Z, Sarszegi Z, Reglodi D, Nemeth J, Szabadfi K, Kiss P, Varga A, Banki E, Csanaky K, Gaszner B, Pinter O, Szalai Z, Tamas A. PACAP immunoreactivity in human malignant tumor samples and cardiac diseases. J Mol Neurosci 2012; 48:667-73. [PMID: 22648511 DOI: 10.1007/s12031-012-9815-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/15/2012] [Indexed: 01/21/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic and multifunctional neuropeptide having important roles in various physiological processes. Recent trends in PACAP research point to the clinical introduction of PACAP or its analogs/fragments possibly in the near future. Recently, we have shown the presence of PACAP in human plasma, milk, placenta, and follicular fluid samples. However, relatively few data are available on PACAP in human tissues from patients with different disorders. The aim of the present study was to determine, by radioimmunoassay, the tissue level of PACAP38-like immunoreactivity (LI) and PACAP27-LI in different primary non-small cell lung cancer, colon tumor samples, and in cardiac muscle samples from patients suffering from ischemic heart disease and valvular disorders. We also labeled the PAC1 receptors in human cardiac cells. All samples showed significantly higher PACAP38-LI compared with PACAP27-LI. We found significantly lower levels of PACAP38-LI and PACAP27-LI in tumoral and peripheral samples compared with normal healthy tissue in both lung and colon cancers. Further investigations are necessary to describe the exact function of PACAP in oncogenesis. We showed that PACAP38-LI and PACAP27-LI are significantly higher in ischemic heart diseases compared with valvular abnormalities, suggesting that PACAP might play a role in ischemic heart disorders.
Collapse
Affiliation(s)
- Z Szanto
- Surgery Clinic, University of Pecs, Pecs, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fabian E, Reglodi D, Mester L, Szabo A, Szabadfi K, Tamas A, Toth G, Kovacs K. Effects of PACAP on intracellular signaling pathways in human retinal pigment epithelial cells exposed to oxidative stress. J Mol Neurosci 2012; 48:493-500. [PMID: 22644900 DOI: 10.1007/s12031-012-9812-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 05/08/2012] [Indexed: 12/20/2022]
Abstract
The integrity of retinal pigment epithelial cells is critical for photoreceptor survival and vision. Pituitary adenylate cyclase activating polypeptide (PACAP) exerts retinoprotective effects against several types of injuries in vivo, including optic nerve transection, retinal ischemia, excitotoxic injuries, UVA-induced lesion, and diabetic retinopathy. In a recent study, we have proven that PACAP is also protective in oxidative stress-induced injury in human pigment epithelial cells (ARPE-19 cells). The aim of the present study was to investigate the possible mechanisms of this protection. ARPE cells were exposed to a 24-h hydrogen peroxide treatment. Expressions of kinases and apoptotic markers were studied by complex array kits and Western blot. Oxidative stress induced the activation of several apoptotic markers, including Bad, Bax, HIF-1α, several heat shock proteins, TNF-related apoptosis-inducing ligand, and Fas-associated protein with death domain, while PACAP treatment decreased them. The changes in the expression of MAP kinases showed that PACAP activated the protective ERK1/2 and downstream CREB, and decreased the activation of the pro-apoptotic p38MAPK and c-Jun N-terminal kinase, an effect opposite to that observed with only oxidative stress. Furthermore, PACAP increased the activation of the protective Akt pathway. In addition, the effects of oxidative stress on several other signaling molecules were counteracted by PACAP treatment (Chk2, Yes, Lyn, paxillin, p53, PLC, STAT4, RSK). These play a role in cell death, cell cycle, inflammation, adhesion, differentiation and proliferation. In summary, PACAP, acting at several levels, influences the balance between pro- and anti-apoptotic factors in favor of anti-apoptosis, thereby providing protection in oxidative stress-induced injury of human retinal pigment epithelial cells.
Collapse
Affiliation(s)
- E Fabian
- Department of Anatomy, PTE-MTA Lendulet PACAP Research Team, University of Pecs, 7624 Pecs, Szigeti u 12, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
43
|
PACAP is an Endogenous Protective Factor—Insights from PACAP-Deficient Mice. J Mol Neurosci 2012; 48:482-92. [DOI: 10.1007/s12031-012-9762-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/22/2012] [Indexed: 01/07/2023]
|
44
|
Reglodi D, Kiss P, Horvath G, Lubics A, Laszlo E, Tamas A, Racz B, Szakaly P. Effects of pituitary adenylate cyclase activating polypeptide in the urinary system, with special emphasis on its protective effects in the kidney. Neuropeptides 2012; 46:61-70. [PMID: 21621841 DOI: 10.1016/j.npep.2011.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a widespread neuropeptide with diverse effects in the nervous system and peripheral organs. One of the most well-studied effects of PACAP is its cytoprotective action, against different harmful stimuli in a wide variety of cells and tissues. PACAP occurs in the urinary system, from the kidney to the lower urinary tract. The present review focuses on the nephroprotective effects of PACAP and summarizes data obtained regarding the protective effects of PACAP in different models of kidney pathologies. In vitro data show that PACAP protects tubular cells against oxidative stress, myeloma light chain, cisplatin, cyclosporine-A and hypoxia. In vivo data provide evidence for its protective effects in ischemia/reperfusion, cisplatin, cyclosporine-A, myeloma kidney injury, diabetic nephropathy and gentamicin-induced kidney damage. Results accumulated on the renoprotective effects of PACAP suggest that PACAP is an emerging candidate for treatment of human kidney pathologies.
Collapse
Affiliation(s)
- Dora Reglodi
- Department of Anatomy, University of Pecs, Szigeti u 12, 7624 Pecs, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Tamas A, Szabadfi K, Nemeth A, Fulop B, Kiss P, Atlasz T, Gabriel R, Hashimoto H, Baba A, Shintani N, Helyes Z, Reglodi D. Comparative Examination of Inner Ear in Wild Type and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP)-Deficient Mice. Neurotox Res 2011; 21:435-44. [DOI: 10.1007/s12640-011-9298-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 11/17/2011] [Accepted: 12/06/2011] [Indexed: 12/30/2022]
|
46
|
Mansouri S, Ortsäter H, Pintor Gallego O, Darsalia V, Sjöholm A, Patrone C. Pituitary adenylate cyclase-activating polypeptide counteracts the impaired adult neural stem cell viability induced by palmitate. J Neurosci Res 2011; 90:759-68. [PMID: 22183970 DOI: 10.1002/jnr.22803] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/30/2011] [Indexed: 12/30/2022]
Abstract
Diabetes and obesity are characterized by hyperlipidemia and represent risk factors for premature neurological disorders. Diabetic/obese animals have impaired adult neurogenesis. We hypothesize that lipotoxicity leading to neurogenesis impairment plays a role in the development of neurological complications. If so, normalizing neurogenesis in diabetes/obesity could be therapeutically useful in counteracting neurological dysfunction. The goal of this study was to determine the potential of pituitary adenylate cyclase-activating polypeptide (PACAP) to protect adult neural stem cells (NSCs) from lipotoxicity and to study the expression of PACAP receptors in NSCs under lipotoxic conditions in vitro and in the subventricular zone in vivo. The viability of NSCs isolated from the adult mouse brain subventricular zone was assessed in the presence of a high-fat milieu, as mimicked by palmitate, which characterizes diabetic lipotoxicity. Regulation studies of PACAP receptors were performed by quantitative PCR on NSCs in vitro or on subventricular tissues isolated from obese ob/ob mice and their lean littermates. We show that palmitate impairs NSC viability by promoting lipoapoptosis. We also show that PACAP counteracts lipotoxicity via PAC-1 receptor activation. Studies on PACAP receptor expression revealed that PAC-1 and VPAC-2 are expressed by NSC in vitro and are upregulated by palmitate treatment and that PAC-1, VPAC-1, and VPAC-2 are expressed in the subventricular zone/striatum in vivo and are upregulated in ob/ob mice. The present study reveals a previously uncharacterized role of PACAP to protect NSC from lipotoxicity and suggests a potential therapeutic role for PACAP receptor agonists in the treatment of neurological complications in obesity and diabetes.
Collapse
Affiliation(s)
- Shiva Mansouri
- Diabetes Research Unit, Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
47
|
Raoult E, Roussel BD, Bénard M, Lefebvre T, Ravni A, Ali C, Vivien D, Komuro H, Fournier A, Vaudry H, Vaudry D, Galas L. Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates the expression and the release of tissue plasminogen activator (tPA) in neuronal cells: involvement of tPA in the neuroprotective effect of PACAP. J Neurochem 2011; 119:920-31. [DOI: 10.1111/j.1471-4159.2011.07486.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Baxter PS, Martel MA, McMahon A, Kind PC, Hardingham GE. Pituitary adenylate cyclase-activating peptide induces long-lasting neuroprotection through the induction of activity-dependent signaling via the cyclic AMP response element-binding protein-regulated transcription co-activator 1. J Neurochem 2011; 118:365-78. [PMID: 21623792 PMCID: PMC3557719 DOI: 10.1111/j.1471-4159.2011.07330.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuroprotective peptide which exerts its effects mainly through the cAMP-protein kinase A (PKA) pathway. Here, we show that in cortical neurons, PACAP-induced PKA signaling exerts a major part of its neuroprotective effects indirectly, by triggering action potential (AP) firing. Treatment of cortical neurons with PACAP induces a rapid and sustained PKA-dependent increase in AP firing and associated intracellular Ca2+ transients, which are essential for the anti-apoptotic actions of PACAP. Transient exposure to PACAP induces long-lasting neuroprotection in the face of apoptotic insults which is reliant on AP firing and the activation of cAMP response element (CRE) binding protein (CREB)-mediated gene expression. Although direct, activity-independent PKA signaling is sufficient to trigger phosphorylation on CREB’s activating serine-133 site, this is insufficient for activation of CREB-mediated gene expression. Full activation is dependent on CREB-regulated transcription co-activator 1 (CRTC1), whose PACAP-induced nuclear import is dependent on firing activity-dependent calcineurin signaling. Over-expression of CRTC1 is sufficient to rescue PACAP-induced CRE-mediated gene expression in the face of activity-blockade, while dominant negative CRTC1 interferes with PACAP-induced, CREB-mediated neuroprotection. Thus, the enhancement of AP firing may play a significant role in the neuroprotective actions of PACAP and other adenylate cyclase-coupled ligands.
Collapse
Affiliation(s)
- Paul S Baxter
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | | | | | | | | |
Collapse
|
49
|
Hirose M, Niewiadomski P, Tse G, Chi GC, Dong H, Lee A, Carpenter EM, Waschek JA. Pituitary adenylyl cyclase-activating peptide counteracts hedgehog-dependent motor neuron production in mouse embryonic stem cell cultures. J Neurosci Res 2011; 89:1363-74. [PMID: 21674568 DOI: 10.1002/jnr.22675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 03/31/2011] [Indexed: 12/14/2022]
Abstract
Pituitary adenylyl cyclase-activating peptide (PACAP; ADCYAP1) is a neuropeptide that regulates a wide array of functions within the brain and periphery. We and others have previously demonstrated that PACAP and its high-affinity receptor PAC1 are expressed in the embryonic mouse neural tube, suggesting that PACAP plays a role in early brain development. Moreover, we previously showed that PACAP antagonizes the mitotic action of Sonic hedgehog (Shh) in postnatal cerebellar granule precursors. In the present study, we demonstrate that PACAP completely blocked Shh-dependent motor neuron generation from embryonic stem cell cultures and reduced mRNA levels of the Shh target gene Gli-1 and several ventral spinal cord patterning genes. In vivo examination of motor neuron and other patterning markers in embryonic day 12.5 spinal cords of wild-type and PACAP-deficient mice by immunofluorescence, on the other hand, revealed no obvious alterations in expressions of Islet1/2, MNR2, Lim1/2, Nkx2.2, or Shh, although the Pax6-positive area was slightly expanded in PACAP-deficient spinal cord. Caspase-3 staining revealed low, and similar, numbers of cells undergoing apoptosis in embryonic wild-type vs. PACAP-deficient spinal cords, whereas a slight but significant increase in number of mitotic cells was observed in PACAP-deficient mice. Thus, although PACAP has a strong capacity to counteract Shh signaling and motor neuron production in vitro, corresponding patterning defects associated with PACAP loss may be obscured by compensatory mechanisms.
Collapse
Affiliation(s)
- Megumi Hirose
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-7332, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Dejda A, Seaborn T, Bourgault S, Touzani O, Fournier A, Vaudry H, Vaudry D. PACAP and a novel stable analog protect rat brain from ischemia: Insight into the mechanisms of action. Peptides 2011; 32:1207-16. [PMID: 21514338 DOI: 10.1016/j.peptides.2011.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/06/2011] [Accepted: 04/07/2011] [Indexed: 02/06/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) shows potent protective effects in numerous models of neurological insults. However, the use of PACAP as a clinically efficient drug is limited by its poor metabolic stability. By combining identification of enzymatic cleavage sites with targeted chemical modifications, a metabolically stable and potent PACAP38 analog was recently developed. The neuroprotective activity of this novel compound was for the first time evaluated and compared to the native peptide using a rat model of middle cerebral artery occlusion (MCAO). Our results show that as low as picomolar doses of PACAP38 and its analog strongly reduce infarct volume and improve neurological impairment induced by stroke. In particular, these peptides inhibit the expression of Bcl-2-associated death promoter, caspase 3, macrophage inflammatory protein-1α, inducible nitric oxide synthase 2, tumor necrosis factor-α mRNAs, and increase extracellular signal-regulated kinase 2, B-cell CLL/lymphoma 2 and interleukin 6 mRNA levels. These results indicate that the neuroprotective effect of PACAP after MCAO is not only due to its ability to inhibit apoptosis but also to modulate the inflammatory response. The present study highlights the potential therapeutic efficacy of very low concentrations of PACAP or its metabolically stable derivative for the treatment of stroke.
Collapse
|