1
|
Rosa YFP, Noé GG, Merlo MGO, Calixto RR, Vidigal APP, Silva BFD, Silva KBD, Coelho VF, Minassa VS, Sampaio KN, Beijamini V. Chlorpyrifos intermittent exposure enhances cardiovascular but not behavioural responses to contextual fear conditioning in adult rats: Possible involvement of brain oxidative-nitrosative stress. Behav Brain Res 2025; 479:115358. [PMID: 39603423 DOI: 10.1016/j.bbr.2024.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
Exposure to organophosphorus compounds (OPs) may cause psychiatric, neurologic, biochemical, and cardiovascular abnormalities. Neurotoxicity of OP compounds is primarily due to irreversibly inhibition of the acetylcholinesterase (AChE) enzyme both centrally and peripherally. Chlorpyrifos (CPF) is a widely used OP classified as moderately toxic. Previously, it has been shown that CPF administration, given every other day to adult rats, impairs spatial memory and prepulse inhibition associated with brain AChE inhibition. Our group also found that intermittent treatment with CPF, simulating occupational exposure, impairs the cardiorespiratory reflexes and causes cardiac hypertrophy. Thereby, we aimed to examine whether subchronic and intermittent administration of CPF would affect the behavioural (freezing) and cardiovascular (mean arterial pressure, MAP; heart rate, HR) responses elicited during contextual fear conditioning (CFC) and extinction. Wistar adult male rats were injected with sublethal and intermittent CPF doses (4 and 7 mg/kg) three times a week for one month. Two days after the last injection, a range of tests were performed to assess depression (sucrose preference), anxiety (elevated plus-maze, EPM), locomotion (open field, OF), and conditioned fear expression and extinction. Separate cohorts of animals were euthanized to measure plasma butyrylcholinesterase (BChE), erythrocyte AChE, brain AChE activity, and markers of oxidative-nitrosative stress. Intermittent CPF treatment did not affect sucrose preference. CPF (4 and 7 mg/kg) reduced open-arms exploration in the EPM, suggesting an anxiogenic effect. The higher dose of CPF decreased the total distance travelled in the OFT, suggesting motor impairment. After a seven-day CPF-free washout period, CPF (7 mg/kg) increased the tachycardic response without affecting freezing behaviour in the CFC extinction session. CPF 7 mg/kg decreased AChE activity in the hippocampus, pre-frontal cortex and brainstem 72 after the last administration whilst transiently increasing oxidative-nitrosative stress specifically in the brainstem. Overall, our results outlined the behavioural, autonomic and biochemical abnormalities caused by an intermittent dosing regimen of CPF that elicits brain AChE inhibition and brain oxidative-nitrosative stress. This paradigm might be valuable in further exploring long-term consequences and mechanisms of OP neurotoxicity as well as comprehensive therapeutic approaches.
Collapse
Affiliation(s)
- Yuri Fernandes Pereira Rosa
- Pharmaceutical Sciences Graduate Program, Health Sciences Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Gabriel Gavazza Noé
- Pharmaceutical Sciences Graduate Program, Health Sciences Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Maria Gabriela Oliveira Merlo
- Department of Pharmaceutical Sciences, Health Science Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Raphael Rizzo Calixto
- Department of Pharmaceutical Sciences, Health Science Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Anna Paula Perin Vidigal
- Pharmaceutical Sciences Graduate Program, Health Sciences Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Bruna Ferreira da Silva
- Department of Pharmaceutical Sciences, Health Science Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Kissylla Brisson da Silva
- Department of Pharmaceutical Sciences, Health Science Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Vitória Fosse Coelho
- Department of Pharmaceutical Sciences, Health Science Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Vítor Sampaio Minassa
- Pharmaceutical Sciences Graduate Program, Health Sciences Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Karla Nívea Sampaio
- Pharmaceutical Sciences Graduate Program, Health Sciences Centre, Federal University of Espírito Santo, Vitória, ES, Brazil; Department of Pharmaceutical Sciences, Health Science Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Vanessa Beijamini
- Pharmaceutical Sciences Graduate Program, Health Sciences Centre, Federal University of Espírito Santo, Vitória, ES, Brazil; Department of Pharmaceutical Sciences, Health Science Centre, Federal University of Espírito Santo, Vitória, ES, Brazil.
| |
Collapse
|
2
|
Bist R, Bhatt DK. Cholinergic Transporters Serve as Potential Targets in Alzheimer's Disease. Curr Mol Med 2024; 24:397-398. [PMID: 37151076 DOI: 10.2174/1566524023666230505155302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 05/09/2023]
Abstract
Alzheimer's disease (AD) is a specific brain disease that gradually worsens due to dementia over a long period. AD accounts for almost 60% to 80% of cases of dementia. Any damage to neurons affects their ability to communicate, leading to alteration in thinking, behaviour and feelings. Besides mental, motor abilities of an individual may also be affected due to AD. Therefore, it is cardinal to understand the key mechanisms by which either AD progression can be ceased or, after the onset of the disease it could be reverted. Both of these steps need the identification of a particular receptor or a molecular marker through which a drug can enter the neurons. Cholinergic transporters are such potential targets of AD, which regulate the movement of acetylcholine and thus regulate the nerve impulse conduction in the brain. The current article entails information regarding a variety of cholinergic transporters, which will provide a research gap to the global scientific community.
Collapse
Affiliation(s)
- Renu Bist
- Department of Zoology, Centre for Advanced Studies, University of Rajasthan, Jaipur, 302004, India
| | - D K Bhatt
- Department of Zoology, Mohanlal Sukhadia University, Udaipur, 313001, India
| |
Collapse
|
3
|
Amini Chermahini F, Raeisi E, Aazami MH, Mirzaei A, Heidarian E, Lemoigne Y. Does Bromelain-Cisplatin Combination Afford In-Vitro Synergistic Anticancer Effects on Human Prostatic Carcinoma Cell Line, PC3? Galen Med J 2021; 9:e1749. [PMID: 34466585 PMCID: PMC8343875 DOI: 10.31661/gmj.v9i0.1749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/07/2019] [Accepted: 01/23/2020] [Indexed: 12/28/2022] Open
Abstract
Background:
Bromelain enhances anticancer impacts to chemotherapeutic agents. The question as to whether bromelain does promote in-vitro cytotoxic and proapoptotic effects of cisplatin on human prostatic carcinoma PC3 cell line was investigated.
Materials and Methods:
PC3 (human prostatic carcinoma) cells were treated either single or in combination with bromelain and/or cisplatin. MTT, clonogenic assay, flow cytometry and real-time quantitative polymerase chain reaction were used to investigate cell viability, colony formation, proapoptotic potential and p53 gene expression, respectively.
Results:
Cisplatin (IC10) combined with bromelain (IC40) significantly affected PC3 cell viability, inhibited colony formation, as well increased p53 proapoptotic gene expression compared to cisplatin single treatment. Nevertheless, bromelain-cisplatin chemoherbal combination did not display any additive proapoptotic effect compared to single treatments.
Conclusion:
Bromelain-cisplatin chemoherbal combination demonstrated synergistic in-vitro anticancer effect on human prostatic carcinoma cell line, PC3, that drastically reduced required cisplatin dose.
Collapse
Affiliation(s)
- Fatemeh Amini Chermahini
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Raeisi
- Department of Medical Physics and Radiology, School of Allied Medical Sciences, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Correspondence to: Elham Raeisi, Shahrekord University of Medical Sciences, School of Allied Medical Sciences, Rahmatiyeh, Shahrekord, Iran Telephone Number: +983833346692 Email Address:
| | - Mathias Hossain Aazami
- Department of Cardiology and Cardiac Surgery, Kashani and Hajar University Hospitals, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Abbas Mirzaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Esfandiar Heidarian
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Yves Lemoigne
- Department of Medical Physics, Institute for Medical Physics, Ambilly, France
| |
Collapse
|
4
|
Majumder D, Debnath R, Nath P, Libin Kumar KV, Debnath M, Tribedi P, Maiti D. Bromelain and Olea europaea (L.) leaf extract mediated alleviation of benzo(a)pyrene induced lung cancer through Nrf2 and NFκB pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47306-47326. [PMID: 33893581 DOI: 10.1007/s11356-021-13803-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Lung cancer is the most aggressive as well as deadly form of cancer and most of the lung cancer cases are involved in direct smoking or passive smoking. Oxidative stress and pulmonary inflammation regulated by some transcription factors like Nrf2, NF-κB etc. play important roles in lung cancer. Various combinations of therapies are currently attributed to lung cancer treatment. A plethora of evidence supports that the consumption of plant-derived foods can prevent chronic diseases like cancer. Leaves of olive (Olea europaea L.) are rich in phenolic compounds which are having antioxidant and anti-inflammatory property. Also, bromelain from pineapple juice and from pineapple stem is a potent anti-inflammatory agent. We took a pragmatic approach to prevent carcinogenesis by supplementing the combination of these two extracts. In this study, we have tried to evaluate the amelioration of various hallmarks associated with benzo(a)pyrene-induced lung carcinogenesis upon the combinatorial treatment of ethanolic olive leaf extract (EOLE) and bromelain. We have studied the role of EOLE in amelioration of BaP-induced oxidative stress in the lung. As several reports of anticancer activity of bromelain are available, we have combined EOLE with bromelain to study their protective role against BaP-mediated lung damage. Changes in DNA integrity, LPO level in lung after EOLE-treated animal were examined. Then, we have evaluated the synergistic role of EOLE and bromelain. We have found that EOLE in combination with bromelain was able to increase the translocation of Nrf2 from cytoplasm to nucleus and decrease the translocation of NF-κB from cytoplasm to nucleus. Combination of treatment also reduced the expression of TNFα, IL-6, and some matrix metalloproteinases in lung tissue. Our findings suggest that EOLE and bromelain can synergistically reduce the BaP-induced lung carcinogenesis associated with inflammation and oxidative stress via regulating the expression of various inflammatory markers and also modulating the activity of pulmonary antioxidant armories.
Collapse
Affiliation(s)
- Debabrata Majumder
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar Tripura, 799022, India
| | - Rahul Debnath
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar Tripura, 799022, India
| | - Priyatosh Nath
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar Tripura, 799022, India
| | | | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| | - Prosun Tribedi
- Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Debasish Maiti
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar Tripura, 799022, India.
| |
Collapse
|
5
|
Banerjee S, Anand U, Ghosh S, Ray D, Ray P, Nandy S, Deshmukh GD, Tripathi V, Dey A. Bacosides from Bacopa monnieri extract: An overview of the effects on neurological disorders. Phytother Res 2021; 35:5668-5679. [PMID: 34254371 DOI: 10.1002/ptr.7203] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022]
Abstract
From ancient history, complementary and alternative medicines have played a significant role as holistic therapeutic treatments of various human diseases including cancer, diabetes, neurological diseases, and skin problems. One Indian medicinal plant (herb), Bacopa monnieri has been used in many parts of the world as such medicine, particularly for the treatment of various neurological disorders. It is well known as a potent "tonic for the human brain," which serves as a memory enhancer. Multiple studies proved that this herb contains a plethora of potential bioactive, phytochemical compounds with synergistic properties. The main purpose of the present review is to shed light on the use of Bacopa monnieri and its active principles (bacosides) in the management of neurological disorders. Furthermore, the signaling pathways modulated by bacosides have been critically discussed in this review. Moreover, we have critically summarized the present knowledge of this perennial creeping herb based upon the literature mining from different scientific engines.
Collapse
Affiliation(s)
| | - Uttpal Anand
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Suchhanda Ghosh
- Department of Botany, Shri Shikshayatan College, Kolkata, India
| | - Durga Ray
- Department of Microbiology, Pusan National University, Busan, South Korea
| | - Puja Ray
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Ganpat Dewaji Deshmukh
- Department of Zoology, Rashtrapita Mahatma Gandhi Arts & Science College, Nagbhid, India
| | - Vijay Tripathi
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
6
|
Emerging Technologies for Degradation of Dichlorvos: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115789. [PMID: 34071247 PMCID: PMC8199373 DOI: 10.3390/ijerph18115789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022]
Abstract
Dichlorvos (O,O-dimethyl O-(2,2-dichlorovinyl)phosphate, DDVP) is a widely acknowledged broad-spectrum organophosphorus insecticide and acaracide. This pesticide has been used for more than four decades and is still in strong demand in many developing countries. Extensive application of DDVP in agriculture has caused severe hazardous impacts on living systems. The International Agency for Research on Cancer of the World Health Organization considered DDVP among the list of 2B carcinogens, which means a certain extent of cancer risk. Hence, removing DDVP from the environment has attracted worldwide attention. Many studies have tested the removal of DDVP using different kinds of physicochemical methods including gas phase surface discharge plasma, physical adsorption, hydrodynamic cavitation, and nanoparticles. Compared to physicochemical methods, microbial degradation is regarded as an environmentally friendly approach to solve several environmental issues caused by pesticides. Till now, several DDVP-degrading microbes have been isolated and reported, including but not limited to Cunninghamella, Fusarium, Talaromyces, Aspergillus, Penicillium, Ochrobium, Pseudomonas, Bacillus, and Trichoderma. Moreover, the possible degradation pathways of DDVP and the transformation of several metabolites have been fully explored. In addition, there are a few studies on DDVP-degrading enzymes and the corresponding genes in microorganisms. However, further research relevant to molecular biology and genetics are still needed to explore the bioremediation of DDVP. This review summarizes the latest development in DDVP degradation and provides reasonable and scientific advice for pesticide removal in contaminated environments.
Collapse
|
7
|
Farkhondeh T, Mehrpour O, Forouzanfar F, Roshanravan B, Samarghandian S. Oxidative stress and mitochondrial dysfunction in organophosphate pesticide-induced neurotoxicity and its amelioration: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24799-24814. [PMID: 32358751 DOI: 10.1007/s11356-020-09045-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Organophosphorus pesticides (OPs) are widely used for controlling pests worldwide. The inhibitory effects of these pesticides on acetylcholinesterase lead to neurotoxic damages. The oxidative stress is responsible for several neurological diseases, including Parkinson's disease, seizure, depression, and Alzheimer's disease. Strong evidence suggests that dysfunction of mitochondria and oxidative stress are involved in neurological diseases. OPs can disturb the function of mitochondria by inducing oxidative stress. In the present study, we tried to highlight the role of dysfunction of mitochondria and the induction of oxidative stress in the neurotoxicity induced by OPs. Additionally, the amelioration of OP-induced oxidative damage and mitochondrial dysfunctional through the chemical and natural antioxidants have been discussed.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences(BUMS), Birjand, Iran
- Rocky Mountain Poison and Drug Safety, Denver Health, Denver, CO, USA
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
8
|
Ovais M, Zia N, Ahmad I, Khalil AT, Raza A, Ayaz M, Sadiq A, Ullah F, Shinwari ZK. Phyto-Therapeutic and Nanomedicinal Approaches to Cure Alzheimer's Disease: Present Status and Future Opportunities. Front Aging Neurosci 2018; 10:284. [PMID: 30405389 PMCID: PMC6205985 DOI: 10.3389/fnagi.2018.00284] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by cognitive inability manifested due to the accumulation of β-amyloid, formation of hyper phosphorylated neurofibrillary tangles, and a malfunctioned cholinergic system. The degeneration integrity of the neuronal network can appear long after the onset of the disease. Nanotechnology-based interventions have opened an exciting area via theranostics of AD in terms of tailored nanomedicine, which are able to target and deliver drugs across the blood-brain barrier (BBB). The exciting interface existing between medicinal plants and nanotechnology is an emerging marvel in medicine, which has delivered promising results in the treatment of AD. In order to assess the potential applications of the medicinal plants, their derived components, and various nanomedicinal approaches, a review of literature was deemed as necessary. In the present review, numerous phytochemicals and various feats in nanomedicine for the treatment of AD have been discussed mechanistically for the first time. Furthermore, recent trends in nanotechnology such as green synthesis of metal nanoparticles with reference to the treatment of AD have been elaborated. Foreseeing the recent progress, we hope that the interface of medicinal plants and nanotechnology will lead to highly effective theranostic strategies for the treatment of AD in the near future.
Collapse
Affiliation(s)
- Muhammad Ovais
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- National Institute of Lasers and Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Nashmia Zia
- National Institute of Lasers and Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Irshad Ahmad
- Department of Life Sciences, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Ali Talha Khalil
- Department of Eastern Medicine and Surgery, Qarshi University, Lahore, Pakistan
| | - Abida Raza
- National Institute of Lasers and Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
- Department of Life Sciences and Chemistry, Faculty of Health, Jacobs University Bremen, Bremen, Germany
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Zabta Khan Shinwari
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Eastern Medicine and Surgery, Qarshi University, Lahore, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|