1
|
Stokes K, Clark K, Odetade D, Hardy M, Goldberg Oppenheimer P. Advances in lithographic techniques for precision nanostructure fabrication in biomedical applications. DISCOVER NANO 2023; 18:153. [PMID: 38082047 PMCID: PMC10713959 DOI: 10.1186/s11671-023-03938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/04/2023] [Indexed: 01/31/2024]
Abstract
Nano-fabrication techniques have demonstrated their vital importance in technological innovation. However, low-throughput, high-cost and intrinsic resolution limits pose significant restrictions, it is, therefore, paramount to continue improving existing methods as well as developing new techniques to overcome these challenges. This is particularly applicable within the area of biomedical research, which focuses on sensing, increasingly at the point-of-care, as a way to improve patient outcomes. Within this context, this review focuses on the latest advances in the main emerging patterning methods including the two-photon, stereo, electrohydrodynamic, near-field electrospinning-assisted, magneto, magnetorheological drawing, nanoimprint, capillary force, nanosphere, edge, nano transfer printing and block copolymer lithographic technologies for micro- and nanofabrication. Emerging methods enabling structural and chemical nano fabrication are categorised along with prospective chemical and physical patterning techniques. Established lithographic techniques are briefly outlined and the novel lithographic technologies are compared to these, summarising the specific advantages and shortfalls alongside the current lateral resolution limits and the amenability to mass production, evaluated in terms of process scalability and cost. Particular attention is drawn to the potential breakthrough application areas, predominantly within biomedical studies, laying the platform for the tangible paths towards the adoption of alternative developing lithographic technologies or their combination with the established patterning techniques, which depends on the needs of the end-user including, for instance, tolerance of inherent limits, fidelity and reproducibility.
Collapse
Affiliation(s)
- Kate Stokes
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Kieran Clark
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - David Odetade
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mike Hardy
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, BT9 5DL, UK
- Centre for Quantum Materials and Technology, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, UK
| | - Pola Goldberg Oppenheimer
- Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Healthcare Technologies Institute, Institute of Translational Medicine, Mindelsohn Way, Birmingham, B15 2TH, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
| |
Collapse
|
3
|
Nazemi MM, Khodabandeh A, Hadjizadeh A. Near-Field Electrospinning: Crucial Parameters, Challenges, and Applications. ACS APPLIED BIO MATERIALS 2022; 5:394-412. [PMID: 34995437 DOI: 10.1021/acsabm.1c00944] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Near-field electrospinning (NFES) is a micro- or nanofiber production technology based on jetting molten polymer or polymer solution. Thanks to the programmable collector and nozzle movement, it can generate designed patterns in the presence of an electric field. Despite a few shortcomings of NFES, its high resolution, simplicity, precision, high throughput, reproducibility, and low costs have convinced researchers to employ it for various purposes. Furthermore, as the paradigm of fiber-based structures shifts from random textures toward delicate designs, NFES can bridge the gap between existing inefficient processes and aspired technologies for precise patterning. NFES facilitates the production of ultrafine nanofibers because it can be used to fabricate them in every laboratory. These robust fibers are convenient tools for small and additive manufacturing. As such, NFES is considered a potent additive fabrication technology that facilitates the production of complicated patterns as well. It is suggested that near-field electrospun fibers exhibit outstanding results in various applications, owing to their precise and controllable positioning. Meanwhile, the ongoing development of NFES has yet to reach its climax, making it attractive for further research. In this review, the basic principles of NFES, derivatives, limitations, and applications in nanomanufacturing, tissue engineering, microscale electronics, biosensors, and optics are presented.
Collapse
Affiliation(s)
- Mohammad Mehdi Nazemi
- Department of Biomaterials & Tissue Engineering, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran
| | - Alireza Khodabandeh
- Department of Biomaterials & Tissue Engineering, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran
| | - Afra Hadjizadeh
- Department of Biomaterials & Tissue Engineering, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran 159163-4311, Iran
| |
Collapse
|