1
|
Gaikwad SY, More A, Seniya C, Verma K, Chandane-Tak M, Nema V, Kumar S, Mukherjee A. Synergistic inhibition of HIV-1 by Nelfinavir and Epigallocatechin Gallate: A novel nanoemulsion-based therapeutic approach. Virology 2025; 603:110391. [PMID: 39787774 DOI: 10.1016/j.virol.2025.110391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/13/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
The integration of nanotechnology into antiretroviral drug delivery systems presents a promising avenue to address challenges posed by long-term antiretroviral therapies (ARTs), including poor bioavailability, drug-induced toxicity, and resistance. These limitations impact the therapeutic effectiveness and quality of life for individuals living with HIV. Nanodrug delivery systems, particularly nanoemulsions, have demonstrated potential in improving drug solubility, enhancing bioavailability, and minimizing systemic toxicity. Moreover, nanodrug platforms can target viral reservoirs, potentially reducing the emergence of drug-resistant strains-a significant challenge in anti-HIV treatment. This study evaluates the biological efficacy of a rosemary oil-based nanoemulsion loaded with Nelfinavir (NFV) and Epigallocatechin Gallate (EGCG), which demonstrated HIV-1 suppression at sub-CC₅₀ concentrations across two distinct cellular systems. The synergistic interaction between NFV and EGCG was confirmed through cellular assays, enzymatic studies, and molecular interaction analysis. In vitro experiments revealed that the NE-NFV-EGCG nanoemulsion exhibited enhanced HIV-1 inhibitory activity compared to pure NFV, highlighting a promising therapeutic synergy. The findings suggest that EGCG could be a valuable adjunct in NFV-based regimens for HIV management. Molecular interaction studies further confirmed the nanoemulsion's inhibitory potential against the HIV-1 protease enzyme. This study marks a significant advancement in HIV-1 treatment by documenting, for the first time, the synergistic inhibitory activity of NFV and EGCG. The novel nanoformulation offers improved oral bioavailability, minimal side effects, and enhanced therapeutic outcomes. Future studies are needed to optimize the formulation for clinical applications, including sustained drug release and drug transport mechanisms.
Collapse
Affiliation(s)
- Shraddha Y Gaikwad
- Division of Virology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India
| | - Ashwini More
- Division of Virology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India
| | - Chandrabhan Seniya
- Department of Biotechnology and Chemical Engineering, Manipal University Jaipur, India
| | - Kunal Verma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, India
| | - Madhuri Chandane-Tak
- Division of Virology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India
| | - Vijay Nema
- Division of Molecular Biology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India; AcSIR - Academy of Scientific & Innovative Research, Ghaziabad, India
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), NH-58, Delhi-Roorkee Highway, Meerut, India.
| | - Anupam Mukherjee
- Division of Virology, ICMR-National Institute of Translational and AIDS Research Institute, Pune, India; AcSIR - Academy of Scientific & Innovative Research, Ghaziabad, India.
| |
Collapse
|
2
|
Peng Y, Zong Y, Wang D, Chen J, Chen ZS, Peng F, Liu Z. Current drugs for HIV-1: from challenges to potential in HIV/AIDS. Front Pharmacol 2023; 14:1294966. [PMID: 37954841 PMCID: PMC10637376 DOI: 10.3389/fphar.2023.1294966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
The human immunodeficiency virus (HIV) persists in latently infected CD4+T cells and integrates with the host genome until cell death. Acquired immunodeficiency syndrome (AIDS) is associated with HIV-1. Possibly, treating HIV/AIDS is an essential but challenging clinical goal. This review provides a detailed account of the types and mechanisms of monotherapy and combination therapy against HIV-1 and describes nanoparticle and hydrogel delivery systems. In particular, the recently developed capsid inhibitor (Lenacapavir) and the Ainuovirine/tenofovir disoproxil fumarate/lamivudine combination (ACC008) are described. It is interestingly to note that the lack of the multipass transmembrane proteins serine incorporator 3 (SERINC3) and the multipass transmembrane proteins serine incorporator 5 (SERINC5) may be one of the reasons for the enhanced infectivity of HIV-1. This discovery of SERINC3 and SERINC5 provides new ideas for HIV-1 medication development. Therefore, we believe that in treating AIDS, antiviral medications should be rationally selected for pre-exposure and post-exposure prophylaxis to avoid the emergence of drug resistance. Attention should be paid to the research and development of new drugs to predict HIV mutations as accurately as possible and to develop immune antibodies to provide multiple guarantees for the cure of AIDS.
Collapse
Affiliation(s)
- Yuan Peng
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yanjun Zong
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Dongfeng Wang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Junbing Chen
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Fujun Peng
- School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Zhijun Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| |
Collapse
|
3
|
Kumar S, Basu M, Ghosh P, Pal U, Ghosh MK. COVID-19 therapeutics: Clinical application of repurposed drugs and futuristic strategies for target-based drug discovery. Genes Dis 2023; 10:1402-1428. [PMID: 37334160 PMCID: PMC10079314 DOI: 10.1016/j.gendis.2022.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes the complicated disease COVID-19. Clinicians are continuously facing huge problems in the treatment of patients, as COVID-19-specific drugs are not available, hence the principle of drug repurposing serves as a one-and-only hope. Globally, the repurposing of many drugs is underway; few of them are already approved by the regulatory bodies for their clinical use and most of them are in different phases of clinical trials. Here in this review, our main aim is to discuss in detail the up-to-date information on the target-based pharmacological classification of repurposed drugs, the potential mechanism of actions, and the current clinical trial status of various drugs which are under repurposing since early 2020. At last, we briefly proposed the probable pharmacological and therapeutic drug targets that may be preferred as a futuristic drug discovery approach in the development of effective medicines.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, West Bengal 743372, India
| | - Pratyasha Ghosh
- Department of Economics, Bethune College, University of Calcutta, Kolkata 700006, India
| | - Uttam Pal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector–V, Salt Lake, Kolkata-700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
4
|
Batta Y, King C, Cooper F, Johnson J, Haddad N, Boueri MG, DeBerry E, Haddad GE. Direct and indirect cardiovascular and cardiometabolic sequelae of the combined anti-retroviral therapy on people living with HIV. Front Physiol 2023; 14:1118653. [PMID: 37078025 PMCID: PMC10107050 DOI: 10.3389/fphys.2023.1118653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
With reports of its emergence as far back as the early 1900s, human immunodeficiency virus (HIV) has become one of the deadliest and most difficult viruses to treat in the era of modern medicine. Although not always effective, HIV treatment has evolved and improved substantially over the past few decades. Despite the major advancements in the efficacy of HIV therapy, there are mounting concerns about the physiological, cardiovascular, and neurological sequelae of current treatments. The objective of this review is to (Blattner et al., Cancer Res., 1985, 45(9 Suppl), 4598s-601s) highlight the different forms of antiretroviral therapy, how they work, and any effects that they may have on the cardiovascular health of patients living with HIV, and to (Mann et al., J Infect Dis, 1992, 165(2), 245-50) explore the new, more common therapeutic combinations currently available and their effects on cardiovascular and neurological health. We executed a computer-based literature search using databases such as PubMed to look for relevant, original articles that were published after 1998 to current year. Articles that had relevance, in any capacity, to the field of HIV therapy and its intersection with cardiovascular and neurological health were included. Amongst currently used classes of HIV therapies, protease inhibitors (PIs) and combined anti-retroviral therapy (cART) were found to have an overall negative effect on the cardiovascular system related to increased cardiac apoptosis, reduced repair mechanisms, block hyperplasia/hypertrophy, decreased ATP production in the heart tissue, increased total cholesterol, low-density lipoproteins, triglycerides, and gross endothelial dysfunction. The review of Integrase Strand Transfer Inhibitors (INSTI), Nucleoside Reverse Transcriptase Inhibitors (NRTI), and Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTI) revealed mixed results, in which both positive and negative effects on cardiovascular health were observed. In parallel, studies suggest that autonomic dysfunction caused by these drugs is a frequent and significant occurrence that needs to be closely monitored in all HIV + patients. While still a relatively nascent field, more research on the cardiovascular and neurological implications of HIV therapy is crucial to accurately evaluate patient risk.
Collapse
Affiliation(s)
- Yashvardhan Batta
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| | - Cody King
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| | - Farion Cooper
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| | - John Johnson
- Delaware Psychiatric Center, New Castle, DE, United States
| | - Natasha Haddad
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| | | | - Ella DeBerry
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| | - Georges E. Haddad
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| |
Collapse
|
5
|
Sharma A, Sharma P, Kapila I, Abbot V. A Combination of Novel HIV-1 Protease Inhibitor and Cytochrome P450 (CYP) Enzyme Inhibitor to Explore the Future Prospective of Antiviral Agents: Evotaz. Curr HIV Res 2023; 21:149-159. [PMID: 37221692 DOI: 10.2174/1570162x21666230522123631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/27/2023] [Accepted: 04/19/2023] [Indexed: 05/25/2023]
Abstract
Viruses belong to the class of micro-organisms that are well known for causing infections in the human body. Antiviral medications are given out to prevent the spread of disease-causing viruses. When the viruses are actively reproducing, these agents have their greatest impact. It is particularly challenging to develop virus-specific medications since viruses share the majority of the metabolic functions of the host cell. In the continuous search for better antiviral agents, the United States Food and Drug Administration (USFDA) approved a new drug named Evotaz on January 29, 2015 for the treatment of human immunodeficiency virus (HIV). Evotaz is a combined once-daily fixed drug, containing Atazanavir, an HIV protease inhibitor, and cobicistat, an inhibitor of the human liver cytochrome P450 (CYP) enzyme. The medication is created such that it can kill viruses by concurrently inhibiting protease and CYP enzymes. The medicine is still being studied for a number of criteria, but its usefulness in children under the age of 12 is currently unknown. The preclinical and clinical characteristics of Evotaz, as well as its safety and efficacy profiles and a comparison of the novel drug with antiviral medications presently available in the market, are the main topics of this review paper.
Collapse
Affiliation(s)
- Abha Sharma
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Campus-2, Near Baddowal Cantt., Ferozpur Road, Ludhiana, 142021, India
| | - Poonam Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, Himachal Pradesh, India
| | - Isha Kapila
- Pharmaceutical Chemistry Department, Chandigarh College of Pharmacy, Landran, Mohali, 140307, Punjab, India
| | - Vikrant Abbot
- Department of Pharmaceutical Sciences, Saraswati Group of Colleges, Gharuan, Mohali, 140413, Punjab, India
| |
Collapse
|
6
|
Lei S, Chen X, Wu J, Duan X, Men K. Small molecules in the treatment of COVID-19. Signal Transduct Target Ther 2022; 7:387. [PMID: 36464706 PMCID: PMC9719906 DOI: 10.1038/s41392-022-01249-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and Mpro, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed.
Collapse
Affiliation(s)
- Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohua Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
7
|
Scavone C, Mascolo A, Rafaniello C, Sportiello L, Trama U, Zoccoli A, Bernardi FF, Racagni G, Berrino L, Castaldo G, Coscioni E, Rossi F, Capuano A. Therapeutic strategies to fight COVID-19: Which is the status artis? Br J Pharmacol 2022; 179:2128-2148. [PMID: 33960398 PMCID: PMC8239658 DOI: 10.1111/bph.15452] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 is a complex disease, and many difficulties are faced today especially in the proper choice of pharmacological treatments. The role of antiviral agents for COVID-19 is still being investigated and evidence for immunomodulatory and anti-inflammatory drugs is quite conflicting, whereas the use of corticosteroids is supported by robust evidence. The use of heparins in hospitalized critically ill patients is preferred over other anticoagulants. There are conflicting data on the use of convalescent plasma and vitamin D. According to the World Health Organization (WHO), many vaccines are in Phase III clinical trials, and some of them have already received marketing approval in European countries and in the United States. In conclusion, drug repurposing has represented the main approach recently used in the treatment of patients with COVID-19. At this moment, analysis of efficacy and safety data of drugs and vaccines used in real-life context is strongly needed. LINKED ARTICLES: This article is part of a themed issue on The second wave: are we any closer to efficacious pharmacotherapy for COVID 19? (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.10/issuetoc.
Collapse
Affiliation(s)
- Cristina Scavone
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| | - Annamaria Mascolo
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| | - Concetta Rafaniello
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| | - Liberata Sportiello
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| | - Ugo Trama
- Regional Pharmaceutical UnitU.O.D. 06 Politica del Farmaco e DispositiviNaplesItaly
| | - Alice Zoccoli
- Clinical Innovation OfficeUniversità Campus Bio‐MedicoRomeItaly
| | - Francesca Futura Bernardi
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
- Regional Pharmaceutical UnitU.O.D. 06 Politica del Farmaco e DispositiviNaplesItaly
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Liberato Berrino
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Napoli Federico IINaplesItaly
- CEINGE—Advanced Biotechnology ScarlNaplesItaly
| | | | - Francesco Rossi
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
- Clinical Innovation OfficeUniversità Campus Bio‐MedicoRomeItaly
| | - Annalisa Capuano
- Department of Experimental MedicineUniversità degli studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| |
Collapse
|
8
|
Pi J, Jiao P, Zhang Y, Li J. MDGNN: Microbial Drug Prediction Based on Heterogeneous Multi-Attention Graph Neural Network. Front Microbiol 2022; 13:819046. [PMID: 35464940 PMCID: PMC9021438 DOI: 10.3389/fmicb.2022.819046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
Human beings are now facing one of the largest public health crises in history with the outbreak of COVID-19. Traditional drug discovery could not keep peace with newly discovered infectious diseases. The prediction of drug-virus associations not only provides insights into the mechanism of drug–virus interactions, but also guides the screening of potential antiviral drugs. We develop a deep learning algorithm based on the graph convolutional networks (MDGNN) to predict potential antiviral drugs. MDGNN is consisted of new node-level attention and feature-level attention mechanism and shows its effectiveness compared with other comparative algorithms. MDGNN integrates the global information of the graph in the process of information aggregation by introducing the attention at node and feature level to graph convolution. Comparative experiments show that MDGNN achieves state-of-the-art performance with an area under the curve (AUC) of 0.9726 and an area under the PR curve (AUPR) of 0.9112. In this case study, two drugs related to SARS-CoV-2 were successfully predicted and verified by the relevant literature. The data and code are open source and can be accessed from https://github.com/Pijiangsheng/MDGNN.
Collapse
Affiliation(s)
- Jiangsheng Pi
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Peishun Jiao
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Yang Zhang
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- *Correspondence: Yang Zhang,
| | - Junyi Li
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- Junyi Li,
| |
Collapse
|
9
|
Pavani C, Susithra E. A novel simultaneous high performance liquid chromatography-PDA method for the determination of Tenofovir AF, Darunavir, Emtricitabine and Cobicistat in bulk and its application to marketed formulation. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-021-00390-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The present research article involves the simultaneous determination of Tenofovir alafenamide, Darunavir, Emtricitabine and Cobicistat in bulk as well as in tablet dosage form using high performance liquid chromatography.
Result
The separation was performed using DIKMA Spursil, C18, ODS, (4.6 × 150 mm × 5 µm) analytical column using the mobile phase acetonitrile and 0.1% Orthophosphoric acid in the volume ratio of 70:30 at pH 3. The eluents were detected using PDA detector at 254.0 nm. After optimization subsequent validation study of different parameters was performed by utilizing the optimised condition as per the ICH guidelines. Under this optimised conditions Tenofovir alafenamide, Darunavir, Emtricitabine and Cobicistat were eluted at 2.287 min, 2.507 min, 4.062 min, 6.011 min respectively. Percentage assay was found 99.21% for Tenofovir alafenamide, 99.80% for Darunavir, 99.80% for Emtricitabine and 99.84% for Cobicistat. Tenofovir alafenamide was found linear in the range of 2.0–10.0 µg/mL, Darunavir (160.0–800.0 µg/mL), Emtricitabine (40.0–200.0 µg/mL) and for cobicistat (30.0–150.0 µg/mL). The corelation coefficient was found 0.999 for all the APIs. The detection limit was found 0.14 µg/mL for Tenofovir alafenamide, 2.14 µg/mL for Darunavir, 0.6 µg/mL for Emtricitabine and 7.32 µg/mL for cobicistat. In the LOQ study the quantitation limit was found 0.47 µg/mL for Tenofovir alafenamide, 7.12 µg/mL for Darunavir, 2.10 µg/mL, for Emtricitabine and 24.42 µg/mL for cobicistat.
Conclusion
All the studied API’s has been highly resolute utilizing the optimised condition and found extremely suitable for the determination of all of them simultaneously in marketed dosage form as well as in the bulk form.
Collapse
|
10
|
Satya Venkata Sakuntala M, Lakshmana Rao A, William Carey M. Stability-indicating method development and validation for the concurrent determination of darunavir, cobicistat, emtricitabine and tenofovir alafenamide by UPLC in bulk and tablet dosage forms. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Tablet dosage forms containing combination of darunavir a protease inhibitor, cobicistat a cytochrome P450 3A inhibitor, emtricitabine and tenofovir alafenamide which were nucleoside reverse transcriptase inhibitors were approved by USFDA on 1st July 2018 to suppress the viral load in HIV patients. It can be used as a complete regimen for the treatment of HIV-1 infection in adults and paediatric patients weighing at least 40 kg. An UPLC method was developed, and separation was done on SB C8 column of dimensions 50 × 2.1 × 1.8 μ with mobile phase 0.01 N potassium dihydrogen ortho phosphate (pH-4.8) and acetonitrile in 60:40 ratio, at a flow rate of 0.3 mL/min and an injection volume of 2 μL. The column temperature was maintained at 30 °C, and detection wavelength was 267 nm. The method was validated according to ICH guidelines.
Results
The retention times were 1.031, 1.341, 1.630 and 2.153 min, and they were linear in the concentration range of 1.25–7.5 μg/mL, 18.75–112.5 μg/mL, 25–150 μg/mL and 100–600 μg/mL for tenofovir alafenamide, cobicistat, emtricitabine and darunavir, respectively. The intraday and interday precisions were found to be within acceptable limits. LOD was found to be 0.06 μg/mL, 0.51 μg/mL, 1.31 μg/mL and 3.01 μg/mL, and LOQ was 0.19 μg/mL, 1.54 μg/mL, 3.96 μg/mL and 9.13 μg/mL for tenofovir alafenamide, cobicistat, emtricitabine and darunavir. The correlation coefficients were found to be more than 0.999, and recovery was more than 99.52% indicating the method was accurate. Forced degradation studies reveal that the drugs are unstable under acidic conditions. The method was simple, accurate, precise, stable and can be analysed in less runtime of 4 min.
Conclusions
The flexibility, accuracy and precision of the developed method ensure its applicability in routine analysis of tablet dosage forms.
Graphical Abstract
Collapse
|
11
|
Hossain MJ, Jannat T, Brishty SR, Roy U, Mitra S, Rafi MO, Islam MR, Nesa ML, Islam MA, Emran TB. Clinical Efficacy and Safety of Antiviral Drugs in the Extended Use against COVID-19: What We Know So Far. BIOLOGICS 2021; 1:252-284. [DOI: 10.3390/biologics1020016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Human beings around the globe have been suffering from a devastating novel pandemic and public health emergency, coronavirus disease 2019 (COVID-19), for more than one and a half years due to the deadly and highly pathogenic severe acute respiratory coronavirus 2 (SARS-CoV-2) infection worldwide. Notably, no effective treatment strategy has been approved for the complete recovery of COVID-19 patients, though several vaccines have been rolled out around the world upon emergency use authorization. After the emergence of the COVID-19 outbreak globally, plenty of clinical investigations commenced to screen the safety and efficacy of several previously approved drugs to be repurposed against the SARS-CoV-2 pathogen. This concise review aims at exploring the current status of the clinical efficacy and safety profile of several antiviral medications for the treatment of patients with COVID-19 and other respiratory complications caused by SARS-CoV-2 infection. The paper covers all kinds of human studies (January 2020 to June 2021) except case reports/series to highlight the clear conclusion based on the current clinical evidence. Among the promising repositioned antivirals, remdesivir has been recommended in critical conditions to mitigate the fatality rate and improve clinical conditions. In addition, boosting the immune system is believed to be beneficial in treating COVID-19 patients, so interferon type I might exert immunomodulation through its antiviral effects by stimulating interferon-stimulated gene (ISG). However, more extensive clinical studies covering all ethnic groups globally are warranted based on current data to better understand the clinical efficacy of the currently proposed repurposed drugs against COVID-19.
Collapse
|
12
|
Shin YH, Park CM, Yoon CH. An Overview of Human Immunodeficiency Virus-1 Antiretroviral Drugs: General Principles and Current Status. Infect Chemother 2021; 53:29-45. [PMID: 34409780 PMCID: PMC8032919 DOI: 10.3947/ic.2020.0100] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Treatment with highly active antiretroviral therapy (HAART) can prolong a patient's life-span by disrupting pivotal steps in the replication cycle of the human immunodeficiency virus-1 (HIV-1). However, drug resistance is emerging as a major problem worldwide due to the prolonged period of treatment undergone by HIV-1 patients. Since the approval of zidovudine in 1987, over thirty antiretroviral drugs have been categorized into the following six distinct classes based on their biological function and resistance profiles: (1) nucleoside analog reverse-transcriptase inhibitors; (2) non–nucleoside reverse transcriptase inhibitors; (3) integrase strand transferase inhibitors; (4) protease inhibitors; (5) fusion inhibitors; and (6) co-receptor antagonists. Additionally, several antiretroviral drugs have been developed recently, such as a long active drug, humanized antibody and pro-drug metabolized into an active form in the patient's body. Although plenty of antiretroviral drugs are beneficially used to treat patients with HIV-1, the ongoing efforts to develop antiretroviral drugs have overcome the drug resistances, adverse effects, and limited adherence of drugs observed in previous drugs to some extent. Furthermore, studies focused on agents targeting latent HIV-1 reservoirs should be strengthened, as that may lead to eradication of HIV-1.
Collapse
Affiliation(s)
- Young Hyun Shin
- Division of Chronic Viral Disease Research, Center for Emerging Virus Research, Korea National Institute of Health, Chungbuk, Korea
| | - Chul Min Park
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Cheol Hee Yoon
- Division of Chronic Viral Disease Research, Center for Emerging Virus Research, Korea National Institute of Health, Chungbuk, Korea.
| |
Collapse
|
13
|
Al-Wahaibi LH, Bysani SRS, Tawfik SS, Abdelbaky MSM, Garcia-Granda S, El-Emam AA, Percino MJ, Thamotharan S. Invariant and Variable Supramolecular Self-Assembly in 6-Substituted Uracil Derivatives: Insights from X-ray Structures and Quantum Chemical Study. CRYSTAL GROWTH & DESIGN 2021. [DOI: 10.1021/acs.cgd.0c01583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Sai Ramya Sree Bysani
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, India
| | - Samar S. Tawfik
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed S. M. Abdelbaky
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, Oviedo 33006, Spain
| | - Santiago Garcia-Granda
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo University-CINN, Oviedo 33006, Spain
| | - Ali A. El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - M. Judith Percino
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3-Ecocampus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa, Puebla, C.P.72960, México
| | - Subbiah Thamotharan
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, India
| |
Collapse
|
14
|
Ciccullo A, Baldin G, Putaggio C, Di Giambenedetto S, Borghetti A. Comparative safety review of recommended, first-line single-tablet regimens in patients with HIV. Expert Opin Drug Saf 2021; 20:1317-1332. [PMID: 34018892 DOI: 10.1080/14740338.2021.1931115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction Different single-tablet regimens (STRs), containing one or two nucleoside reverse transcriptase inhibitors (NRTIs) plus an anchor drug, are available for the use in naïve, HIV-infected patients. Despite some restrictions in the use of particular regimens in certain situations (e.g., HBV coinfection), International guidelines do not provide indications to prefer any regimen over others concerning the tolerability profile. We aimed to assess advantages and disadvantages of the most prescribed STRs.Areas covered An extensive review of articles published in English language was conducted on PubMed, looking for evidence about STRs in naïve, HIV-infected population. Safety outcomes of registrational trials were assessed, giving priority to studies directly comparing STRs included in our research (abacavir/lamivudine/dolutegravir, tenofovir alafenamide/emtricitabine/bictegravir, lamivudine/dolutegravir, tenofovir alafenamide/emtricitabine/darunavir/cobicistat, tenovofir disoproxil fumarate/lamivudine/doravirine). Data from cohort studies and meta-analyses were also assessed, extrapolating the main evidence about the combinations of interest.Expert opinion Integrase inhibitors (InsTIs)-based regimens have few interruptions for adverse events and few drug-related adverse events, with tenofovir alafenamide/emtricitabine/dolutegravir and lamivudine/dolutegravir being the most tolerable ones. However, neuropsychiatric adverse events and metabolic issues could prompt the alternative use of darunavir or doravirine-based combinations, even if a superior safety profile of these combinations over InSTIs has yet to be demonstrated.
Collapse
Affiliation(s)
| | - Gianmaria Baldin
- Mater Olbia Hospital, Olbia, Italia.,UOC Malattie Infettive, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italia
| | - Cristina Putaggio
- Dipartimento di Sicurezza e Bioetica Sezione Malattie Infettive, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Simona Di Giambenedetto
- UOC Malattie Infettive, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italia.,Dipartimento di Sicurezza e Bioetica Sezione Malattie Infettive, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Alberto Borghetti
- UOC Malattie Infettive, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italia
| |
Collapse
|
15
|
Yang C, Huang Y, Liu S. Therapeutic Development in COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:435-448. [PMID: 33973193 DOI: 10.1007/978-3-030-63761-3_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the outbreak of coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2, the disease has spread rapidly worldwide and developed into a global pandemic, causing a significant impact on the global health system and economic development. Scientists have been racing to find effective drugs and vaccines for the treatment and prevention of COVID-19. However, due to the diversity of clinical manifestations caused by COVID-19, no standard antiviral regimen beyond supportive therapy has been established. Ongoing clinical trials are underway to evaluate the efficacy of drugs that primarily act on the viral replication cycle or enhanced immunity of patients. This chapter will summarize the currently used antiviral and adjuvant therapies in clinical practice and provide a theoretical basis for the future treatment of COVID-19.
Collapse
Affiliation(s)
- Chan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yuan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Guangzhou, China.
| |
Collapse
|
16
|
Coronavirus Disease 2019: An Overview of the Complications and Management. Pharmacol Ther 2021. [DOI: 10.36922/itps.v4i1.1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Since the first report of COVID-19 emerging in Wuhan, China, authorities in 216 countries and territories have reported about 47.3 million COVID-19 cases and 1.2 million deaths. The WHO guidelines for the management of COVID-19 are very limited to recommendations for managing symptoms and advice on careful management of pediatric patients, pregnant women, and patients with underlying comorbidities. There is no approved treatment for COVID-19 and guidelines vary between countries. In this review, first, a brief overview is provided on the basic knowledge about the virus, clinical features of the disease, and different diagnostic methods. Then, the relationship between COVID-19, various body systems, and other complications is discussed. Finallly, different management strategies are discussed, including those drawn on computational chemistry analyses, pre-clinical investigations, and clinical trials which involve pharmacological and non-pharmacological interventions. In conclusion, despite the recent approval of different vaccine candidates, more virological characteristics of SARS-CoV-2 are required to be explored, which may result in the discovery of more potential therapeutic targets leading to safer and more effective treatment to COVID-19.
Collapse
|
17
|
Fu Y, Duan F, Du Z. Visible Light Driven Oxidative Coupling of Amines and P(O)−H/P−OR Compounds under Photocatalyst‐Free Conditions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ying Fu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 P. R. China
| | - Fei Duan
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 P. R. China
| | - Zhengyin Du
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou 730070 P. R. China
| |
Collapse
|
18
|
Yu H, Yang H, Shi E, Tang W. Development and Clinical Application of Phosphorus-Containing Drugs. MEDICINE IN DRUG DISCOVERY 2020; 8:100063. [PMID: 32864606 PMCID: PMC7445155 DOI: 10.1016/j.medidd.2020.100063] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022] Open
Abstract
Phosphorus-containing drugs belong to an important class of therapeutic agents and are widely applied in daily clinical practices. Structurally, the phosphorus-containing drugs can be classified into phosphotriesters, phosphonates, phosphinates, phosphine oxides, phosphoric amides, bisphosphonates, phosphoric anhydrides, and others; functionally, they are often designed as prodrugs with improved selectivity and bioavailability, reduced side effects and toxicity, or biomolecule analogues with endogenous materials and antagonistic endoenzyme supplements. This review summarized the phosphorus-containing drugs currently on the market as well as a few promising molecules at clinical studies, with particular emphasis on their structural features, biological mechanism, and indications.
Collapse
Affiliation(s)
- Hanxiao Yu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - He Yang
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Enxue Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
19
|
Chen X, Luo W, Wang Y, Li Z, Ma X, Peng AY. Efficient Synthesis of Phosphonamidates through One-Pot Sequential Reactions of Phosphonites with Iodine and Amines. Chemistry 2020; 26:14474-14480. [PMID: 32776399 DOI: 10.1002/chem.202002934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 11/10/2022]
Abstract
A one-pot sequential strategy to construct phosphonamidates has been developed by generating phosphonites in situ from arylmagnesium bromides and triethyl phosphite followed by treatment with iodine and amines. A variety of phosphonamidates were obtained with good to excellent yields at room temperature from easily available materials.
Collapse
Affiliation(s)
- Xunwei Chen
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| | - Wenjun Luo
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| | - Yanlin Wang
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| | - Zikang Li
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| | - Xiaorui Ma
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| | - Ai-Yun Peng
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| |
Collapse
|
20
|
Scavone C, Brusco S, Bertini M, Sportiello L, Rafaniello C, Zoccoli A, Berrino L, Racagni G, Rossi F, Capuano A. Current pharmacological treatments for COVID-19: What's next? Br J Pharmacol 2020; 177:4813-4824. [PMID: 32329520 PMCID: PMC7264618 DOI: 10.1111/bph.15072] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022] Open
Abstract
Since December 2019 SARS-Cov-2 was found responsible for the disease COVID-19, which has spread worldwide. No specific therapies/vaccines are yet available for the treatment of COVID-19. Drug repositioning may offer a strategy and a number of drugs have been repurposed, including lopinavir/ritonavir, remdesivir, favipiravir and tocilizumab. This paper describes the main pharmacological properties of such drugs administered to patients with COVID-19, focusing on their antiviral, immune-modulatory and/or anti-inflammatory actions. Where available, data from clinical trials involving patients with COVID-19 are reported. Preliminary clinical trials seem to support their benefit. However, such drugs in COVID-19 patients have peculiar safety profiles. Thus, adequate clinical trials are necessary for these compounds. Nevertheless, while waiting for effective preventive measures i.e. vaccines, many clinical trials on drugs belonging to different therapeutic classes are currently underway. Their results will help us in defining the best way to treat COVID-19 and reducing its symptoms and complications. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Cristina Scavone
- Department of Experimental MedicineUniversità degli studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Simona Brusco
- Department of Experimental MedicineUniversità degli studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Michele Bertini
- Department of Experimental MedicineUniversità degli studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Liberata Sportiello
- Department of Experimental MedicineUniversità degli studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Concetta Rafaniello
- Department of Experimental MedicineUniversità degli studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Alice Zoccoli
- Clinical Innovation OfficeUniversità Campus Bio‐medicoRomeItaly
| | - Liberato Berrino
- Department of Experimental MedicineUniversità degli studi della Campania “Luigi Vanvitelli”NaplesItaly
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular SciencesUniversity of MilanMilanItaly
| | - Francesco Rossi
- Department of Experimental MedicineUniversità degli studi della Campania “Luigi Vanvitelli”NaplesItaly
- Clinical Innovation OfficeUniversità Campus Bio‐medicoRomeItaly
| | - Annalisa Capuano
- Department of Experimental MedicineUniversità degli studi della Campania “Luigi Vanvitelli”NaplesItaly
| |
Collapse
|
21
|
Tiwari N, Upadhyay J, Ansari MN, Joshi R. Novel β-Coronavirus (SARS-CoV-2): Current and future aspects of pharmacological treatments. Saudi Pharm J 2020; 28:1243-1252. [PMID: 32868970 PMCID: PMC7449930 DOI: 10.1016/j.jsps.2020.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
The novel coronavirus outbreak has reported to be rapidly spreading across the countries and becomes a foremost community health alarm. At present, no vaccine or specific drug is on hand for the treatment of this infectious disease. This review investigates the drugs, which are being evaluated and found to be effective against nCOVID-19 infection. A thorough literature search was performedon the recently published research papers in between January 2020 to May 2020, through various databases like "Science Direct", "Google Scholar", "PubMed","Medline", "Web of Science", and "World Health Organization (WHO)". We reviewed and documented the information related with the current and future aspects for the management and cure of COVID-19. As of 21st July 2020 a total of 14,562,550 confirmed cases of coronavirus and 607,781 deaths have been reported world-wide. The main clinical feature of COVID-19 ranges from asymptomatic disease to mild lower respiratory tract illness to severe pneumonia, acute lung injury, acute respiratory distress syndrome (ARDS), multiple organ dysfunction, and death. The drugs at present used in COVID-19 patients and ongoing clinical trials focusing on drug repurposing of various therapeutic classes of drug e.g. antiviral, anti-inflammatory and/or immunomodulatory drugs along with adjuvant/supportive care. Many drugs on clinical trials shows effective results on preliminary scale and now used currently in patients. Adjuvant/supportive care therapy are used in patients to get the best results in order to minimize the short and long-term complications. However, further studies and clinical trials are needed on large scale of population to reach any firm conclusion in terms of its efficacy and safety.
Collapse
Affiliation(s)
- Nidhi Tiwari
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi 110054, India
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Jyoti Upadhyay
- School of Health Sciences, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, Uttarakhand, India
| | - Mohd Nazam Ansari
- Department of Pharmacology& Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Rohit Joshi
- Biotechnology Division, Council of Scientific & Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| |
Collapse
|
22
|
An overview of the safety, clinical application and antiviral research of the COVID-19 therapeutics. J Infect Public Health 2020; 13:1405-1414. [PMID: 32684351 PMCID: PMC7357519 DOI: 10.1016/j.jiph.2020.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Since a novel coronavirus pneumonia outbreak in late December 2019, coronavirus disease -19 (COVID-19) epidemic has gradually spread worldwide, becoming a major public health event. No specific antivirals are currently available for COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The treatments for COVID-19 are mainly based on the experiences of similar virus such SARS-CoV, MERS-CoV, HIV and influenza viruses. Scientists have taken great efforts to investigate the effective methods for the treatment of COVID-19. Up to now, there are over 1000 clinical studies for COVID-19 all over the world. In this article, we reviewed the current options for COVID-19 therapy including small molecules such as Remdesivir, Favipiravir, Lopinavir/Ritonavir etc, peptide inhibitors of ACE2, Traditional Chinese Medicines and Biologics such as SARS-CoV-2-specific neutralizing antibodies, mesenchymal stem cells and vaccines etc. Meanwhile, we systematically reviewed their clinical safety, clinical applications and progress of antiviral researches. The therapeutic effect of these antiviral drugs is summarized and compared, hoping to provide some ideas for clinical options of COVID-19 treatment and also provide experiences for the life-threatening virus diseases in the future.
Collapse
|
23
|
Tincati C, Mondatore D, Bai F, d'Arminio Monforte A, Marchetti G. Do Combination Antiretroviral Therapy Regimens for HIV Infection Feature Diverse T-Cell Phenotypes and Inflammatory Profiles? Open Forum Infect Dis 2020; 7:ofaa340. [PMID: 33005694 PMCID: PMC7513927 DOI: 10.1093/ofid/ofaa340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
Immune abnormalities featuring HIV infection persist despite the use of effective combination antiretroviral therapy (cART) and may be linked to the development of noninfectious comorbidities. The aim of the present narrative, nonsystematic literature review is to understand whether cART regimens account for qualitative differences in immune reconstitution. Many studies have reported differences in T-cell homeostasis, inflammation, coagulation, and microbial translocation parameters across cART classes and in the course of triple vs dual regimens, yet such evidence is conflicting and not consistent. Possible reasons for discrepant results in the literature are the paucity of randomized controlled clinical trials, the relatively short follow-up of observational studies, the lack of clinical validation of the numerous inflammatory biomarkers utilized, and the absence of research on the effects of cART in tissues. We are currently thus unable to establish if cART classes and regimens are truly accountable for the differences observed in immune/inflammation parameters in different clinical settings. Questions still remain as to whether an early introduction of cART, specifically in the acute stage of disease, or newer drugs and novel dual drug regimens are able to significantly impact the quality of immune reconstitution and the risk of disease progression in HIV-infected subjects.
Collapse
Affiliation(s)
- Camilla Tincati
- Department of Health Sciences, Clinic of Infectious Diseases, San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Debora Mondatore
- Department of Health Sciences, Clinic of Infectious Diseases, San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Francesca Bai
- Department of Health Sciences, Clinic of Infectious Diseases, San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Antonella d'Arminio Monforte
- Department of Health Sciences, Clinic of Infectious Diseases, San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Giulia Marchetti
- Department of Health Sciences, Clinic of Infectious Diseases, San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| |
Collapse
|
24
|
Abstract
Purpose of Review An unprecedented outbreak of the novel coronavirus in China (COVID-19) occurred in December 2019, and then engulfed the entire world, presenting a significant and urgent threat to global health. Many research institutes have been involved in the development of drugs and vaccines against COVID-19. Recent Findings At present, the strategy of new use of old drugs is mainly used to screen candidate drugs against the novel coronavirus (later termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) and inhibit excessive immune response. Related research has made great progress. Summary In this review, we summarize the drugs used for COVID-19 treatment in China based on the emerging basic and clinical data. It is hoped that this review will be useful to provide guidance for the prevention, treatment, and control of COVID-19.
Collapse
Affiliation(s)
- Linzi Fan
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| | - Shuang Jiang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| | - Xinrong Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| | - Zhibin Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, 150040 Heilongjiang China
| | - Chunjuan Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, 150081 Heilongjiang People's Republic of China
| |
Collapse
|
25
|
Co-crystals, Salts or Mixtures of Both? The Case of Tenofovir Alafenamide Fumarates. Pharmaceutics 2020; 12:pharmaceutics12040342. [PMID: 32290280 PMCID: PMC7238255 DOI: 10.3390/pharmaceutics12040342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 01/18/2023] Open
Abstract
Tenofovir alafenamide fumarate (TAF) is the newest prodrug of tenofovir that constitutes several drug products used for the treatment of HIV/AIDS. Although the solid-state properties of its predecessor tenofovir disoproxil fumarate have been investigated and described in the literature, there are no data in the scientific literature on the solid state properties of TAF. In our report, we describe the preparation of two novel polymorphs II and III of tenofovir alafenamide monofumarate (TA MF2 and TA MF3). The solid-state structure of these compounds was investigated in parallel to the previously known tenofovir alafenamide monofumarate form I (TA MF1) and tenofovir alafenamide hemifumarate (TA HF). Interestingly, the single-crystal X-ray diffraction of TA HF revealed that this derivative exists as a co-crystal form. In addition, we prepared a crystalline tenofovir alafenamide free base (TA) and its hydrochloride salt (TA HCl), which enabled us to determine the structure of TA MF derivatives using 15N-ssNMR (15N-solid state nuclear magnetic resonance). Surprisingly, we observed that TA MF1 exists as a mixed ionization state complex or pure salt, while TA MF2 and TA MF3 can be obtained as pure co-crystal forms.
Collapse
|
26
|
Gómez Ayerbe C, Santos González J, Palacios Muñoz R. Symtuza ® (DRV/c/FTC/TAF) in the management of treatment-naive HIV-patients. Enferm Infecc Microbiol Clin 2019; 36 Suppl 2:17-21. [PMID: 30545467 DOI: 10.1016/s0213-005x(18)30393-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The management of HIV infection is based on the administration of lifelong antiretroviral therapy (ART). Single-tablet regimens (STR) reduce pill burden and maximise long-term adherence. Cobicistat-boosted darunavir with emtricitabine and tenofovir alafenamide co-formulation (DRV/c/FTC/TAF), with trade name Symtuza®, is the first STR based on a protease inhibitor (PI). Symtuza® exhibits the efficacy, potency and high genetic barrier of DRV/c, positioning it as the drug of choice even in patients at risk of developing resistance mutations, in addition to the good safety profile of TAF and the advantages of an STR. Early ART initiation is also possible as baseline genotype and HLA-B5701 are not needed. It therefore represents a very good regimen for naive patients, in particular those at risk of poor adherence, and those with low potential risk for drug-drug interactions. Supplement information: This article is part of a supplement entitled "Co-formulated cobicistat-boosted darunavir, emtricitabine, and tenofovir alafenamide for the treatment of HIV infection", which is sponsored by Janssen.
Collapse
Affiliation(s)
| | - Jesús Santos González
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga; UGC de Enfermedades Infecciosas, Microbiología Clínica y Medicina Preventiva, Hospital Universitario Virgen de la Victoria, Málaga
| | - Rosario Palacios Muñoz
- Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga; UGC de Enfermedades Infecciosas, Microbiología Clínica y Medicina Preventiva, Hospital Universitario Virgen de la Victoria, Málaga.
| |
Collapse
|
27
|
Rodríguez-Izquierdo I, Natalia C, García F, Los Ángeles Muñoz-Fernandez MD. G2-S16 sulfonate dendrimer as new therapy for treatment failure in HIV-1 entry inhibitors. Nanomedicine (Lond) 2019; 14:1095-1107. [PMID: 31066644 DOI: 10.2217/nnm-2018-0364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Polyanionic carbosilane dendrimers have been shown to be safe and block human immunodeficiency virus type 1 (HIV-1) infection in a multifunctional manner. The aim of this study is to evaluate the appearance of HIV-1 resistance mutations after treatment with polyanionic carbosilane dendrimers. Materials & methods: A resistance mutation assay was performed on MT2 cells, viral quantity was measured by ELISA HIVp24gag and titration was carried out on TZM.bl. Next generation sequencing for HIV-1 Env was performed on G1-S4 or G2-S16 dendrimers supernatants. Results: Data showed the appearance of mutation resistance to G1-S4 treatment, inducing three significant mutations. G2-S16 did not generate any mutations and, furthermore, inhibited G1-S4-resistant viruses. Conclusion: G1-S4 treatment generates significant mutations in HIV-1NL4.3. G2-S16 does not generate resistance-associated mutation, suggesting that G2-S16 is safe as a HIV-entry inhibitor.
Collapse
Affiliation(s)
- Ignacio Rodríguez-Izquierdo
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain
| | - Chueca Natalia
- Servicio de Microbiología Hospital Universitario San Cecilio, Instituto de Investigación Sanitaria IBS, Granada Spain
| | - Federico García
- Servicio de Microbiología Hospital Universitario San Cecilio, Instituto de Investigación Sanitaria IBS, Granada Spain
| | - María de Los Ángeles Muñoz-Fernandez
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|