1
|
Nguyen TT, Hashiguchi K, Waschek JA, Miyata A, Kambe Y. The pivotal role of PACAP/PAC1R signaling from the anterior insular cortex to the locus coeruleus on anxiety-related behaviors of mice. Neurochem Int 2024; 180:105879. [PMID: 39396708 DOI: 10.1016/j.neuint.2024.105879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) and its specific receptor (PAC1R) are widely present in the central nervous system (CNS), and PACAP/PAC1R signaling has been implicated in anxiety-related behaviors. The locus coeruleus (LC), with its extensive noradrenergic (NA) projections throughout the CNS, is also implicated in anxiety. Although the LC exhibits a high expression of PAC1R, the precise role of PACAP/PAC1R signaling in the LC's involvement in anxiety remains unclear. Histochemical analysis confirmed high levels of PAC1R mRNA in the LC and showed that PAC1R gene transcripts were highly localized to NA neurons. Targeted deletion of PAC1R from these cells led to a hyperactive/low anxiety phenotype in the open field and elevated-plus maze tests. Retrograde neurocircuit tracing indicated PACAP neurons from the anterior insular cortex (aIC) and a few other regions projected axons to the LC. The selective activation of PACAP neurons in the aIC led to significantly increased anxiety behavior without a change in overall locomotor activity. Moreover, shRNA PACAP knockdown in the aIC in wild-type mice led to a selective decrease in anxiety. The present results identify an aIC to LC neurocircuit controlling anxiety that critically requires PACAP/PAC1R signaling.
Collapse
Affiliation(s)
- Thi Thu Nguyen
- Department of Pharmacology, Graduate School of Medical and Dental Science, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544, Japan
| | - Kohei Hashiguchi
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Science, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544, Japan
| | - James A Waschek
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, United States
| | - Atsuro Miyata
- Department of Drug Discovery for DDS, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544, Japan
| | - Yuki Kambe
- Department of Pharmacology, Graduate School of Medical and Dental Science, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544, Japan.
| |
Collapse
|
2
|
Sparks J, Meggyes M, Makszin L, Jehn V, Lugosi H, Reglodi D, Szereday L. Effects of PACAP Deficiency on Immune Dysfunction and Peyer's Patch Integrity in Adult Mice. Int J Mol Sci 2024; 25:10676. [PMID: 39409005 PMCID: PMC11476422 DOI: 10.3390/ijms251910676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
PACAP (pituitary adenylate cyclase activating polypeptide) is a widespread neuropeptide with cytoprotective and anti-inflammatory effects. It plays a role in innate and adaptive immunity, but data are limited about gut-associated lymphoid tissue. We aimed to reveal differences in Peyer's patches between wild-type (WT) and PACAP-deficient (KO) mice. Peyer's patch morphology from young (3-months-old) and aging (12-15-months-old) mice was examined, along with flow cytometry to assess immune cell populations, expression of checkpoint molecules (PD-1, PD-L1, TIM-3, Gal-9) and functional markers (CD69, granzyme B, perforin) in CD3+, CD4+, and CD8+ T cells. We found slight differences between aging, but not in young, WT, and KO mice. In WT mice, aging reduced CD8+ T cell numbers frequency and altered checkpoint molecule expression (higher TIM-3, granzyme B; lower Gal-9, CD69). CD4+ T cell frequency was higher with similar checkpoint alterations, indicating a regulatory shift. In PACAP KO mice, aging did not change cell population frequencies but led to higher TIM-3, granzyme B and lower PD-1, PD-L1, Gal-9, and CD69 expression in CD4+ and CD8+ T cells, with reduced overall T cell activity. Thus, PACAP deficiency impacts immune dysfunction by altering checkpoint molecules and T cell functionality, particularly in CD8+ T cells, suggesting complex immune responses by PACAP, highlighting its role in intestinal homeostasis and potential implications for inflammatory bowel diseases.
Collapse
MESH Headings
- Animals
- Pituitary Adenylate Cyclase-Activating Polypeptide/genetics
- Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Pituitary Adenylate Cyclase-Activating Polypeptide/deficiency
- Mice
- Peyer's Patches/immunology
- Peyer's Patches/metabolism
- Mice, Knockout
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Programmed Cell Death 1 Receptor/metabolism
- Programmed Cell Death 1 Receptor/genetics
- Granzymes/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/genetics
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Hepatitis A Virus Cellular Receptor 2/genetics
- Aging/immunology
- B7-H1 Antigen/metabolism
- B7-H1 Antigen/genetics
- Mice, Inbred C57BL
- Perforin/metabolism
- Perforin/genetics
- Male
Collapse
Affiliation(s)
- Jason Sparks
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, 7624 Pecs, Hungary; (J.S.); (V.J.); (H.L.)
| | - Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary; (M.M.); (L.S.)
- Janos Szentagothai Research Center, 7624 Pecs, Hungary;
| | - Lilla Makszin
- Janos Szentagothai Research Center, 7624 Pecs, Hungary;
- Institute of Bioanalysis, Medical School, University of Pecs, 7624 Pecs, Hungary
| | - Viktoria Jehn
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, 7624 Pecs, Hungary; (J.S.); (V.J.); (H.L.)
| | - Hedvig Lugosi
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, 7624 Pecs, Hungary; (J.S.); (V.J.); (H.L.)
| | - Dora Reglodi
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Centre for Neuroscience, Medical School, University of Pecs, 7624 Pecs, Hungary; (J.S.); (V.J.); (H.L.)
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 7624 Pecs, Hungary; (M.M.); (L.S.)
- Janos Szentagothai Research Center, 7624 Pecs, Hungary;
| |
Collapse
|
3
|
Zhao X, Wang N, Li Z, Li L. Knockdown of PAC1 improved inflammatory pain in mice by regulating the RAGE/TLR4/NF-κB signaling pathway. Brain Res Bull 2023; 197:49-56. [PMID: 36967091 DOI: 10.1016/j.brainresbull.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
The development of inflammatory pain seriously affects the activities and general functions of patients in daily life. At present, the research on the mechanism of pain relief is still insufficient. This study aimed to investigate the influence of PAC1 on the progression of inflammatory pain and its molecular mechanism. Lipopolysaccharide (LPS) was used to induce BV2 microglia activation to establish an inflammation model, and CFA injection was used to establish a mouse inflammatory pain model. The results showed that PAC1 was highly expressed in BV2 microglia induced by LPS. Knockdown of PAC1 significantly reduced LPS-induced inflammation and apoptosis in BV2 cells, and RAGE/TLR4/NF-κB signaling pathway was involved in the regulation of BV2 cells by PAC1. What's more, knockdown of PAC1 alleviated CFA-induced mechanical allodynia and thermal hyperalgesia in mice, as well as reduced the development of inflammatory pain to a certain extent. Therefore, Knockdown of PAC1 relieved inflammatory pain in mice by inhibiting the RAGE/TLR4/NF-κB signaling pathway. Targeting PAC1 may be a new direction for the treatment of inflammatory pain.
Collapse
|
4
|
Hajdú T, Kovács P, Zsigrai E, Takács R, Vágó J, Cho S, Sasi-Szabó L, Becsky D, Keller-Pinter A, Emri G, Rácz K, Reglodi D, Zákány R, Juhász T. Pituitary Adenylate Cyclase Activating Polypeptide Has Inhibitory Effects on Melanoma Cell Proliferation and Migration In Vitro. Front Oncol 2021; 11:681603. [PMID: 34616669 PMCID: PMC8488289 DOI: 10.3389/fonc.2021.681603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is an endogenous neuropeptide which is distributed throughout the body. PACAP influences development of various tissues and exerts protective function during cellular stress and in some tumour formation. No evidence is available on its role in neural crest derived melanocytes and its malignant transformation into melanoma. Expression of PACAP receptors was examined in human skin samples, melanoma lesions and in a primary melanocyte cell culture. A2058 and WM35 melanoma cell lines, representing two different stages of melanoma progression, were used to investigate the effects of PACAP. PAC1 receptor was identified in melanocytes in vivo and in vitro and in melanoma cell lines as well as in melanoma lesions. PACAP administration did not alter viability but decreased proliferation of melanoma cells. With live imaging random motility, average speed, vectorial distance and maximum distance of migration of cells were reduced upon PACAP treatment. PACAP administration did not alter viability but decreased proliferation capacity of melanoma cells. On the other hand, PACAP administration decreased the migration of melanoma cell lines towards fibronectin chemoattractant in the Boyden chamber. Furthermore, the presence of the neuropeptide inhibited the invasion capability of melanoma cell lines in Matrigel chambers. In summary, we provide evidence that PACAP receptors are expressed in melanocytes and in melanoma cells. Our results also prove that various aspects of the cellular motility were inhibited by this neuropeptide. On the basis of these results, we propose PACAP signalling as a possible target in melanoma progression.
Collapse
Affiliation(s)
- Tibor Hajdú
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Emese Zsigrai
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Vágó
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sinyoung Cho
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
| | - László Sasi-Szabó
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dániel Becsky
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Aniko Keller-Pinter
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kálmán Rácz
- Department of Forensic Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dora Reglodi
- Department of Anatomy, PTE-MTA PACAP Research Team, Szentagothai Research Center, Medical School, University of Pécs, Pécs, Hungary
| | - Róza Zákány
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Juhász
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
5
|
Biran J, Gliksberg M, Shirat I, Swaminathan A, Levitas-Djerbi T, Appelbaum L, Levkowitz G. Splice-specific deficiency of the PTSD-associated gene PAC1 leads to a paradoxical age-dependent stress behavior. Sci Rep 2020; 10:9559. [PMID: 32533011 PMCID: PMC7292827 DOI: 10.1038/s41598-020-66447-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023] Open
Abstract
The pituitary adenylate cyclase-activating polypeptide receptor (PAC1, also known as ADCYAP1R1) is associated with post-traumatic stress disorder and modulation of stress response in general. Alternative splicing of PAC1 results in multiple gene products, which differ in their mode of signalling and tissue distribution. However, the roles of distinct splice variants in the regulation of stress behavior is poorly understood. Alternative splicing of a short exon, which is known as the "hop cassette", occurs during brain development and in response to stressful challenges. To examine the function of this variant, we generated a splice-specific zebrafish mutant lacking the hop cassette, which we designated 'hopless'. We show that hopless mutant larvae display increased anxiety-like behavior, including reduced dark exploration and impaired habituation to dark exposure. Conversely, adult hopless mutants displayed superior ability to rebound from an acute stressor, as they exhibited reduced anxiety-like responses to an ensuing novelty stress. We propose that the developmental loss of a specific PAC1 splice variant mimics prolonged mild stress exposure, which in the long term, predisposes the organism's stress response towards a resilient phenotype. Our study presents a unique genetic model demonstrating how early-life state of anxiety paradoxically correlates with reduced stress susceptibility in adulthood.
Collapse
Affiliation(s)
- Jakob Biran
- Department of Poultry and Aquaculture, Agricultural Research Organization, Rishon, Letziyon, 7528809, Israel.
| | - Michael Gliksberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel
| | - Ido Shirat
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel
| | - Amrutha Swaminathan
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel
| | - Talia Levitas-Djerbi
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Gil Levkowitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel.
| |
Collapse
|
6
|
Biran J, Gliksberg M, Shirat I, Swaminathan A, Levitas-Djerbi T, Appelbaum L, Levkowitz G. Splice-specific deficiency of the PTSD-associated gene PAC1 leads to a paradoxical age-dependent stress behavior. Sci Rep 2020. [PMID: 32533011 DOI: 10.1038/s41598-020-66447-2.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The pituitary adenylate cyclase-activating polypeptide receptor (PAC1, also known as ADCYAP1R1) is associated with post-traumatic stress disorder and modulation of stress response in general. Alternative splicing of PAC1 results in multiple gene products, which differ in their mode of signalling and tissue distribution. However, the roles of distinct splice variants in the regulation of stress behavior is poorly understood. Alternative splicing of a short exon, which is known as the "hop cassette", occurs during brain development and in response to stressful challenges. To examine the function of this variant, we generated a splice-specific zebrafish mutant lacking the hop cassette, which we designated 'hopless'. We show that hopless mutant larvae display increased anxiety-like behavior, including reduced dark exploration and impaired habituation to dark exposure. Conversely, adult hopless mutants displayed superior ability to rebound from an acute stressor, as they exhibited reduced anxiety-like responses to an ensuing novelty stress. We propose that the developmental loss of a specific PAC1 splice variant mimics prolonged mild stress exposure, which in the long term, predisposes the organism's stress response towards a resilient phenotype. Our study presents a unique genetic model demonstrating how early-life state of anxiety paradoxically correlates with reduced stress susceptibility in adulthood.
Collapse
Affiliation(s)
- Jakob Biran
- Department of Poultry and Aquaculture, Agricultural Research Organization, Rishon, Letziyon, 7528809, Israel.
| | - Michael Gliksberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel
| | - Ido Shirat
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel
| | - Amrutha Swaminathan
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel
| | - Talia Levitas-Djerbi
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Gil Levkowitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, PO Box 26, Rehovot, 7610001, Israel.
| |
Collapse
|
7
|
Splitthoff P, Rasbach E, Neudert P, Bonaterra GA, Schwarz A, Mey L, Schwarzbach H, Eiden LE, Weihe E, Kinscherf R. PAC1 deficiency attenuates progression of atherosclerosis in ApoE deficient mice under cholesterol-enriched diet. Immunobiology 2020; 225:151930. [PMID: 32173151 PMCID: PMC9741700 DOI: 10.1016/j.imbio.2020.151930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022]
Abstract
The neuropeptide, pituitary adenylate cyclase-activating polypeptide (PACAP) is vasoactive and cytoprotective and exerts immunoregulatory functions throughout the nervous, neuroendocrine cardiovascular and immune systems in health and disease. PACAP mainly acts through PAC1 receptor signaling in neuronal communication, but the role of PAC1 in immune regulation of atherosclerosis is not known. Here, we generated PAC1-/-/ApoE-/- mice to test, whether PAC1-/- influences plasma cholesterol-/triglyceride levels and/or atherogenesis in the brachiocephalic trunk (BT) seen in ApoE-/- mice, under standard chow (SC) or cholesterol-enriched diet (CED). Furthermore, the effect of PAC1-/-, on inflammatory, autophagy-, apoptosis- and necroptosis-relevant proteins in atherosclerotic plaques was determined. In plaques of PAC1-/-/ApoE-/- mice fed a SC, the immunoreactivity for apoptotic, autophagic, necroptotic and proinflammatory proteins was increased, however, proliferation was unaffected. Interestingly, without affecting hyperlipidemia, PAC1-/- in ApoE-/- mice remarkably reduced CED-induced lumen stenosis seen in ApoE-/- mice. Thus, PAC1-/- allows unchecked inflammation, necroptosis and decreased proliferation during SC, apparently priming the BT to develop reduced atheroma under subsequent CED. Remarkably, no differences in inflammation/necroptosis signatures in the atheroma under CED between PAC1-/-/ApoE-/- and ApoE-/- mice were observed. These data indicate that selective PAC1 antagonists should offer potential as a novel class of atheroprotective therapeutics, especially during hypercholesterolemia.
Collapse
Affiliation(s)
- Paul Splitthoff
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Erik Rasbach
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Philip Neudert
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Gabriel A. Bonaterra
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany,Corresponding author at: Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35032, Marburg, Germany., (G.A. Bonaterra)
| | - Anja Schwarz
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Lilli Mey
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Hans Schwarzbach
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Lee E. Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health Intramural Research Program, Bethesda, 20814, Maryland, USA
| | - Eberhard Weihe
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| | - Ralf Kinscherf
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Medical Faculty, Philipps-University of Marburg, Robert-Koch-Str. 8, 35037, Marburg, Germany
| |
Collapse
|
8
|
Kovacs AK, Atlasz T, Werling D, Szabo E, Reglodi D, Toth GK. Stability Test of PACAP in Eye Drops. J Mol Neurosci 2020; 71:1567-1574. [PMID: 32323126 PMCID: PMC8349324 DOI: 10.1007/s12031-020-01532-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
PACAP is a neuropeptide with widespread distribution and diverse biological functions. It has strong cytoprotective effects mediated mainly through specific PAC1 receptors. Experimental data show protective effects of PACAP in the retina and cornea in several pathological conditions. Although intravitreal injections are a common practice in some ocular diseases, delivery of therapeutic agents in the form of eye drops would be more convenient and would lead to fewer side effects. We have previously shown that PACAP, in the form of eye drops, is able to pass through the ocular barriers and can exert retinoprotective effects. As eye drops represent a promising form of administration of PACAP in ocular diseases, it is important to investigate the stability of PACAP in solutions used in eye drops. In this study, the stability of PACAP1-27 and PACAP1-38 in eye drops was measured in four common media and a commercially available artificial tear solution at both room temperature and +4 °C. Mass spectrometry results show that the highest stability was gained with PACAP1-38 in water and 0.9% saline solution at +4 °C, representing 80–90% drug persistence after 2 weeks. PACAP1-38 in the artificial tear showed very fast degradation at room temperature, but was stable at +4 °C. In summary, PACAP1-38 has higher stability than PACAP1-27, with highest stability at +4 °C in water solution, but both peptides in each medium can be stored for relatively longer periods without significant degradation. These data can provide reference for future therapeutic use of PACAP in eye drops.
Collapse
Affiliation(s)
- Anita K Kovacs
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dom Sq 8, Szeged, H-6720, Hungary
| | - Tamas Atlasz
- Department of Anatomy, MTA-PTE PACAP Research Group, Medical School, University of Pecs, Szigeti str 12, Pecs, H-7624, Hungary. .,Department of Sportbiology, University of Pecs, Ifjusag str 6, Pecs, H-7624, Hungary.
| | - Dora Werling
- Department of Anatomy, MTA-PTE PACAP Research Group, Medical School, University of Pecs, Szigeti str 12, Pecs, H-7624, Hungary.,Department of Ophthalmology, Medical School, University of Pecs, Rakoczi str 2, Pecs, H-7623, Hungary
| | - Edina Szabo
- Department of Anatomy, MTA-PTE PACAP Research Group, Medical School, University of Pecs, Szigeti str 12, Pecs, H-7624, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Group, Medical School, University of Pecs, Szigeti str 12, Pecs, H-7624, Hungary
| | - Gabor K Toth
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dom Sq 8, Szeged, H-6720, Hungary
| |
Collapse
|
9
|
The Neuroprotective and Biomarker Potential of PACAP in Human Traumatic Brain Injury. Int J Mol Sci 2020; 21:ijms21030827. [PMID: 32012887 PMCID: PMC7037866 DOI: 10.3390/ijms21030827] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury remains a growing public health concern and represents the greatest contributor to death and disability globally among all trauma-related injuries. There are limited clinical data regarding biomarkers in the diagnosis and outcome prediction of TBI. The lack of real effective treatment for recovery calls for research of TBI to be shifted into the area of prevention, treatment of secondary brain injury and neurorehabilitation. The neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) has been reported to act as a hormone, a neuromodulator, a neurotransmitter and a trophic factor, and has been implicated in a variety of developmental and regenerative processes. The importance of PACAP in neuronal regeneration lies in the upregulation of endogenous PACAP and its receptors and the protective effect of exogenous PACAP after different central nervous system injury. The aim of this minireview is to summarize both the therapeutic and biomarker potential of the neuropeptide PACAP, as a novel possible target molecule presently being investigated in several human conditions including TBI, and with encouraging results in animal models of TBI.
Collapse
|
10
|
Toth D, Szabo E, Tamas A, Juhasz T, Horvath G, Fabian E, Opper B, Szabo D, Maugeri G, D'Amico AG, D'Agata V, Vicena V, Reglodi D. Protective Effects of PACAP in Peripheral Organs. Front Endocrinol (Lausanne) 2020; 11:377. [PMID: 32765418 PMCID: PMC7381171 DOI: 10.3389/fendo.2020.00377] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide widely distributed in the nervous system, where it exerts strong neuroprotective effects. PACAP is also expressed in peripheral organs but its peripheral protective effects have not been summarized so far. Therefore, the aim of the present paper is to review the existing literature regarding the cytoprotective effects of PACAP in non-neuronal cell types, peripheral tissues, and organs. Among others, PACAP has widespread expression in the digestive system, where it shows protective effects in various intestinal pathologies, such as duodenal ulcer, small bowel ischemia, and intestinal inflammation. PACAP is present in both the exocrine and endocrine pancreas as well as liver where it reduces inflammation and steatosis by interfering with hepatic pathology related to obesity. It is found in several exocrine glands and also in urinary organs, where, with its protective effects being mainly published regarding renal pathologies, PACAP is protective in numerous conditions. PACAP displays anti-inflammatory effects in upper and lower airways of the respiratory system. In the skin, it is involved in the development of inflammatory pathology such as psoriasis and also has anti-allergic effects in a model of contact dermatitis. In the non-neuronal part of the visual system, PACAP showed protective effects in pathological conditions of the cornea and retinal pigment epithelial cells. The positive role of PACAP has been demonstrated on the formation and healing processes of cartilage and bone where it also prevents osteoarthritis and rheumatoid arthritis development. The protective role of PACAP was also demonstrated in the cardiovascular system in different pathological processes including hyperglycaemia-induced endothelial dysfunction and age-related vascular changes. In the heart, PACAP protects against ischemia, oxidative stress, and cardiomyopathies. PACAP is also involved in the protection against the development of pre-senile systemic amyloidosis, which is presented in various peripheral organs in PACAP-deficient mice. The studies summarized here provide strong evidence for the cytoprotective effects of the peptide. The survival-promoting effects of PACAP depend on a number of factors which are also shortly discussed in the present review.
Collapse
Affiliation(s)
- Denes Toth
- Department of Forensic Medicine, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Edina Szabo
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Tamas Juhasz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Gabriella Horvath
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Eszter Fabian
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Balazs Opper
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Dora Szabo
- Heart Institute, Medical School, University of Pécs, Pécs, Hungary
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Agata G. D'Amico
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania, Italy
| | - Viktoria Vicena
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School, Pécs, Hungary
- *Correspondence: Dora Reglodi
| |
Collapse
|