1
|
Ortelli P, Ferrazzoli D, Maestri R, Saltuari L, Kofler M, Alibardi A, Koch G, Spampinato D, Castagna A, Sebastianelli L, Versace V. Experimental Protocol to Test Explicit Motor Learning–Cerebellar Theta Burst Stimulation. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:720184. [PMID: 36188833 PMCID: PMC9397715 DOI: 10.3389/fresc.2021.720184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022]
Abstract
Implicit and explicit motor learning processes work interactively in everyday life to promote the creation of highly automatized motor behaviors. The cerebellum is crucial for motor sequence learning and adaptation, as it contributes to the error correction and to sensorimotor integration of on-going actions. A non-invasive cerebellar stimulation has been demonstrated to modulate implicit motor learning and adaptation. The present study aimed to explore the potential role of cerebellar theta burst stimulation (TBS) in modulating explicit motor learning and adaptation, in healthy subjects. Cerebellar TBS will be applied immediately before the learning phase of a computerized task based on a modified Serial Reaction Time Task (SRTT) paradigm. Here, we present a study protocol aimed at evaluating the behavioral effects of continuous (cTBS), intermittent TBS (iTBS), or sham Theta Burst Stimulation (TBS) on four different conditions: learning, adaptation, delayed recall and re-adaptation of SRTT. We are confident to find modulation of SRTT performance induced by cerebellar TBS, in particular, processing acceleration and reduction of error in all the conditions induced by cerebellar iTBS, as already known for implicit processes. On the other hand, we expect that cerebellar cTBS could induce opposite effects. Results from this protocol are supposed to advance the knowledge about the role of non-invasive cerebellar modulation in neurorehabilitation, providing clinicians with useful data for further exploiting this technique in different clinical conditions.
Collapse
Affiliation(s)
- Paola Ortelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
- *Correspondence: Paola Ortelli
| | - Davide Ferrazzoli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Roberto Maestri
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Markus Kofler
- Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - Alessia Alibardi
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Giacomo Koch
- Non-invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Danny Spampinato
- Non-invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Santa Lucia Foundation, Rome, Italy
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, United Kingdom
| | - Anna Castagna
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy
| |
Collapse
|
2
|
Hurtado-Puerto AM, Nestor K, Eldaief M, Camprodon JA. Safety Considerations for Cerebellar Theta Burst Stimulation. Clin Ther 2020; 42:1169-1190.e1. [PMID: 32674957 DOI: 10.1016/j.clinthera.2020.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE The cerebellum is an intricate neural structure that orchestrates various cognitive and behavioral functions. In recent years, there has been an increasing interest in neuromodulation of the cerebellum with transcranial magnetic stimulation (TMS) for therapeutic and basic science applications. Theta burst stimulation (TBS) is an efficient and powerful TMS protocol that is able to induce longer-lasting effects with shorter stimulation times compared with traditional TMS. Parameters for cerebellar TBS are traditionally framed in the bounds of TBS to the cerebral cortex, even when the 2 have distinct histologic, anatomical, and functional characteristics. Tolerability limits have not been systematically explored in the literature for this specific application. Therefore, we aimed to determine the stimulation parameters that have been used for cerebellar. TBS to date and evaluate adverse events and adverse effects related to stimulation parameters. METHODS We used PubMed to perform a critical review of the literature based on a systematic review of original research studies published between September 2008 and November 2019 that reported on cerebellar TBS. We recovered information from these publications and communication with authors about the stimulation parameters used and the occurrence of adverse events. FINDINGS We identified 61 research articles on interventions of TBS to the cerebellum. These articles described 3176 active sessions of cerebellar TBS in 1203 individuals, including healthy participants and patients with various neurologic conditions, including brain injuries. Some studies used substantial doses (eg, pulse intensity and number of pulses) in short periods. No serious adverse events were reported. The specific number of patients who experienced adverse events was established for 48 studies. The risk of an adverse event in this population (n = 885) was 4.1%. Adverse events consisted mostly of discomfort attributable to involuntary muscle contractions. Authors used a variety of methods for calculating stimulation dosages, ranging from the long-established reference of electromyography of a hand muscle to techniques that atone for some of the differences between cerebrum and cerebellum. IMPLICATIONS No serious adverse events have been reported for cerebellar TBS. There is no substantial evidence of a tolerable maximal-efficacy stimulation dose in humans. There is no assurance of equivalence in the translation of cortical excitability and stimulation intensities from the cerebral cortex to cerebellar regions. Further research for the stimulation dose in cerebellar TBS is warranted, along with consistent report of adverse events. © 2020 Elsevier HS Journals, Inc.
Collapse
Affiliation(s)
- Aura M Hurtado-Puerto
- Laboratory of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Centro de Estudios Cerebrales, Facultad de Ciencias, Universidad del Valle, Cali, Colombia.
| | - Kimberly Nestor
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mark Eldaief
- Laboratory of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Joan A Camprodon
- Laboratory of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
3
|
Improving visuo-motor learning with cerebellar theta burst stimulation: Behavioral and neurophysiological evidence. Neuroimage 2020; 208:116424. [DOI: 10.1016/j.neuroimage.2019.116424] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/23/2019] [Accepted: 11/29/2019] [Indexed: 11/19/2022] Open
|
4
|
A differential role for the posterior cerebellum in the adaptive control of convergence eye movements. Brain Stimul 2019; 13:215-228. [PMID: 31427273 DOI: 10.1016/j.brs.2019.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/15/2019] [Accepted: 07/26/2019] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION The vergence oculomotor system possesses two robust adaptive mechanisms; a fast "dynamic" and a slow "tonic" system that are both vital for single, clear and comfortable binocular vision. The neural substrates underlying these vergence adaptive mechanisms in humans is unclear. METHODS We investigated the role of the posterior cerebellum in convergence adaptation using inhibitory continuous theta-burst repetitive transcranial magnetic stimulation (cTBS) within a double-blind, sham controlled design while eye movements were recorded at 250hz via infrared oculography. RESULTS In a preliminary experiment we validated our stimulation protocols by reproducing results from previous work on saccadic adaptation during the classic double-step adaptive shortening paradigm. Following this, across a series of three separate experiments we observed a clear dissociation in the effect of cTBS on convergence adaptation. Dynamic adaptation was substantially reduced while tonic adaptation was unaffected. Baseline dynamic fusional vergence response were also unaffected by stimulation. CONCLUSIONS These results indicate a differential role for the posterior cerebellum in the adaptive control of convergence eye movements and provide initial evidence that repetitive transcranial magnetic stimulation is a viable tool to investigate the neurophysiology of vergence control. The results are discussed in the context of the current models of implicit motor adaptation of vergence and their application to clinical populations and technology design in virtual and augmented head mounted display architectures. SIGNIFICANCE STATEMENT The cerebellum plays a critical role in the adaptive control of motor systems. Vergence eye movements shift our gaze in depth allowing us to see in 3D and exhibit two distinct adaptive mechanisms that are engaged under a range of conditions including reading, wearing head-mounted displays and using a new spectacle prescription. It is unclear what role the cerebellum plays in these adaptive mechanisms. To answer this, we temporarily disrupted the function of the posterior cerebellum using non-invasive brain stimulation and report impairment of only one adaptive mechanism, providing evidence for neural compartmentalization. The results have implications for vergence control models and applications to comfort and experience studies in head-mounted displays and the rehabilitation of clinical populations exhibiting vergence dysfunctions.
Collapse
|
5
|
Colnaghi S, Colagiorgio P, Versino M, Koch G, D'Angelo E, Ramat S. A role for NMDAR-dependent cerebellar plasticity in adaptive control of saccades in humans. Brain Stimul 2017; 10:817-827. [PMID: 28501325 DOI: 10.1016/j.brs.2017.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Saccade pulse amplitude adaptation is mediated by the dorsal cerebellar vermis and fastigial nucleus. Long-term depression at the parallel fibre-Purkinjie cell synapses has been suggested to provide a cellular mechanism for the corresponding learning process. The mechanisms and sites of this plasticity, however, are still debated. OBJECTIVE To test the role of cerebellar plasticity phenomena on adaptive saccade control. METHODS We evaluated the effect of continuous theta burst stimulation (cTBS) over the posterior vermis on saccade amplitude adaptation and spontaneous recovery of the initial response. To further identify the substrate of synaptic plasticity responsible for the observed adaptation impairment, subjects were pre-treated with memantine, an N-methyl-d-aspartate receptor (NMDAR) antagonist. RESULTS Amplitude adaptation was altered by cTBS, suggesting that cTBS interferes with cerebellar plasticity involved in saccade adaptation. Amplitude adaptation and spontaneous recovery were not affected by cTBS when recordings were preceded by memantine administration. CONCLUSION The effects of cTBS are NMDAR-dependent and are likely to involve long-term potentiation or long-term depression at specific synaptic connections of the granular and molecular layer, which could effectively take part in cerebellar motor learning.
Collapse
Affiliation(s)
- S Colnaghi
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy; Laboratory of Neuro-otology and Neuro-ophtalmology, C. Mondino National Neurological Institute, via Mondino 2, 27100 Pavia, Italy.
| | - P Colagiorgio
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| | - M Versino
- Laboratory of Neuro-otology and Neuro-ophtalmology, C. Mondino National Neurological Institute, via Mondino 2, 27100 Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, via Forlanini 6, 27100 Pavia, Italy
| | - G Koch
- Laboratorio di Neurologia Clinica e Comportamentale, Fondazione S. Lucia IRCCS, via Ardeatina 306, 00179 Rome, Italy; Dipartimento di Neurologia, Policlinico Tor Vergata, viale Oxford 81, 00133 Rome, Italy
| | - E D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, via Forlanini 6, 27100 Pavia, Italy; Brain Connectivity Center, C. Mondino National Neurological Institute, via Mondino 2, 27100 Pavia, Italy
| | - S Ramat
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, via Ferrata 5, 27100 Pavia, Italy
| |
Collapse
|