1
|
Ye X, Mei L, Gan Z, Wang Z, Sun W, Fan Y, Liu C, Wu Q, Wan Y, Wu X, Xiang D. Weighted Gene Correlation Network Analysis Reveals Key Regulatory Genes Influencing Selenium Enrichment and Yield with Exogenous Selenite in Tartary Buckwheat. PLANTS (BASEL, SWITZERLAND) 2025; 14:423. [PMID: 39942985 PMCID: PMC11820427 DOI: 10.3390/plants14030423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/21/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025]
Abstract
Selenium (Se) is an essential trace element for human health, and dietary Se intake is an effective supplement. Rich in nutrients and functional components with potential for Se enrichment, Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) is a Se-biofortified cereal. To determine the optimal Se treatment concentration and fully understand its effects on Tartary buckwheat, sodium selenite (Na2SeO3) in different concentrations was sprayed onto leaves of Tartary buckwheat at the initial flowering stage. Agronomic and yield-related traits and Se enrichment were analyzed between CK and treatments. The results showed that Na2SeO3 concentrations of 3.0 and 6.0 mg/L significantly increased the contents of Se and starch in the grains, the 1000-grain weight, the number of grains per plant, and the yield. The 6.0 mg/L treatment had the best effect. Transcriptome and weighted gene co-expression network analyses showed that selenite promoted chlorophyll synthesis and photoelectron transport by upregulating chlorophyll synthase (CHLG) and protein CURVATURE THYLAKOID 1B (CURT1B) levels, improving photosynthesis, increasing sucrose synthesis and transport in leaves and starch synthesis and accumulation in grains, and promoting grain-filling and yield. These changes were regulated by genes related to photosynthesis, sucrose, and starch metabolism-related genes, including CAB3C, HPR3, SUS5, BAM9, SS3, SWEET1, and SWEET12. Selenite absorption in Tartary buckwheat was regulated by aquaporin genes NIP1-1 and PIP1-5. Selenite transport was regulated by the inorganic phosphate transporter gene PHT1-1, and organic Se transport was controlled by the proton-dependent oligopeptide transporters NPF3.1 and NPF4.6. Methionine gamma-lyase (MGL) was involved in selenocompound metabolism. This study identified the best spraying scheme for enhancing Se content in the grains. It also revealed the regulatory genes responding to selenite absorption, transport, and metabolism and the regulatory pathways promoting yield in Tartary buckwheat. These results provide technical guidance and theoretical support for producing high-yielding and Se-enriched Tartary buckwheat.
Collapse
Affiliation(s)
- Xueling Ye
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.Y.)
| | - Linsen Mei
- Animal Husbandry and Fishery Equipment Research Center, Sichuan Academy of Agricultural Machinery Sciences, Chengdu 610066, China
| | - Zhen Gan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.Y.)
| | - Zhiqiang Wang
- Institute of Agronomy and Horticulture, Chengdu Agricultural College, Chengdu 611130, China
| | - Wenjun Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.Y.)
| | - Yu Fan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.Y.)
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.Y.)
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.Y.)
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.Y.)
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.Y.)
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.Y.)
| |
Collapse
|
2
|
Wang P, Li Z, Zhu L, Mo F, Li F, Lv R, Meng F, Zhang H, Zou Y, Qi H, Yu L, Yu T, Ran S, Xu Y, Cheng M, Liu Y, Chen X, Zhang X, Wang A. Four-Dimensional Data-Independent Acquisition-Based Proteomic Profiling Combined with Transcriptomic Analysis Reveals the Involvement of the Slym1-SlFHY3-CAB3C Module in Regulating Tomato Leaf Color. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:890-907. [PMID: 39688468 DOI: 10.1021/acs.jafc.4c07614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2024]
Abstract
In green plants, the chloroplast is responsible for light energy transition and organic assimilation. However, the molecular mechanisms underlying chloroplast development in horticultural crops remain unclear. Here, four-dimensional data-independent acquisition-based proteomic profiling identified 1,727 differentially expressed proteins between "Zhongshu 4" (ZS4) and yellowing mutant (ym) leaves, a considerable proportion of which were down-regulated chloroplast proteins. Functional analysis revealed that light harvesting and chlorophyll biosynthesis were correlated with ym leaf yellowing, validated by RNA sequencing. Quantitative PCR confirmed that chlorophyll a/b-binding protein 3C (CAB3C) related to light harvesting and NADPH:protochlorophyllide oxidoreductase 3 (POR3) involved in chlorophyll biosynthesis were repressed in ym leaves. Virus-induced gene silencing showed that suppressing CAB3C and POR3 decreased the net photosynthetic rate and chlorophyll content. Additionally, the F-box protein Slym1 negatively regulated the expression of CAB3C by depressing transcription factor SlFHY3 levels. Our findings offer insights into the regulatory mechanisms of chloroplast development in tomato.
Collapse
Affiliation(s)
- Peiwen Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Ziheng Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Lin Zhu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Fulei Mo
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Fengshuo Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Rui Lv
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Fanyue Meng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Huixin Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuxin Zou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Haonan Qi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lei Yu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Tianyue Yu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Siyu Ran
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Yuanhang Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Mozhen Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Yang Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoxuan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Peng Y, Jiang Y, Chen Q, Lin Y, Li M, Zhang Y, Wang Y, He W, Zhang Y, Wang X, Tang H, Luo Y. Comparative transcriptome and metabolomic analysis reveal key genes and mechanisms responsible for the dark-green leaf color of a strawberry mutant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109327. [PMID: 39608287 DOI: 10.1016/j.plaphy.2024.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/24/2024] [Revised: 10/23/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Photosynthesis is a source of energy for various types of plant life activities and is essential for plant growth and development. Consequently, the study of photosynthetic mechanisms has been a hot spot. Leaf color mutants has always been ideal materials for exploring the mechanisms of chlorophyll metabolism and photosynthesis. In this study, we identified a leaf color mutant of 'Benihoppe' strawberry in the field, which exhibited a darker green leaf color compared with the wild type. The content of total chlorophyll and carotenoid in the mutant leaves was elevated by 7.44-20.23% and 8.9-21.92%, respectively, compared with that of the wild type. Additionally, net photosynthetic rate in the mutant increased by 20.13%. Further transcriptome analysis showed that significant upregulation of genes such as GLK1, PPR, and MORF9 in the mutant leaves, which promoted chloroplast development. The expression levels of UROD, PPOC, PORA, CHLG, and CPOX were significantly upregulated during chlorophyll synthesis, while the expression levels of HCAR and CYP89A9 were significantly downregulated during chlorophyll degradation, thus leading to the accumulation of chlorophyll in mutant leaves. The upregulation of gene expression levels such as PetM, AtpD, PGK, and RPI4 during photosynthesis promoted multiple stages of light and dark reaction, thereby enhancing the photosynthetic capacity of the mutant. And the changes in metabolites such as monogalactosyl monoacylglycerol (MGMG), glucuronosyldiacylglycerol (GlcADG), raffinose, etc. also indicate that the mutant has metabolic differences in chloroplast composition and photosynthesis compared to 'Benihoppe'. The above results not only deepen our understanding of the mechanism behind the dark-green leaf color in strawberry mutants but also provide potential genetic resources for cultivating strawberry varieties with enhanced photosynthetic capacity.
Collapse
Affiliation(s)
- Yuting Peng
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yuyan Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China.
| |
Collapse
|
4
|
Iqbal Z, Munir M. Multifaceted natural drought response mechanisms in three elite date palm cultivars uncovered by expressed sequence tags analysis. Sci Rep 2024; 14:23186. [PMID: 39369059 PMCID: PMC11455940 DOI: 10.1038/s41598-024-74422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024] Open
Abstract
This study extends our prior research on drought responses in three date palm cultivars (Khalas, Reziz, and Sheshi) under controlled conditions. Here, we investigated their drought stress adaptive strategies under ambient environment. Under natural field drought conditions, three date palm cultivars experienced significantly (p ≤ 0.05) varying regulations in their physiological attributes. Specifically, chlorophyll content, leaf RWC, photosynthesis, stomatal conductance, and transpiration reduced significantly, while intercellular CO2 concentration and water use efficiency increased. Through suppression subtraction hybridization (SSH), a rich repertoire (1026) of drought-responsive expressed sequence tags (ESTs) were identified: 300 in Khalas, 343 in Reziz, and 383 in Sheshi. Functional analysis of ESTs, including gene annotation and KEGG pathways elucidation, unveiled that these cultivars withstand drought by leveraging indigenous and multifaceted pathways. While some pathways aligned with previously reported drought resilience mechanism observed under controlled conditions, several new indigenous pathways were noted, pinpointing cultivar-specific adaptations. ESTs identified in three date palm cultivars were enriched through GSEA analysis. Khalas exhibited enrichment in cellular and metabolic processes, catalytic activity, and metal ion binding. Reziz showed enrichment in biological regulation, metabolic processes, signaling, and nuclear functions. Conversely, Sheshi displayed enrichment in organelle, photosynthetic, and ribosomal components. Notably, ca. 50% of the ESTs were unique and novel, underlining the complexity of their adaptive genetic toolkit. Overall, Khalas displayed superior drought tolerance, followed by Reziz and Sheshi, highlighting cultivar-specific variability in adaptation. Conclusively, date palm cultivars exhibited diverse genetic and physiological strategies to cope with drought, demonstrating greater complexity in their resilience compared to controlled settings.
Collapse
Affiliation(s)
- Zafar Iqbal
- Central Laboratories, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia.
| | - Muhammad Munir
- Date Palm Research Center of Excellence, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia
| |
Collapse
|
5
|
Yanarella CF, Fattel L, Lawrence-Dill CJ. Genome-wide association studies from spoken phenotypic descriptions: a proof of concept from maize field studies. G3 (BETHESDA, MD.) 2024; 14:jkae161. [PMID: 39099140 PMCID: PMC11373645 DOI: 10.1093/g3journal/jkae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/12/2024] [Accepted: 06/23/2024] [Indexed: 08/06/2024]
Abstract
We present a novel approach to genome-wide association studies (GWAS) by leveraging unstructured, spoken phenotypic descriptions to identify genomic regions associated with maize traits. Utilizing the Wisconsin Diversity panel, we collected spoken descriptions of Zea mays ssp. mays traits, converting these qualitative observations into quantitative data amenable to GWAS analysis. First, we determined that visually striking phenotypes could be detected from unstructured spoken phenotypic descriptions. Next, we developed two methods to process the same descriptions to derive the trait plant height, a well-characterized phenotypic feature in maize: (1) a semantic similarity metric that assigns a score based on the resemblance of each observation to the concept of 'tallness' and (2) a manual scoring system that categorizes and assigns values to phrases related to plant height. Our analysis successfully corroborated known genomic associations and uncovered novel candidate genes potentially linked to plant height. Some of these genes are associated with gene ontology terms that suggest a plausible involvement in determining plant stature. This proof-of-concept demonstrates the viability of spoken phenotypic descriptions in GWAS and introduces a scalable framework for incorporating unstructured language data into genetic association studies. This methodology has the potential not only to enrich the phenotypic data used in GWAS and to enhance the discovery of genetic elements linked to complex traits but also to expand the repertoire of phenotype data collection methods available for use in the field environment.
Collapse
Affiliation(s)
- Colleen F Yanarella
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
| | - Leila Fattel
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA
| | - Carolyn J Lawrence-Dill
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Genetics and Genomics Program, Iowa State University, Ames, IA 50011, USA
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
- College of Agriculture and Life Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
6
|
Dong X, Han B, Chen J, Luo D, Zhou Q, Liu Z. Multiomics Analyses Reveal MsC3H29 Positively Regulates Flavonoid Biosynthesis to Improve Drought Resistance of Autotetraploid Cultivated Alfalfa ( Medicago sativa L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14448-14465. [PMID: 38864675 DOI: 10.1021/acs.jafc.4c02472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/13/2024]
Abstract
Alfalfa (Medicago sativa subsp. sativa), the "queen of forage," is the most important perennial legume, with high productivity and an excellent nutritional profile. Medicago sativa subsp. falcata is a subspecies of the alfalfa complex and exhibits better drought tolerance. However, drought stress significantly hampers their development and yield. The molecular mechanisms underlying the aboveground and underground tissues of sativa and falcata responding to drought stress remain obscure. Here, we performed a comprehensive comparative analysis of the physiological and transcriptomic responses of sativa and falcata under drought stress. The results showed that photosynthesis was inhibited, and antioxidant enzymes were activated under drought stress. MsC3H29, a CCCH-type zinc finger protein, was identified as a hub gene through weighted gene coexpression network analysis (WGCNA) and was significantly induced by drought in underground tissue. The MsC3H29 protein was localized in the nucleus. Overexpression (OE) of MsC3H29 can increase the primary root length and fresh weight of transgenic alfalfa hairy roots, while RNA interference (RNAi) decreases them under drought stress. The 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) staining revealed that MsC3H29 promoted drought tolerance of alfalfa hairy roots through decreasing ROS accumulation. The targeted metabolome analysis showed that the overexpression of MsC3H29 resulted in higher levels of accumulation for flavonoid monomers, including vicenin, daidzein, apigenin, isorhamnetin, quercetin, and tricin, in transgenic alfalfa hairy roots before and after drought stress, while RNAi led to a reduction. Our study provided a key candidate gene for molecular breeding to improve drought resistance in alfalfa.
Collapse
Affiliation(s)
- Xueming Dong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Bingcheng Han
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jiwei Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Dong Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Qiang Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhipeng Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
7
|
Li Y, Jiang J, Zhang R, Qie W, Shao J, Zhu W, Xu N. Effects of photoperiod on the growth and physiological responses in Ulva prolifera under constant and diurnal temperature difference conditions. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106477. [PMID: 38554488 DOI: 10.1016/j.marenvres.2024.106477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
Photoperiod and temperature are two main factors in the growth of macroalgae, and changes in photoperiod and diurnal temperature difference exist in natural condition. In order to study the effects of photoperiod and diurnal temperature difference on the growth of green algae Ulva prolifera, we cultured this species under three light/dark cycles (light: dark = 10:14, 12:12 and 16:08) with constant (22 °C for light and dark period, noted as 22-22 °C) and diurnal temperature difference (22 °C and 16 °C for light and dark period, respectively, noted as 22-16 °C) conditions. The results showed that: 1) Compared with 10:14 light/dark cycle, the growth of U. prolifera under 12:12 light/dark cycle was significantly enhanced by 39% and 16% for 22-22 °C and 22-16 °C treatments, respectively, while the increase proportion decreased when the daylength increase from 12 h to 16 h. 2) The enhancement in growth induced by diurnal temperature difference was observed under 10:14 light/dark cycle, but not for 12:12 and 16:08 light/dark cycle treatments. 3) The Chl a content and photosynthetic rate increased under short light period and 22-22 °C conditions, while under 22-16 °C conditions, higher photosynthetic rate was observed under 12:12 light/dark cycle and no significant difference in Chl a content was observed. 4) Under 22-22 °C conditions, compared with 10:14 (L:D) treatment, the expression levels of proteins in light-harvesting complexes, PSII and carbon fixation were down regulated, while the photorespiration and pentose phosphate pathway (PPP) were up regulated by 16:08 light dark cycle. Then we speculate that the higher photosynthetic rate may be one compensation mechanism in short photoperiod, and under long light period condition the up regulations of photorespiration and PPP can be in charge of the decrease in enhancement growth induced by longer daylength.
Collapse
Affiliation(s)
- Yahe Li
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China; School of Marine Sciences, Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China; Xiangshan Xuwen Seaweed Development Co., Ltd., Ningbo, China
| | - Jianan Jiang
- School of Marine Sciences, Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Ruihong Zhang
- School of Marine Sciences, Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Wandi Qie
- School of Marine Sciences, Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jianzhong Shao
- College of Life Sciences, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Zhejiang University, Hangzhou, China.
| | - Wenrong Zhu
- Xiangshan Xuwen Seaweed Development Co., Ltd., Ningbo, China
| | - Nianjun Xu
- School of Marine Sciences, Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| |
Collapse
|
8
|
Yang Y, Wei Y, Yin M, Liu E, Du X, Shen J, Dong M, Yan S. Efficient Polyamine-Based Nanodelivery System for Proline: Enhanced Uptake Improves the Drought Tolerance of Tobacco. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1550-1560. [PMID: 38207102 DOI: 10.1021/acs.jafc.3c05636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/13/2024]
Abstract
Drought stress is one of the most unfavorable factors affecting plant growth and productivity among various environmental stresses. Nanotechnology is expected to enhance the effectiveness of conventional biostimulants. Herein, the current study constructed an efficient proline (Pro) nanodelivery system based on a star polyamine (SPc). The hydroxyl groups of Pro could assemble with carbonyl groups of SPc, and the self-assembly of Pro with SPc formed the nanoscale particles of the Pro/SPc complex. Compared to Pro alone, the contact angle of SPc-loaded Pro decreased, and its retentivity and plant uptake increased. Importantly, the tobacco (Nicotiana benthamiana) seeds and seedlings treated with Pro/SPc complex exhibited stronger drought tolerance. RNA-Seq analysis indicated that the SPc-loaded Pro could further upregulate photosynthesis-related genes and endocytosis-related genes. The current study constructed an efficient nanodelivery system for improving the bioactivity of biostimulants, which has broad application prospects in the agricultural field.
Collapse
Affiliation(s)
- Yanxiao Yang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ying Wei
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Enliang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Xiangge Du
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Min Dong
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
9
|
Barratt LJ, Franco Ortega S, Harper AL. Identification of candidate regulators of the response to early heat stress in climate-adapted wheat landraces via transcriptomic and co-expression network analyses. FRONTIERS IN PLANT SCIENCE 2024; 14:1252885. [PMID: 38235195 PMCID: PMC10791870 DOI: 10.3389/fpls.2023.1252885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/04/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
Introduction Climate change is likely to lead to not only increased global temperatures but also a more variable climate where unseasonal periods of heat stress are more prevalent. This has been evidenced by the observation of spring-time temperatures approaching 40°C in some of the main spring-wheat producing countries, such as the USA, in recent years. With an optimum growth temperature of around 20°C, wheat is particularly prone to damage by heat stress. A warming climate with increasingly common fluctuations in temperature therefore threatens wheat crops and subsequently the lives and livelihoods of billions of people who depend on the crop for food. To futureproof wheat against a variable climate, a better understanding of the response to early heat stress is required. Methods Here, we utilised DESeq2 to identify 7,827 genes which were differentially expressed in wheat landraces after early heat stress exposure. Candidate hub genes, which may regulate the transcriptional response to early heat stress, were identified via weighted gene co-expression network analysis (WGCNA), and validated by qRT-PCR. Results Two of the most promising candidate hub genes (TraesCS3B02G409300 and TraesCS1B02G384900) may downregulate the expression of genes involved in the drought, salinity, and cold responses-genes which are unlikely to be required under heat stress-as well as photosynthesis genes and stress hormone signalling repressors, respectively. We also suggest a role for a poorly characterised sHSP hub gene (TraesCS4D02G212300), as an activator of the heat stress response, potentially inducing the expression of a vast suite of heat shock proteins and transcription factors known to play key roles in the heat stress response. Discussion The present work represents an exploratory examination of the heat-induced transcriptional change in wheat landrace seedlings and identifies several candidate hub genes which may act as regulators of this response and, thus, may be targets for breeders in the production of thermotolerant wheat varieties.
Collapse
Affiliation(s)
| | | | - Andrea L. Harper
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
10
|
Zafar UB, Shahzaib M, Atif RM, Khan SH, Niaz MZ, Shahzad K, Chughtai N, Awan FS, Azhar MT, Rana IA. De novo transcriptome assembly of Dalbergia sissoo Roxb. (Fabaceae) under Botryodiplodia theobromae-induced dieback disease. Sci Rep 2023; 13:20503. [PMID: 37993468 PMCID: PMC10665356 DOI: 10.1038/s41598-023-45982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023] Open
Abstract
Dalbergia sissoo Roxb. (Shisham) is a timber-producing species of economic, cultural, and medicinal importance in the Indian subcontinent. In the past few decades, Shisham's dieback disease caused by the fungus Botryodiplodia theobromae has become an evolving issue in the subcontinent endangering its survival. To gain insights into this issue, a standard transcriptome assembly was deployed to assess the response of D. sissoo at the transcriptomic level under the stress of B. theobromae infection. For RNA isolation, the control and infected leaf tissue samples were taken from 1-year-old greenhouse-grown D. sissoo plants after 20 days of stem-base spore inoculation. cDNA synthesis was performed from these freshly isolated RNA samples that were then sent for sequencing. About 18.14 Gb (Giga base) of data was generated using the BGISEQ-500 sequencing platform. In terms of Unigenes, 513,821 were identified after a combined assembly of all samples and then filtering the abundance. The total length of Unigenes, their average length, N50, and GC-content were 310,523,693 bp, 604 bp, 1,101 bp, and 39.95% respectively. The Unigenes were annotated using 7 functional databases i.e., 200,355 (NR: 38.99%), 164,973 (NT: 32.11%), 123,733 (Swissprot: 24.08%), 142,580 (KOG: 27.75%), 139,588 (KEGG: 27.17%), 99,752 (GO: 19.41%), and 137,281 (InterPro: 26.72%). Furthermore, the Transdecoder detected 115,762 CDS. In terms of SSR (Simple Sequence Repeat) markers, 62,863 of them were distributed on 51,508 Unigenes and on the predicted 4673 TF (Transcription Factor) coding Unigenes. A total of 16,018 up- and 19,530 down-regulated Differentially Expressed Genes (DEGs) were also identified. Moreover, the Plant Resistance Genes (PRGs) had a count of 9230. We are hopeful that in the future, these identified Unigenes, SSR markers, DEGs and PRGs will provide the prerequisites for managing Shisham dieback disease, its breeding, and in tree improvement programs.
Collapse
Affiliation(s)
- Ummul Buneen Zafar
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Shahzaib
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Rana Muhammad Atif
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Sultan Habibullah Khan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- National Center for Genome Editing (Gene Editing of Biological Agents for Nutritional, Biochemicals and Therapeutic Purposes), University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Muhammad Zeeshan Niaz
- Plant Pathology Research Institute, Ayub Agriculture Research Institute, Faisalabad, 38850, Punjab, Pakistan
| | - Khalid Shahzad
- Punjab Forestry Research Institute, Faisalabad, 37620, Punjab, Pakistan
| | - Nighat Chughtai
- Punjab Forestry Research Institute, Faisalabad, 37620, Punjab, Pakistan
| | - Faisal Saeed Awan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Iqrar Ahmad Rana
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan.
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan.
- National Center for Genome Editing (Gene Editing of Biological Agents for Nutritional, Biochemicals and Therapeutic Purposes), University of Agriculture, Faisalabad, Punjab, Pakistan.
| |
Collapse
|
11
|
Wei Z, Zhang H, Fang M, Lin S, Zhu M, Li Y, Jiang L, Cui T, Cui Y, Kui H, Peng L, Gou X, Li J. The Dof transcription factor COG1 acts as a key regulator of plant biomass by promoting photosynthesis and starch accumulation. MOLECULAR PLANT 2023; 16:1759-1772. [PMID: 37742075 DOI: 10.1016/j.molp.2023.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/04/2023] [Revised: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Photosynthetic efficiency is the primary determinant of crop yield, including vegetative biomass and grain yield. Manipulation of key transcription factors known to directly control photosynthetic machinery can be an effective strategy to improve photosynthetic traits. In this study, we identified an Arabidopsis gain-of-function mutant, cogwheel1-3D, that shows a significantly enlarged rosette and increased biomass compared with wild-type plants. Overexpression of COG1, a Dof transcription factor, recapitulated the phenotype of cogwheel1-3D, whereas knocking out COG1 and its six paralogs resulted in a reduced rosette size and decreased biomass. Transcriptomic and quantitative reverse transcription polymerase chain reaction analyses demonstrated that COG1 and its paralogs were required for light-induced expression of genes involved in photosynthesis. Further chromatin immunoprecipitation and electrophoretic mobility shift assays indicated that COG1 can directly bind to the promoter regions of multiple genes encoding light-harvesting antenna proteins. Physiological, biochemical, and microscopy analyses revealed that COG1 enhances photosynthetic capacity and starch accumulation in Arabidopsis rosette leaves. Furthermore, combined results of bioinformatic, genetic, and molecular experiments suggested that the functions of COG1 in increasing biomass are conserved in different plant species. These results collectively demonstrated that COG1 acts as a key regulator of plant biomass by promoting photosynthesis and starch accumulation. Manipulating COG1 to optimize photosynthetic capacity would create new strategies for future crop yield improvement.
Collapse
Affiliation(s)
- Zhuoyun Wei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haoyong Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Meng Fang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shuyuan Lin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mingsong Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuxiu Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Limin Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tianliang Cui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yanwei Cui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hong Kui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liang Peng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Cutolo EA, Caferri R, Guardini Z, Dall'Osto L, Bassi R. Analysis of state 1-state 2 transitions by genome editing and complementation reveals a quenching component independent from the formation of PSI-LHCI-LHCII supercomplex in Arabidopsis thaliana. Biol Direct 2023; 18:49. [PMID: 37612770 PMCID: PMC10463614 DOI: 10.1186/s13062-023-00406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND The light-harvesting antennae of photosystem (PS) I and PSII are pigment-protein complexes responsible of the initial steps of sunlight conversion into chemical energy. In natural environments plants are constantly confronted with the variability of the photosynthetically active light spectrum. PSII and PSI operate in series but have different optimal excitation wavelengths. The prompt adjustment of light absorption by photosystems is thus crucial to ensure efficient electron flow needed to sustain downstream carbon fixing reactions. Fast structural rearrangements equilibrate the partition of excitation pressure between PSII and PSI following the enrichment in the red (PSII-favoring) or far-red (PSI-favoring) spectra. Redox imbalances trigger state transitions (ST), a photoacclimation mechanism which involves the reversible phosphorylation/dephosphorylation of light harvesting complex II (LHCII) proteins by the antagonistic activities of the State Transition 7 (STN7) kinase/TAP38 phosphatase enzyme pair. During ST, a mobile PSII antenna pool associates with PSI increasing its absorption cross section. LHCII consists of assorted trimeric assemblies of Lhcb1, Lhcb2 and Lhcb3 protein isoforms (LHCII), several being substrates of STN7. However, the precise roles of Lhcb phosphorylation during ST remain largely elusive. RESULTS We inactivated the complete Lhcb1 and Lhcb2 gene clades in Arabidopsis thaliana and reintroduced either wild type Lhcb1.3 and Lhcb2.1 isoforms, respectively, or versions lacking N-terminal phosphorylatable residues proposed to mediate state transitions. While the substitution of Lhcb2.1 Thr-40 prevented the formation of the PSI-LHCI-LHCII complex, replacement of Lhcb1.3 Thr-38 did not affect the formation of this supercomplex, nor did influence the amplitude or kinetics of PSII fluorescence quenching upon state 1-state 2 transition. CONCLUSIONS Phosphorylation of Lhcb2 Thr-40 by STN7 alone accounts for ≈ 60% of PSII fluorescence quenching during state transitions. Instead, the presence of Thr-38 phosphosite in Lhcb1.3 was not required for the formation of the PSI-LHCI-LHCII supercomplex nor for re-equilibration of the plastoquinone redox state. The Lhcb2 phosphomutant was still capable of ≈ 40% residual fluorescence quenching, implying that a yet uncharacterized, STN7-dependent, component of state transitions, which is unrelated to Lhcb2 Thr-40 phosphorylation and to the formation of the PSI-LHCI-LHCII supercomplex, contributes to the equilibration of the PSI/PSII excitation pressure upon plastoquinone over-reduction.
Collapse
Affiliation(s)
- Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Roberto Caferri
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Zeno Guardini
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Luca Dall'Osto
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Roberto Bassi
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
- Accademia Nazionale dei Lincei, Palazzo Corsini, Via Della Lungara, 10, 00165, Rome, Italy.
| |
Collapse
|
13
|
Opatíková M, Semchonok DA, Kopečný D, Ilík P, Pospíšil P, Ilíková I, Roudnický P, Zeljković SĆ, Tarkowski P, Kyrilis FL, Hamdi F, Kastritis PL, Kouřil R. Cryo-EM structure of a plant photosystem II supercomplex with light-harvesting protein Lhcb8 and α-tocopherol. NATURE PLANTS 2023; 9:1359-1369. [PMID: 37550369 DOI: 10.1038/s41477-023-01483-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/06/2023] [Accepted: 07/04/2023] [Indexed: 08/09/2023]
Abstract
The heart of oxygenic photosynthesis is the water-splitting photosystem II (PSII), which forms supercomplexes with a variable amount of peripheral trimeric light-harvesting complexes (LHCII). Our knowledge of the structure of green plant PSII supercomplex is based on findings obtained from several representatives of green algae and flowering plants; however, data from a non-flowering plant are currently missing. Here we report a cryo-electron microscopy structure of PSII supercomplex from spruce, a representative of non-flowering land plants, at 2.8 Å resolution. Compared with flowering plants, PSII supercomplex in spruce contains an additional Ycf12 subunit, Lhcb4 protein is replaced by Lhcb8, and trimeric LHCII is present as a homotrimer of Lhcb1. Unexpectedly, we have found α-tocopherol (α-Toc)/α-tocopherolquinone (α-TQ) at the boundary between the LHCII trimer and the inner antenna CP43. The molecule of α-Toc/α-TQ is located close to chlorophyll a614 of one of the Lhcb1 proteins and its chromanol/quinone head is exposed to the thylakoid lumen. The position of α-Toc in PSII supercomplex makes it an ideal candidate for the sensor of excessive light, as α-Toc can be oxidized to α-TQ by high-light-induced singlet oxygen at low lumenal pH. The molecule of α-TQ appears to shift slightly into the PSII supercomplex, which could trigger important structure-functional modifications in PSII supercomplex. Inspection of the previously reported cryo-electron microscopy maps of PSII supercomplexes indicates that α-Toc/α-TQ can be present at the same site also in PSII supercomplexes from flowering plants, but its identification in the previous studies has been hindered by insufficient resolution.
Collapse
Affiliation(s)
- Monika Opatíková
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Dmitry A Semchonok
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - David Kopečný
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Petr Ilík
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Pavel Pospíšil
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Iva Ilíková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - Pavel Roudnický
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Sanja Ćavar Zeljković
- Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic
| | - Fotis L Kyrilis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Farzad Hamdi
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
- Institute of Chemical Biology, National Hallenic Research Foundation, Athens, Greece
| | - Roman Kouřil
- Department of Biophysics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
| |
Collapse
|
14
|
Su X, Yue X, Kong M, Xie Z, Yan J, Ma W, Wang Y, Zhao J, Zhang X, Liu M. Leaf Color Classification and Expression Analysis of Photosynthesis-Related Genes in Inbred Lines of Chinese Cabbage Displaying Minor Variations in Dark-Green Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112124. [PMID: 37299103 DOI: 10.3390/plants12112124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/20/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
The leaves of the Chinese cabbage which is most widely consumed come in a wide variety of colors. Leaves that are dark green can promote photosynthesis, effectively improving crop yield, and therefore hold important application and cultivation value. In this study, we selected nine inbred lines of Chinese cabbage displaying slight differences in leaf color, and graded the leaf color using the reflectance spectra. We clarified the differences in gene sequences and the protein structure of ferrochelatase 2 (BrFC2) among the nine inbred lines, and used qRT-PCR to analyze the expression differences of photosynthesis-related genes in inbred lines with minor variations in dark-green leaves. We found expression differences among the inbred lines of Chinese cabbage in photosynthesis-related genes involved in the porphyrin and chlorophyll metabolism, as well as in photosynthesis and photosynthesis-antenna protein pathway. Chlorophyll b content was significantly positively correlated with the expression of PsbQ, LHCA1_1 and LHCB6_1, while chlorophyll a content was significantly negatively correlated with the expression PsbQ, LHCA1_1 and LHCA1_2. Our results provide an empirical basis for the precise identification of candidate genes and a better understanding of the molecular mechanisms responsible for the production of dark-green leaves in Chinese cabbage.
Collapse
Affiliation(s)
- Xiangjie Su
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xiaonan Yue
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Mingyu Kong
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Ziwei Xie
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Jinghui Yan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Yanhua Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Xiaomeng Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Mengyang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
15
|
Contiliani DF, Nebó JFCDO, Ribeiro RV, Landell MGDA, Pereira TC, Ming R, Figueira A, Creste S. Drought-triggered leaf transcriptional responses disclose key molecular pathways underlying leaf water use efficiency in sugarcane ( Saccharum spp.). FRONTIERS IN PLANT SCIENCE 2023; 14:1182461. [PMID: 37223790 PMCID: PMC10200899 DOI: 10.3389/fpls.2023.1182461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/08/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023]
Abstract
Drought is a major constraint to sugarcane (Saccharum spp.) production and improving the water use efficiency (WUE) is a critical trait for the sustainability of this bioenergy crop. The molecular mechanism underlying WUE remains underexplored in sugarcane. Here, we investigated the drought-triggered physiological and transcriptional responses of two sugarcane cultivars contrasting for drought tolerance, 'IACSP97-7065' (sensitive) and 'IACSP94-2094' (tolerant). After 21 days without irrigation (DWI), only 'IACSP94-2094' exhibited superior WUE and instantaneous carboxylation efficiency, with the net CO2 assimilation being less impacted when compared with 'IACSP97-7065'. RNA-seq of sugarcane leaves at 21 DWI revealed a total of 1,585 differentially expressed genes (DEGs) for both genotypes, among which 'IACSP94-2094' showed 617 (38.9%) exclusive transcripts (212 up- and 405 down-regulated). Functional enrichment analyses of these unique DEGs revealed several relevant biological processes, such as photosynthesis, transcription factors, signal transduction, solute transport, and redox homeostasis. The better drought-responsiveness of 'IACSP94-2094' suggested signaling cascades that foster transcriptional regulation of genes implicated in the Calvin cycle and transport of water and carbon dioxide, which are expected to support the high WUE and carboxylation efficiency observed for this genotype under water deficit. Moreover, the robust antioxidant system of the drought-tolerant genotype might serve as a molecular shield against the drought-associated overproduction of reactive oxygen species. This study provides relevant data that may be used to develop novel strategies for sugarcane breeding programs and to understand the genetic basis of drought tolerance and WUE improvement of sugarcane.
Collapse
Affiliation(s)
- Danyel F. Contiliani
- Graduate Program in Genetics, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Sugarcane Center, Agronomic Institute (IAC), Ribeirão Preto, SP, Brazil
| | | | - Rafael V. Ribeiro
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | | | - Tiago C. Pereira
- Graduate Program in Genetics, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biology, Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, SP, Brazil
| | - Ray Ming
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Silvana Creste
- Graduate Program in Genetics, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- Sugarcane Center, Agronomic Institute (IAC), Ribeirão Preto, SP, Brazil
| |
Collapse
|
16
|
Ribeiro DG, Bezerra ACM, Santos IR, Grynberg P, Fontes W, de Souza Castro M, de Sousa MV, Lisei-de-Sá ME, Grossi-de-Sá MF, Franco OL, Mehta A. Proteomic Insights of Cowpea Response to Combined Biotic and Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091900. [PMID: 37176957 PMCID: PMC10180824 DOI: 10.3390/plants12091900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/21/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
The co-occurrence of biotic and abiotic stresses in agricultural areas severely affects crop performance and productivity. Drought is one of the most adverse environmental stresses, and its association with root-knot nematodes further limits the development of several economically important crops, such as cowpea. Plant responses to combined stresses are complex and require novel adaptive mechanisms through the induction of specific biotic and abiotic signaling pathways. Therefore, the present work aimed to identify proteins involved in the resistance of cowpea to nematode and drought stresses individually and combined. We used the genotype CE 31, which is resistant to the root-knot nematode Meloidogyne spp. And tolerant to drought. Three biological replicates of roots and shoots were submitted to protein extraction, and the peptides were evaluated by LC-MS/MS. Shotgun proteomics revealed 2345 proteins, of which 1040 were differentially abundant. Proteins involved in essential biological processes, such as transcriptional regulation, cell signaling, oxidative processes, and photosynthesis, were identified. However, the main defense strategies in cowpea against cross-stress are focused on the regulation of hormonal signaling, the intense production of pathogenesis-related proteins, and the downregulation of photosynthetic activity. These are key processes that can culminate in the adaptation of cowpea challenged by multiple stresses. Furthermore, the candidate proteins identified in this study will strongly contribute to cowpea genetic improvement programs.
Collapse
Affiliation(s)
- Daiane Gonzaga Ribeiro
- Centro de Análises Proteômicas e Bioquímicas Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília CEP 71966-700, DF, Brazil
| | | | - Ivonaldo Reis Santos
- Programa de Pós-Graduação em Ciências Biológicas (Biologia Molecular), Instituto de Ciências Biológicas, Campus Universitário Darcy Ribeiro-UnB, Universidade de Brasília, Brasília CEP 70910-900, DF, Brazil
| | - Priscila Grynberg
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília CEP 70770-917, DF, Brazil
| | - Wagner Fontes
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasília CEP 70910-900, DF, Brazil
| | - Mariana de Souza Castro
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasília CEP 70910-900, DF, Brazil
| | - Marcelo Valle de Sousa
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasília CEP 70910-900, DF, Brazil
| | - Maria Eugênia Lisei-de-Sá
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília CEP 70770-917, DF, Brazil
| | - Maria Fatima Grossi-de-Sá
- Centro de Análises Proteômicas e Bioquímicas Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília CEP 71966-700, DF, Brazil
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília CEP 70770-917, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brasilia CEP 70770-917, DF, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília (UCB), Brasília CEP 71966-700, DF, Brazil
- S-Inova Biotech, Universidade Católica Dom Bosco (UCDB), Campo Grande CEP 79117-900, MS, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília CEP 70770-917, DF, Brazil
| |
Collapse
|
17
|
Schmidt L, Jacobs J, Schmutzer T, Alqudah AM, Sannemann W, Pillen K, Maurer A. Identifying genomic regions determining shoot and root traits related to nitrogen uptake efficiency in a multiparent advanced generation intercross (MAGIC) winter wheat population in a high-throughput phenotyping facility. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111656. [PMID: 36841338 DOI: 10.1016/j.plantsci.2023.111656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/01/2022] [Revised: 01/17/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
In the context of a continuously increasing human population that needs to be fed, with environmental protection in mind, nitrogen use efficiency (NUE) improvement is becoming very important. To understand the natural variation of traits linked to nitrogen uptake efficiency (UPE), one component of NUE, the multiparent advanced generation intercross (MAGIC) winter wheat population WM-800 was phenotyped under two contrasting nitrogen (N) levels in a high-throughput phenotyping facility for six weeks. Three biomass-related, three root-related, and two reflectance-related traits were measured weekly under each treatment. Subsequently, the population was genetically analysed using a total of 13,060 polymorphic haplotypes and singular SNPs for a genome-wide association study (GWAS). In total, we detected 543 quantitative trait loci (QTL) across all time points and traits, which were pooled into 42 stable QTL (sQTL; present in at least three of the six weeks). Besides Rht-B1 and Rht-D1, candidate genes playing a role in gibberellic acid-regulated growth and nitrate transporter genes from the NPF gene family, like NRT 1.1, were linked to sQTL. Two novel sQTL on chromosomes 5 A and 6D showed pleiotropic effects on several traits. The high number of N-specific sQTL indicates that selection for UPE is useful specifically under N-limited conditions.
Collapse
Affiliation(s)
- Laura Schmidt
- Martin Luther University Halle-Wittenberg, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - John Jacobs
- BASF BBCC Innovation Center Gent, 9052 Gent, Belgium
| | - Thomas Schmutzer
- Martin Luther University Halle-Wittenberg, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Ahmad M Alqudah
- Martin Luther University Halle-Wittenberg, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany; Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Wiebke Sannemann
- Martin Luther University Halle-Wittenberg, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Klaus Pillen
- Martin Luther University Halle-Wittenberg, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Andreas Maurer
- Martin Luther University Halle-Wittenberg, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany.
| |
Collapse
|
18
|
Wang Q, Chen P, Wang H, Chao S, Guo W, Zhang Y, Miao C, Yuan H, Peng B. Physiological and transcriptomic analysis of OsLHCB3 knockdown lines in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:38. [PMID: 37312752 PMCID: PMC10248686 DOI: 10.1007/s11032-023-01387-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/02/2022] [Accepted: 04/18/2023] [Indexed: 06/15/2023]
Abstract
The photosystem II (PSII) outer antenna LHCB3 protein plays critical roles in distributing the excitation energy and modulating the rate of state transition for photosynthesis. Here, OsLHCB3 knockdown mutants were produced using the RNAi system. Phenotypic analyses showed that OsLHCB3 knockdown led to pale green leaves and lower chlorophyll contents at both tillering and heading stages. In addition, mutant lines exhibited decreased non-photochemical quenching (NPQ) capacity and net photosynthetic rate (Pn) by downregulating the expression of PSII-related genes. Moreover, RNA-seq experiments were performed at both tillering and heading stages. The differentially expressed genes (DEGs) mainly involved in chlorophyll binding response to abscisic acid, photosystem II, response to chitin, and DNA-binding transcription factor. Besides, our transcriptomic and physiological data indicated that OsLHCB3 was essential for binding chlorophyll, but not for the metabolism of chlorophyll in rice. OsLHCB3 RNAi knockdown plants affected the expression of PS II-related genes, but not PS I-related genes. Overall, these results suggest that OsLHCB3 also plays vital roles in regulating photosynthesis and antenna proteins in rice as well as responses to environment stresses. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01387-z.
Collapse
Affiliation(s)
- Quanxiu Wang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Pingli Chen
- Guangdong Key Laboratory of New Technology in Rice Breeding, The Rice Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Honglin Wang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Shuangshuang Chao
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Wenru Guo
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Yuxue Zhang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Chenglin Miao
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Hongyu Yuan
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| | - Bo Peng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000 China
| |
Collapse
|
19
|
Meng X, Bai S, Wang S, Pan Y, Chen K, Xie K, Wang M, Guo S. The sensitivity of photosynthesis to magnesium deficiency differs between rice ( Oryza sativa L.) and cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1164866. [PMID: 37123833 PMCID: PMC10141327 DOI: 10.3389/fpls.2023.1164866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/13/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Magnesium is an essential macronutrient for plant photosynthesis, and in response to Mg deficiency, dicots appear more sensitive than monocots. Under Mg deficiency, we investigated the causes of differing photosynthetic sensitivities in a dicot and a monocot species. Rice (Oryza sativa L.) and cucumber (Cucumis sativus L.) were grown in hydroponic culture to explore their physiological responses to Mg deficiency stress. Both Mg-deficient rice and cucumber plants exhibited lower biomass, leaf area, Mg concentration, and chlorophyll content (Chl) compared with Mg-sufficient plants. However, a more marked decline in Chl and carotenoid content (Car) occurred in cucumber. A lower CO2 concentration in chloroplasts (C c) was accompanied by a decrease in the maximum rate of electron transport (J max) and the maximum rate of ribulose 1,5-bisphosphate carboxylation (V cmax), restricting CO2 utilization in Mg-deficient plants. Rice and cucumber photorespiration rate (P r) increased under Mg deficiency. Additionally, for cucumber, Car and non-photochemical quenching (NPQ) were reduced under lower Mg supply. Meanwhile, cucumber Mg deficiency significantly increased the fraction of absorbed light energy dissipated by an additional quenching mechanism (Φf,D). Under Mg deficiency, suppressed photosynthesis was attributed to comprehensive restrictions of mesophyll conductance (g m), J max, and V cmax. Cucumber was more sensitive to Mg deficiency than rice due to lower NPQ, higher rates of electron transport to alternative pathways, and subsequently, photooxidation damage.
Collapse
Affiliation(s)
- Xusheng Meng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Song Bai
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shiyu Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Yonghui Pan
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Kehao Chen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Kailiu Xie
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, China
| | - Min Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
20
|
Chaudhry AH, Hussain SB, Du W, Liu Y, Peng SA, Deng X, Pan Z. A novel bud mutant of navel orange (Citrus sinensis) shows tolerance to chlorosis in acidic and magnesium-deficient soils. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:739-745. [PMID: 36827955 DOI: 10.1016/j.plaphy.2023.02.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/12/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Interveinal chlorosis in old leaves is a common occurrence in citrus orchards in southern China. The present study investigates the 'Langfeng' navel orange (LF, Citrus sinensis) grafted onto a Trifoliate orange (TO, Poncirus trifoliata) rootstock, which exhibits healthy green leaves, and the 'Newhall' navel orange (NHE, C. sinensis) grafted onto TO, which has typical magnesium (Mg) deficiency-induced chlorosis. Chemical analysis of the rhizosphere soil revealed that the pH values were around 3.92 and that both Mg and calcium (Ca) were significantly deficient in the rhizosphere soil of both grafting combinations (LF/TO and NHE/TO). Furthermore, the chlorotic leaves of NHE/TO had significantly lower levels of Mg, Ca, and phosphorus (P), and the green leaves of NHE/TO had significantly lower levels of Mg and Ca compared to the green leaves of the LF/TO. This suggests that Mg deficiency may be the primary cause of chlorosis in NHE/TO. A greenhouse study using the same graft combinations showed that the LF/TO plants had better growth than the NHE/TO, possibly by promoting Mg uptake and/or improving Mg distribution to leaves, thereby increasing carbon dioxide (CO2) assimilation and photosynthesis, optimizing carbohydrate distribution, and increasing plant biomass. This results in a phenotype that is tolerant to Mg deficiency. In conclusion, these findings suggest that the LF navel orange could be utilized in the development of new citrus varieties with improved Mg-use efficiency.
Collapse
Affiliation(s)
- Ahmad Hassan Chaudhry
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Syed Bilal Hussain
- Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL, 33850, USA
| | - Wei Du
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China; Research Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, Hubei, 430064, PR China
| | - Yongzhong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shu-Ang Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhiyong Pan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
21
|
Biba R, Cvjetko P, Tkalec M, Košpić K, Štefanić PP, Šikić S, Domijan AM, Balen B. Effects of Silver Nanoparticles on Physiological and Proteomic Responses of Tobacco ( Nicotiana tabacum) Seedlings Are Coating-Dependent. Int J Mol Sci 2022; 23:15923. [PMID: 36555562 PMCID: PMC9787911 DOI: 10.3390/ijms232415923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The harmful effects of silver nanoparticles (AgNPs) have been confirmed in many organisms, but the mechanism of their toxicity is not yet fully understood. In biological systems, AgNPs tend to aggregate and dissolve, so they are often stabilized by coatings that influence their physico-chemical properties. In this study, the effects of AgNPs with different coatings [polyvinylpyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB)] on oxidative stress appearance and proteome changes in tobacco (Nicotiana tabacum) seedlings have been examined. To discriminate between the nanoparticulate Ag form from the ionic one, the treatments with AgNO3, a source of Ag+ ions, were also included. Ag uptake and accumulation were found to be similarly effective upon exposure to all treatment types, although positively charged AgNP-CTAB showed less stability and a generally stronger impact on the investigated parameters in comparison with more stable and negatively charged AgNP-PVP and ionic silver (AgNO3). Both AgNP treatments induced reactive oxygen species (ROS) formation and increased the expression of proteins involved in antioxidant defense, confirming oxidative stress as an important mechanism of AgNP phytotoxicity. However, the mechanism of seedling responses differed depending on the type of AgNP used. The highest AgNP-CTAB concentration and CTAB coating resulted in increased H2O2 content and significant damage to lipids, proteins and DNA molecules, as well as a strong activation of antioxidant enzymes, especially CAT and APX. On the other hand, AgNP-PVP and AgNO3 treatments induced the nonenzymatic antioxidants by significantly increasing the proline and GSH content. Exposure to AgNP-CTAB also resulted in more noticeable changes in the expression of proteins belonging to the defense and stress response, carbohydrate and energy metabolism and storage protein categories in comparison to AgNP-PVP and AgNO3. Cysteine addition significantly reduced the effects of AgNP-PVP and AgNO3 for the majority of investigated parameters, indicating that AgNP-PVP toxicity mostly derives from released Ag+ ions. AgNP-CTAB effects, however, were not alleviated by cysteine addition, suggesting that their toxicity derives from the intrinsic properties of the nanoparticles and the coating itself.
Collapse
Affiliation(s)
- Renata Biba
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Petra Cvjetko
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Mirta Tkalec
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Karla Košpić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Petra Peharec Štefanić
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Sandra Šikić
- Department of Ecology, Institute of Public Health “Dr. Andrija Štampar”, Mirogojska cesta 16, 10000 Zagreb, Croatia
| | - Ana-Marija Domijan
- Department of Pharmaceutical Botany, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Biljana Balen
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
22
|
Alhajhoj MR, Munir M, Sudhakar B, Ali-Dinar HM, Iqbal Z. Common and novel metabolic pathways related ESTs were upregulated in three date palm cultivars to ameliorate drought stress. Sci Rep 2022; 12:15027. [PMID: 36056140 PMCID: PMC9440037 DOI: 10.1038/s41598-022-19399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Date palm is an important staple crop in Saudi Arabia, and about 400 different date palm cultivars grown here, only 50-60 of them are used commercially. The most popular and commercially consumed cultivars of these are Khalas, Reziz, and Sheshi, which are also widely cultivated across the country. Date palm is high water-demanding crop in oasis agriculture, with an inherent ability to tolerate drought stress. However, the mechanisms by which it tolerates drought stress, especially at the transcriptomic level, are still elusive. This study appraised the physiological and molecular response of three commercial date palm cultivars Khalas, Reziz, and Sheshi at two different field capacities (FC; 100% and 25%) levels. At 25% FC (drought stress), leaf relative water content, chlorophyll, photosynthesis, stomatal conductance, and transpiration were significantly reduced. However, leaf intercellular CO2 concentration and water use efficiency increased under drought stress. In comparison to cvs. Khalas and Reziz, date palm cv. Sheshi showed less tolerance to drought stress. A total of 1118 drought-responsive expressed sequence tags (ESTs) were sequenced, 345 from Khalas, 391 from Reziz, and 382 from Sheshi and subjected to functional characterization, gene ontology classification, KEGG pathways elucidation, and enzyme codes dissemination. Three date palm cultivars deployed a multivariate approach to ameliorate drought stress by leveraging common and indigenous molecular, cellular, biological, structural, transcriptional and reproductive mechanisms. Approximately 50% of the annotated ESTs were related to photosynthesis regulation, photosynthetic structure, signal transduction, auxin biosynthesis, osmoregulation, stomatal conductance, protein synthesis/turnover, active transport of solutes, and cell structure modulation. Along with the annotated ESTs, ca. 45% of ESTs were novel. Conclusively, the study provides novel clues and opens the myriads of genetic resources to understand the fine-tuned drought amelioration mechanisms in date palm.
Collapse
Affiliation(s)
- Mohammed Refdan Alhajhoj
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia
| | - Muhammad Munir
- Date Palm Research Center of Excellence, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia
| | - Balakrishnan Sudhakar
- Date Palm Research Center of Excellence, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia
| | - Hassan Muzzamil Ali-Dinar
- Date Palm Research Center of Excellence, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia
| | - Zafar Iqbal
- Central Laboratories, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia.
| |
Collapse
|
23
|
Kan B, Yang Y, Du P, Li X, Lai W, Hu H. Chlorophyll decomposition is accelerated in banana leaves after the long-term magnesium deficiency according to transcriptome analysis. PLoS One 2022; 17:e0270610. [PMID: 35749543 PMCID: PMC9231763 DOI: 10.1371/journal.pone.0270610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
Magnesium (Mg) is an essential macronutrient for plant growth and development. Physiological and transcriptome analyses were conducted to elucidate the adaptive mechanisms to long-term Mg deficiency (MD) in banana seedlings at the 6-leaf stage. Banana seedlings were irrigated with a Mg-free nutrient solution for 42 days, and a mock control was treated with an optimum Mg supply. Leaf edge chlorosis was observed on the 9th leaf, which gradually turned yellow from the edge to the interior region. Accordingly, the total chlorophyll content was reduced by 47.1%, 47.4%, and 53.8% in the interior, center and edge regions, respectively, and the net photosynthetic rate was significantly decreased in the 9th leaf. Transcriptome analysis revealed that MD induced 9,314, 7,425 and 5,716 differentially expressed genes (DEGs) in the interior, center and edge regions, respectively. Of these, the chlorophyll metabolism pathway was preferentially enriched according to Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The expression levels of the five candidate genes in leaves were consistent with what is expected during chlorophyll metabolism. Our results suggest that changes in the expression of genes related to chlorophyll synthesis and decomposition result in the yellowing of banana seedling leaves, and these results are helpful for understanding the banana response mechanism to long-term MD.
Collapse
Affiliation(s)
- Baolin Kan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, HaiKou, China
| | - Yong Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, HaiKou, China
| | - Pengmeng Du
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, HaiKou, China
| | - Xinping Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, HaiKou, China
| | - Wenjie Lai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, HaiKou, China
| | - Haiyan Hu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, HaiKou, China
- * E-mail:
| |
Collapse
|
24
|
Andriūnaitė E, Rugienius R, Tamošiūnė I, Haimi P, Vinskienė J, Baniulis D. Enhanced Carbonylation of Photosynthetic and Glycolytic Proteins in Antibiotic Timentin-Treated Tobacco In Vitro Shoot Culture. PLANTS 2022; 11:plants11121572. [PMID: 35736723 PMCID: PMC9228549 DOI: 10.3390/plants11121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/17/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 11/26/2022]
Abstract
Antibiotics are used in plant in vitro tissue culture to eliminate microbial contamination or for selection in genetic transformation. Antibiotic timentin has a relatively low cytotoxic effect on plant tissue culture; however, it could induce an enduring growth-inhibiting effect in tobacco in vitro shoot culture that persists after tissue transfer to a medium without antibiotic. The effect is associated with an increase in oxidative stress injury in plant tissues. In this study, we assessed changes of reactive oxygen species accumulation, protein expression, and oxidative protein modification response associated with enduring timentin treatment-induced growth suppression in tobacco (Nicotiana tabacum L.) in vitro shoot culture. The study revealed a gradual 1.7 and 1.9-fold increase in superoxide (O2•−) content at the later phase of the propagation cycle for treatment control (TC) and post-antibiotic treatment (PA) shoots; however, the O2•− accumulation pattern was different. For PA shoots, the increase in O2•− concentration occurred several days earlier, resulting in 1.2 to 1.4-fold higher O2•− concentration compared to TC during the period following the first week of cultivation. Although no protein expression differences were detectable between the TC and PA shoots by two-dimensional electrophoresis, the increase in O2•− concentration in PA shoots was associated with a 1.5-fold increase in protein carbonyl modification content after one week of cultivation, and protein carbonylation analysis revealed differential modification of 26 proteoforms involved in the biological processes of photosynthesis and glycolysis. The results imply that the timentin treatment-induced oxidative stress might be implicated in nontranslational cellular redox balance regulation, accelerates the development of senescence of the shoot culture, and contributes to the shoot growth-suppressing effect of antibiotic treatment.
Collapse
|
25
|
Kale RS, Seep JL, Sallans L, Frankel LK, Bricker TM. Oxidative modification of LHC II associated with photosystem II and PS I-LHC I-LHC II membranes. PHOTOSYNTHESIS RESEARCH 2022; 152:261-274. [PMID: 35179681 DOI: 10.1007/s11120-022-00902-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/29/2021] [Accepted: 02/01/2022] [Indexed: 05/22/2023]
Abstract
Under aerobic conditions the production of Reactive Oxygen Species (ROS) by electron transport chains is unavoidable, and occurs in both autotrophic and heterotrophic organisms. In photosynthetic organisms both Photosystem II (PS II) and Photosystem I (PS I), in addition to the cytochrome b6/f complex, are demonstrated sources of ROS. All of these membrane protein complexes exhibit oxidative damage when isolated from field-grown plant material. An additional possible source of ROS in PS I and PS II is the distal, chlorophyll-containing light-harvesting array LHC II, which is present in both photosystems. These serve as possible sources of 1O2 produced by the interaction of 3O2 with 3chl* produced by intersystem crossing. We have hypothesized that amino acid residues close to the sites of ROS generation will be more susceptible to oxidative modification than distant residues. In this study, we have identified oxidized amino acid residues in a subset of the spinach LHC II proteins (Lhcb1 and Lhcb2) that were associated with either PS II membranes (i.e. BBYs) or PS I-LHC I-LHC II membranes, both of which were isolated from field-grown spinach. We identified oxidatively modified residues by high-resolution tandem mass spectrometry. Interestingly, two different patterns of oxidative modification were evident for the Lhcb1 and Lhcb2 proteins from these different sources. In the LHC II associated with PS II membranes, oxidized residues were identified to be located on the stromal surface of Lhcb1 and, to a much lesser extent, Lhcb2. Relatively few oxidized residues were identified as buried in the hydrophobic core of these proteins. The LHC II associated with PS I-LHC I-LHC II membranes, however, exhibited fewer surface-oxidized residues but, rather a large number of oxidative modifications buried in the hydrophobic core regions of both Lhcb1 and Lhcb2, adjacent to the chlorophyll prosthetic groups. These results appear to indicate that ROS, specifically 1O2, can modify the Lhcb proteins associated with both photosystems and that the LHC II associated with PS II membranes represent a different population from the LHC II associated with PS I-LHC I-LHC II membranes.
Collapse
Affiliation(s)
- Ravindra S Kale
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jacob L Seep
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Larry Sallans
- The Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Laurie K Frankel
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Terry M Bricker
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
26
|
Li J, Gong J, Zhang L, Shen H, Chen G, Xie Q, Hu Z. Overexpression of SlPRE5, an atypical bHLH transcription factor, affects plant morphology and chlorophyll accumulation in tomato. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153698. [PMID: 35461174 DOI: 10.1016/j.jplph.2022.153698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/29/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 05/22/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factors play vital regulatory roles in a series of metabolic, physiological, and developmental processes of plants. Here, SlPRE5, an atypical bHLH gene, was isolated from tomato. SlPRE5 was noticeably expressed in young leaves, sepals, and flowers. SlPRE5-overexpressing plants exhibited rolling leaves with reduced chlorophyll content, increased stem internode length, leaf angle, and compound leaf length. The water loss rate of mature leaves and the content of starch were significantly reduced, while the content of gibberellin was significantly increased in transgenic plants. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) showed that SlPRE5 could interact with SlAIF1, SlAIF2, and SlPAR1. qRT-PCR and RNA-seq results revealed that the expression levels of genes related to chloroplast development, chlorophyll metabolism, gibberellin metabolism and signal transduction, starch, photosynthesis, and cell expansion were significantly altered in SlPRE5-overexpression plants. Collectively, our results suggest that SlPRE5 is a crucial transcription factor involved in plant morphology and chlorophyll accumulation in tomato leaves.
Collapse
Affiliation(s)
- Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Jun Gong
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Lincheng Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Hui Shen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
27
|
Li X, Yang G, Yuan X, Wu F, Wang W, Shen JR, Kuang T, Qin X. Structural elucidation of vascular plant photosystem I and its functional implications. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:432-443. [PMID: 34637699 DOI: 10.1071/fp21077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/11/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
In vascular plants, bryophytes and algae, the photosynthetic light reaction takes place in the thylakoid membrane where two transmembrane supercomplexes PSII and PSI work together with cytochrome b 6 f and ATP synthase to harvest the light energy and produce ATP and NADPH. Vascular plant PSI is a 600-kDa protein-pigment supercomplex, the core complex of which is partly surrounded by peripheral light-harvesting complex I (LHCI) that captures sunlight and transfers the excitation energy to the core to be used for charge separation. PSI is unique mainly in absorption of longer-wavelengths than PSII, fast excitation energy transfer including uphill energy transfer, and an extremely high quantum efficiency. From the early 1980s, a lot of effort has been dedicated to structural and functional studies of PSI-LHCI, leading to the current understanding of how more than 200 cofactors are kept at the correct distance and geometry to facilitate fast energy transfer in this supercomplex at an atomic level. In this review, we review the history of studies on vascular plant PSI-LHCI, summarise the present research progress on its structure, and present some new and further questions to be answered in future studies.
Collapse
Affiliation(s)
- Xiuxiu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China; and School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Gongxian Yang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Xinyi Yuan
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Fenghua Wu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| |
Collapse
|
28
|
Izuno A, Onoda Y, Amada G, Kobayashi K, Mukai M, Isagi Y, Shimizu KK. Demography and selection analysis of the incipient adaptive radiation of a Hawaiian woody species. PLoS Genet 2022; 18:e1009987. [PMID: 35061669 PMCID: PMC8782371 DOI: 10.1371/journal.pgen.1009987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Ecological divergence in a species provides a valuable opportunity to study the early stages of speciation. We focused on Metrosideros polymorpha, a unique example of the incipient radiation of woody species, to examine how an ecological divergence continues in the face of gene flow. We analyzed the whole genomes of 70 plants collected throughout the island of Hawaii, which is the youngest island with the highest altitude in the archipelago and encompasses a wide range of environments. The continuous M. polymorpha forest stands on the island of Hawaii were differentiated into three genetic clusters, each of which grows in a distinctive environment and includes substantial genetic and phenotypic diversity. The three genetic clusters showed signatures of selection in genomic regions encompassing genes relevant to environmental adaptations, including genes associated with light utilization, oxidative stress, and leaf senescence, which are likely associated with the ecological differentiation of the species. Our demographic modeling suggested that the glaberrima cluster in wet environments maintained a relatively large population size and two clusters split: polymorpha in the subalpine zone and incana in dry and hot conditions. This ecological divergence possibly began before the species colonized the island of Hawaii. Interestingly, the three clusters recovered genetic connectivity coincidentally with a recent population bottleneck, in line with the weak reproductive isolation observed in the species. This study highlights that the degree of genetic differentiation between ecologically-diverged populations can vary depending on the strength of natural selection in the very early phases of speciation. Knowledge about how genetic barriers are formed between populations in distinct environments is valuable to understand the processes of speciation and conserve biodiversity. Metrosideros polymorpha, an endemic woody species in the Hawaiian Islands, is a good system to study developing genetic barriers in a species, because it colonized the diverse environments and diversified the morphology for a relatively short period of time. We analyzed the genomes of 70 M. polymorpha plants from a broad range of environments on the island of Hawaii to infer the current and past genetic barriers among them. Currently, M. polymorpha plants growing in different environments have substantially different genomes, especially at the genomic regions with genes putatively controlling physiology to fit in distinct environment. However, in its history, they had hybridized with one another, possibly because plants formerly growing in different environments came into close contact due to the climate changes. It is suggested that genetic barriers can easily strengthen or weaken depending on environments splitting the ecology of a species before reproductive isolation becomes complete.
Collapse
Affiliation(s)
- Ayako Izuno
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Tsukuba, Japan
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Gaku Amada
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Keito Kobayashi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mana Mukai
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuji Isagi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
29
|
Harith-Fadzilah N, Lam SD, Haris-Hussain M, Ghani IA, Zainal Z, Jalinas J, Hassan M. Proteomics and Interspecies Interaction Analysis Revealed Abscisic Acid Signalling to Be the Primary Driver for Oil Palm's Response against Red Palm Weevil Infestation. PLANTS (BASEL, SWITZERLAND) 2021; 10:2574. [PMID: 34961045 PMCID: PMC8709180 DOI: 10.3390/plants10122574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/09/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
The red palm weevil (RPW; Rhynchophorus ferrugineus Olivier (Coleoptera Curculionidae)) is an invasive insect pest that is difficult to manage due to its nature of infesting the host palm trees from within. A holistic, molecular-based approach to identify proteins that correlate with RPW infestation could give useful insights into the vital processes that are prevalent to the host's infestation response and identify the potential biomarkers for an early detection technique. Here, a shotgun proteomic analysis was performed on oil palm (Elaeis guineensis; OP) under untreated (control), wounding by drilling (wounded), and artificial larval infestation (infested) conditions at three different time points to characterise the RPW infestation response at three different stages. KEGG pathway enrichment analysis revealed many overlapping pathways between the control, wounded, and infested groups. Further analysis via literature searches narrowed down biologically relevant proteins into categories, which were photosynthesis, growth, and stress response. Overall, the patterns of protein expression suggested abscisic acid (ABA) hormone signalling to be the primary driver of insect herbivory response. Interspecies molecular docking analysis between RPW ligands and OP receptor proteins provided putative interactions that result in ABA signalling activation. Seven proteins were selected as candidate biomarkers for early infestation detection based on their relevance and association with ABA signalling. The MS data are available via ProteomeXchange with identifier PXD028986. This study provided a deeper insight into the mechanism of stress response in OP in order to develop a novel detection method or improve crop management.
Collapse
Affiliation(s)
- Nazmi Harith-Fadzilah
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.H.-F.); (Z.Z.)
| | - Su Datt Lam
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Mohammad Haris-Hussain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.-H.); (I.A.G.); (J.J.)
| | - Idris Abd Ghani
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.-H.); (I.A.G.); (J.J.)
| | - Zamri Zainal
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.H.-F.); (Z.Z.)
| | - Johari Jalinas
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.-H.); (I.A.G.); (J.J.)
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.H.-F.); (Z.Z.)
| |
Collapse
|
30
|
Wu G, Ma L, Yuan C, Dai J, Luo L, Poudyal RS, Sayre RT, Lee CH. Formation of light-harvesting complex II aggregates from LHCII-PSI-LHCI complexes in rice plants under high light. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4938-4948. [PMID: 33939808 DOI: 10.1093/jxb/erab188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/29/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
During low light- (LL) induced state transitions in dark-adapted rice (Oryza sativa) leaves, light-harvesting complex (LHC) II become phosphorylated and associate with PSI complexes to form LHCII-PSI-LHCI supercomplexes. When the leaves are subsequently transferred to high light (HL) conditions, phosphorylated LHCII complexes are no longer phosphorylated. Under the HL-induced transition in LHC phosphorylation status, we observed a new green band in the stacking gel of native green-PAGE, which was determined to be LHCII aggregates by immunoblotting and 77K chlorophyll fluorescence analysis. Knockout mutants of protein phosphatase 1 (PPH1) which dephosphorylates LHCII failed to form these LHCII aggregates. In addition, the ability to develop non-photochemical quenching in the PPH1 mutant under HL was less than for wild-type plants. As determined by immunoblotting analysis, LHCII proteins present in LHCII-PSI-LHCI supercomplexes included the Lhcb1 and Lhcb2 proteins. In this study, we provide evidence suggesting that LHCII in the LHCII-PSI-LHCI supercomplexes are dephosphorylated and subsequently form aggregates to dissipate excess light energy under HL conditions. We propose that this LHCII aggregation, involving LHCII L-trimers, is a newly observed photoprotective light-quenching process operating in the early stage of acclimation to HL in rice plants.
Collapse
Affiliation(s)
- Guangxi Wu
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Lin Ma
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Cai Yuan
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Jiahao Dai
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Lai Luo
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Roshan Sharma Poudyal
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | | | - Choon-Hwan Lee
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
31
|
Lokstein H, Renger G, Götze JP. Photosynthetic Light-Harvesting (Antenna) Complexes-Structures and Functions. Molecules 2021; 26:molecules26113378. [PMID: 34204994 PMCID: PMC8199901 DOI: 10.3390/molecules26113378] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Chlorophylls and bacteriochlorophylls, together with carotenoids, serve, noncovalently bound to specific apoproteins, as principal light-harvesting and energy-transforming pigments in photosynthetic organisms. In recent years, enormous progress has been achieved in the elucidation of structures and functions of light-harvesting (antenna) complexes, photosynthetic reaction centers and even entire photosystems. It is becoming increasingly clear that light-harvesting complexes not only serve to enlarge the absorption cross sections of the respective reaction centers but are vitally important in short- and long-term adaptation of the photosynthetic apparatus and regulation of the energy-transforming processes in response to external and internal conditions. Thus, the wide variety of structural diversity in photosynthetic antenna “designs” becomes conceivable. It is, however, common for LHCs to form trimeric (or multiples thereof) structures. We propose a simple, tentative explanation of the trimer issue, based on the 2D world created by photosynthetic membrane systems.
Collapse
Affiliation(s)
- Heiko Lokstein
- Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 12116 Prague, Czech Republic
- Correspondence:
| | - Gernot Renger
- Max-Volmer-Laboratorium, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Jan P. Götze
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany;
| |
Collapse
|
32
|
Abstract
Porphyrin derivatives are ubiquitous in nature and have important biological roles, such as in light harvesting, oxygen transport, and catalysis. Owing to their intrinsic π-conjugated structure, porphyrin derivatives exhibit characteristic photophysical and electrochemical properties. In biological systems, porphyrin derivatives are associated with various protein molecules through noncovalent interactions. For example, hemoglobin, which is responsible for oxygen transport in most vertebrates, consists of four subunits of a globular protein with an iron porphyrin derivative prosthetic group. Furthermore, noncovalently arranged porphyrin derivatives are the fundamental chromophores in light-harvesting systems for photosynthesis in plants and algae. These biologically important roles originate from the functional versatility of porphyrin derivatives. Specifically, porphyrins are excellent host compounds, forming coordination complexes with various metal ions that adds functionality to the porphyrin unit, such as redox activity and additional ligand binding at the central metal ion. In addition, porphyrins are useful building blocks for functional supramolecular assemblies because of their flat and symmetrical molecular architectures, and their excellent photophysical properties are typically utilized for the fabrication of bioactive functional materials. In this Account, we summarize our endeavors over the past decade to develop functional materials based on porphyrin derivatives using bioinspired approaches. In the first section, we discuss several synthetic receptors that act as artificial allosteric host systems and can be used for the selective detection of various chemicals, such as cyanide, chloride, and amino acids. In the second section, we introduce multiporphyrin arrays as mimics of natural light-harvesting complexes. The active control of energy transfer processes by additional guest binding and the fabrication of organic photovoltaic devices using porphyrin derivatives are also introduced. In the third section, we introduce several types of porphyrin-based supramolecular assemblies. Through noncovalent interactions such as metal-ligand interaction, hydrogen bonding, and π-π interaction, porphyrin derivatives were constructed as supramolecular polymers with formation of fiber or toroidal assembly. In the last section, the application of porphyrin derivatives for biomedical nanodevice fabrication is introduced. Even though porphyrins were good candidates as photosensitizers for photodynamic therapy, they have limitations for biomedical application owing to aggregation in aqueous media. We suggested ionic dendrimer porphyrins and they showed excellent photodynamic therapy (PDT) efficacy.
Collapse
Affiliation(s)
- Jong Min Park
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyeong-Im Hong
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hosoowi Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Woo-Dong Jang
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
33
|
Bashyal BM, Parmar P, Zaidi NW, Aggarwal R. Molecular Programming of Drought-Challenged Trichoderma harzianum-Bioprimed Rice ( Oryza sativa L.). Front Microbiol 2021; 12:655165. [PMID: 33927706 PMCID: PMC8076752 DOI: 10.3389/fmicb.2021.655165] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Trichoderma biopriming enhances rice growth in drought-stressed soils by triggering various plant metabolic pathways related to antioxidative defense, secondary metabolites, and hormonal upregulation. In the present study, transcriptomic analysis of rice cultivar IR64 bioprimed with Trichoderma harzianum under drought stress was carried out in comparison with drought-stressed samples using next-generation sequencing techniques. Out of the 2,506 significant (p < 0.05) differentially expressed genes (DEGs), 337 (15%) were exclusively expressed in drought-stressed plants, 382 (15%) were expressed in T. harzianum-treated drought-stressed plants, and 1,787 (70%) were commonly expressed. Furthermore, comparative analysis of upregulated and downregulated genes under stressed conditions showed that 1,053 genes (42%) were upregulated and 733 genes (29%) were downregulated in T. harzianum-treated drought-stressed rice plants. The genes exclusively expressed in T. harzianum-treated drought-stressed plants were mostly photosynthetic and antioxidative such as plastocyanin, small chain of Rubisco, PSI subunit Q, PSII subunit PSBY, osmoproteins, proline-rich protein, aquaporins, stress-enhanced proteins, and chaperonins. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis states that the most enriched pathways were metabolic (38%) followed by pathways involved in the synthesis of secondary metabolites (25%), carbon metabolism (6%), phenyl propanoid (7%), and glutathione metabolism (3%). Some of the genes were selected for validation using real-time PCR which showed consistent expression as RNA-Seq data. Furthermore, to establish host-T. harzianum interaction, transcriptome analysis of Trichoderma was also carried out. The Gene Ontology (GO) analysis of T. harzianum transcriptome suggested that the annotated genes are functionally related to carbohydrate binding module, glycoside hydrolase, GMC oxidoreductase, and trehalase and were mainly upregulated, playing an important role in establishing the mycelia colonization of rice roots and its growth. Overall, it can be concluded that T. harzianum biopriming delays drought stress in rice cultivars by a multitude of molecular programming.
Collapse
Affiliation(s)
- Bishnu Maya Bashyal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Pooja Parmar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | | | - Rashmi Aggarwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| |
Collapse
|
34
|
Wu J, Hu J, Wang L, Zhao L, Ma F. Responses of Phragmites australis to copper stress: A combined analysis of plant morphology, physiology and proteomics. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:351-362. [PMID: 32810882 DOI: 10.1111/plb.13175] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/21/2020] [Accepted: 08/03/2020] [Indexed: 05/11/2023]
Abstract
Few relevant research attempts have been made to determine heavy metal resistance mechanisms of rhizomatous perennial plants. Thus, it is pertinent to investigate the physiological and biochemical changes in Phragmites australis under metal-stressed conditions to facilitate the development of strategies to enhance copper (Cu) tolerance. We measured parameters related to plant growth and development, metal translocation and physiological responses of P. australis subjected to Cu stress. In addition, the differentially expressed proteins (DEP) were evaluated using the isobaric tag for relative and absolute quantification (iTRAQ) system. A large amount of copper accumulates in the roots of P.australis, but the growth parameters were not sensitive to Cu. However, the high concentration of Cu reduced the content of chlorophyll a and chlorophyll b, and the expression of important photosynthesis proteins PsbD, PsbO and PsaA were all down-regulated, so photosynthesis was inhibited. In contrast, the content of ascorbic acid and proline both increased with the increase of copper stress. P.australis fixed a large amount of Cu in its roots, limiting the migration of Cu to other parts of the plant. Moreover, Cu stress can affect photosynthesis by inhibiting the activity of PSI, PSII and LHCII. In addition, P.australis synthesizes ascorbic acid through the D-mannose/L-galactose pathway, and synthesizes proline through the ornithine pathway. Ascorbic acid and proline can increase Cu tolerance and protect photosynthesis. These results provide a theoretical basis for understanding the tolerance and repair mechanisms of plants in response to heavy metal pollution.
Collapse
Affiliation(s)
- J Wu
- School of Environmental Science, Liaoning University, Shenyang, China
| | - J Hu
- School of Environmental Science, Liaoning University, Shenyang, China
| | - L Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - L Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - F Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
35
|
Bhoite R, Si P, Siddique KHM, Yan G. Comparative transcriptome analyses for metribuzin tolerance provide insights into key genes and mechanisms restoring photosynthetic efficiency in bread wheat (Triticum aestivum L.). Genomics 2021; 113:910-918. [PMID: 33600945 DOI: 10.1016/j.ygeno.2021.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2020] [Revised: 01/12/2021] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Weeds are the biggest threat to cropping system sustainability in wheat. Metribuzin is a versatile herbicide for broad-spectrum weed management. Understanding key genes, mechanisms and functional markers are essential to develop higher metribuzin tolerant wheats. We identified Chuan Mai 25 (tolerant) and Ritchie (susceptible) as contrasting genotypes to metribuzin stress through dose-response analyses. Transcriptome sequencing using NovaSeq 6000 RNA-Seq platform identified a total of 77,443 genes; 59,915 known genes and 17,528 novel genes. The functional enrichment analysis at 0 h, 24 h and 60 h herbicide exposure revealed that endogenous increase of metabolic enzymes, light-harvesting chlorophyll proteins, PSII stability factor HCF136 and glucose metabolism conferred metribuzin tolerance. The validation of DEGs using RT-qPCR and QTL mapping confirmed their responsiveness to metribuzin. Transcription factors MYB, AP2-EREBP, ABI3VP1, bHLH, NAC are significantly expressed during metribuzin stress. Transcripts with significant enrichments revealed 114 SSRs for genomic selection. The master regulators provide promising avenues for enhancing metribuzin tolerance.
Collapse
Affiliation(s)
- Roopali Bhoite
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| | - Ping Si
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| | - Guijun Yan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
36
|
Chaudhry AH, Nayab S, Hussain SB, Ali M, Pan Z. Current Understandings on Magnesium Deficiency and Future Outlooks for Sustainable Agriculture. Int J Mol Sci 2021; 22:1819. [PMID: 33673043 PMCID: PMC7917752 DOI: 10.3390/ijms22041819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022] Open
Abstract
The productivity of agricultural produce is fairly dependent on the availability of nutrients and efficient use. Magnesium (Mg2+) is an essential macronutrient of living cells and is the second most prevalent free divalent cation in plants. Mg2+ plays a role in several physiological processes that support plant growth and development. However, it has been largely forgotten in fertilization management strategies to increase crop production, which leads to severe reductions in plant growth and yield. In this review, we discuss how the Mg2+ shortage induces several responses in plants at different levels: morphological, physiological, biochemical and molecular. Additionally, the Mg2+ uptake and transport mechanisms in different cellular organelles and the role of Mg2+ transporters in regulating Mg2+ homeostasis are also discussed. Overall, in this review, we critically summarize the available information about the responses of Mg deficiency on plant growth and development, which would facilitate plant scientists to create Mg2+-deficiency-resilient crops through agronomic and genetic biofortification.
Collapse
Affiliation(s)
- Ahmad Hassan Chaudhry
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China;
| | - Shafa Nayab
- Department of Horticulture, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan; (S.N.); (S.B.H.)
| | - Syed Bilal Hussain
- Department of Horticulture, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan; (S.N.); (S.B.H.)
| | - Muqarrab Ali
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan;
| | - Zhiyong Pan
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
37
|
Label-Free Quantitative Proteomics Analysis in Susceptible and Resistant Brassica napus Cultivars Infected with Xanthomonas campestris pv. campestris. Microorganisms 2021; 9:microorganisms9020253. [PMID: 33513868 PMCID: PMC7911590 DOI: 10.3390/microorganisms9020253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2021] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 01/18/2023] Open
Abstract
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is the main disease of cruciferous vegetables. To characterize the resistance mechanism in the Brassica napus–Xcc pathosystem, Xcc-responsive proteins in susceptible (cv. Mosa) and resistant (cv. Capitol) cultivars were investigated using gel-free quantitative proteomics and analysis of gene expression. This allowed us to identify 158 and 163 differentially expressed proteins following Xcc infection in cv. Mosa and cv. Capitol, respectively, and to classify them into five major categories including antioxidative systems, proteolysis, photosynthesis, redox, and innate immunity. All proteins involved in protein degradation such as the protease complex, proteasome subunits, and ATP-dependent Clp protease proteolytic subunits, were upregulated only in cv. Mosa, in which higher hydrogen peroxide accumulation concurred with upregulated superoxide dismutase. In cv. Capitol, photosystem II (PS II)-related proteins were downregulated (excepting PS II 22 kDa), whereas the PS I proteins, ATP synthase, and ferredoxin-NADP+ reductase, were upregulated. For redox-related proteins, upregulation of thioredoxin, 2-cys peroxiredoxin, and glutathione S-transferase occurred in cv. Capitol, consistent with higher NADH-, ascorbate-, and glutathione-based reducing potential, whereas the proteins involved in the C2 oxidative cycle and glycolysis were highly activated in cv. Mosa. Most innate immunity-related proteins, including zinc finger domain (ZFD)-containing protein, glycine-rich RNA-binding protein (GRP) and mitochondrial outer membrane porin, were highly enhanced in cv. Capitol, concomitant with enhanced expression of ZFD and GRP genes. Distinguishable differences in the protein profile between the two cultivars deserves higher importance for breeding programs and understanding of disease resistance in the B. napus–Xcc pathosystem.
Collapse
|
38
|
Guo DL, Wang ZG, Pei MS, Guo LL, Yu YH. Transcriptome analysis reveals mechanism of early ripening in Kyoho grape with hydrogen peroxide treatment. BMC Genomics 2020; 21:784. [PMID: 33176674 PMCID: PMC7657363 DOI: 10.1186/s12864-020-07180-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background In a previous study, the early ripening of Kyoho grape following H2O2 treatment was explored at the physiological level, but the mechanism by which H2O2 promotes ripening at the molecular level is unclear. To reveal the molecular mechanism, RNA-sequencing analysis was conducted on the different developmental stages of Kyoho berry treated with H2O2. Results In the comparison of treatment and control groups, 406 genes were up-regulated and 683 were down-regulated. Time course sequencing (TCseq) analysis showed that the expression patterns of most of the genes were similar between the treatment and control, except for some genes related to chlorophyll binding and photosynthesis. Differential expression analysis and the weighted gene co-expression network were used to screen significantly differentially expressed genes and hub genes associated with oxidative stress (heat shock protein, HSP), cell wall deacetylation (GDSL esterase/lipase, GDSL), cell wall degradation (xyloglucan endotransglucosylase/ hydrolase, XTH), and photosynthesis (chlorophyll a-b binding protein, CAB1). Gene expression was verified with RT-qPCR, and the results were largely consistent with those of RNA sequencing. Conclusions The RNA-sequencing analysis indicated that H2O2 treatment promoted the early ripening of Kyoho berry by affecting the expression levels of HSP, GDSL, XTH, and CAB1 and- photosynthesis- pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07180-y.
Collapse
Affiliation(s)
- Da-Long Guo
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China. .,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China.
| | - Zhen-Guang Wang
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| | - Mao-Song Pei
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| | - Li-Li Guo
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| | - Yi-He Yu
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| |
Collapse
|
39
|
Sultana N, Islam S, Juhasz A, Yang R, She M, Alhabbar Z, Zhang J, Ma W. Transcriptomic Study for Identification of Major Nitrogen Stress Responsive Genes in Australian Bread Wheat Cultivars. Front Genet 2020; 11:583785. [PMID: 33193713 PMCID: PMC7554635 DOI: 10.3389/fgene.2020.583785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
High nitrogen use efficiency (NUE) in bread wheat is pivotal to sustain high productivity. Knowledge about the physiological and transcriptomic changes that regulate NUE, in particular how plants cope with nitrogen (N) stress during flowering and the grain filling period, is crucial in achieving high NUE. Nitrogen response is differentially manifested in different tissues and shows significant genetic variability. A comparative transcriptome study was carried out using RNA-seq analysis to investigate the effect of nitrogen levels on gene expression at 0 days post anthesis (0 DPA) and 10 DPA in second leaf and grain tissues of three Australian wheat (Triticum aestivum) varieties that were known to have varying NUEs. A total of 12,344 differentially expressed genes (DEGs) were identified under nitrogen stress where down-regulated DEGs were predominantly associated with carbohydrate metabolic process, photosynthesis, light-harvesting, and defense response, whereas the up-regulated DEGs were associated with nucleotide metabolism, proteolysis, and transmembrane transport under nitrogen stress. Protein–protein interaction and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis further revealed that highly interacted down-regulated DEGs were involved in light-harvesting and photosynthesis, and up-regulated DEGs were mostly involved in steroid biosynthesis under N stress. The common down-regulated genes across the cultivars included photosystem II 10 kDa polypeptide family proteins, plant protein 1589 of uncharacterized protein function, etc., whereas common up-regulated genes included glutamate carboxypeptidase 2, placenta-specific8 (PLAC8) family protein, and a sulfate transporter. On the other hand, high NUE cultivar Mace responded to nitrogen stress by down-regulation of a stress-related gene annotated as beta-1,3-endoglucanase and pathogenesis-related protein (PR-4, PR-1) and up-regulation of MYB/SANT domain-containing RADIALIS (RAD)-like transcription factors. The medium NUE cultivar Spitfire and low NUE cultivar Volcani demonstrated strong down-regulation of Photosystem II 10 kDa polypeptide family protein and predominant up-regulation of 11S globulin seed storage protein 2 and protein transport protein Sec61 subunit gamma. In grain tissue, most of the DEGs were related to nitrogen metabolism and proteolysis. The DEGs with high abundance in high NUE cultivar can be good candidates to develop nitrogen stress-tolerant variety with improved NUE.
Collapse
Affiliation(s)
- Nigarin Sultana
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Shahidul Islam
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Angela Juhasz
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia.,School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Rongchang Yang
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Maoyun She
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Zaid Alhabbar
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Jingjuan Zhang
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Wujun Ma
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| |
Collapse
|
40
|
Kouřil R, Nosek L, Opatíková M, Arshad R, Semchonok DA, Chamrád I, Lenobel R, Boekema EJ, Ilík P. Unique organization of photosystem II supercomplexes and megacomplexes in Norway spruce. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:215-225. [PMID: 32654240 PMCID: PMC7590091 DOI: 10.1111/tpj.14918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/19/2019] [Accepted: 06/26/2020] [Indexed: 05/28/2023]
Abstract
Photosystem II (PSII) complexes are organized into large supercomplexes with variable amounts of light-harvesting proteins (Lhcb). A typical PSII supercomplex in plants is formed by four trimers of Lhcb proteins (LHCII trimers), which are bound to the PSII core dimer via monomeric antenna proteins. However, the architecture of PSII supercomplexes in Norway spruce[Picea abies (L.) Karst.] is different, most likely due to a lack of two Lhcb proteins, Lhcb6 and Lhcb3. Interestingly, the spruce PSII supercomplex shares similar structural features with its counterpart in the green alga Chlamydomonas reinhardtii [Kouřil et al. (2016) New Phytol. 210, 808-814]. Here we present a single-particle electron microscopy study of isolated PSII supercomplexes from Norway spruce that revealed binding of a variable amount of LHCII trimers to the PSII core dimer at positions that have never been observed in any other plant species so far. The largest spruce PSII supercomplex, which was found to bind eight LHCII trimers, is even larger than the current largest known PSII supercomplex from C. reinhardtii. We have also shown that the spruce PSII supercomplexes can form various types of PSII megacomplexes, which were also identified in intact grana membranes. Some of these large PSII supercomplexes and megacomplexes were identified also in Pinus sylvestris, another representative of the Pinaceae family. The structural variability and complexity of LHCII organization in Pinaceae seems to be related to the absence of Lhcb6 and Lhcb3 in this family, and may be beneficial for the optimization of light-harvesting under varying environmental conditions.
Collapse
Affiliation(s)
- Roman Kouřil
- Department of BiophysicsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityŠlechtitelů 27Olomouc783 71Czech Republic
| | - Lukáš Nosek
- Department of BiophysicsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityŠlechtitelů 27Olomouc783 71Czech Republic
| | - Monika Opatíková
- Department of BiophysicsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityŠlechtitelů 27Olomouc783 71Czech Republic
| | - Rameez Arshad
- Department of BiophysicsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityŠlechtitelů 27Olomouc783 71Czech Republic
- Electron Microscopy GroupGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 7Groningen9747 AGThe Netherlands
| | - Dmitry A. Semchonok
- Electron Microscopy GroupGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 7Groningen9747 AGThe Netherlands
| | - Ivo Chamrád
- Department of Protein Biochemistry and ProteomicsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityŠlechtitelů 27Olomouc783 71Czech Republic
| | - René Lenobel
- Department of Protein Biochemistry and ProteomicsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityŠlechtitelů 27Olomouc783 71Czech Republic
| | - Egbert J. Boekema
- Electron Microscopy GroupGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 7Groningen9747 AGThe Netherlands
| | - Petr Ilík
- Department of BiophysicsCentre of the Region Haná for Biotechnological and Agricultural ResearchFaculty of SciencePalacký UniversityŠlechtitelů 27Olomouc783 71Czech Republic
| |
Collapse
|
41
|
Pinevich AV. Chloroplast history clarified by the criterion of light-harvesting complex. Biosystems 2020; 196:104173. [PMID: 32534171 DOI: 10.1016/j.biosystems.2020.104173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/16/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 01/13/2023]
Abstract
Bacterial essence of mitochondria and chloroplasts was initially proclaimed in general outline. Later, the remarkable insight gave way to an elaborate hypothesis. Finally, it took shape of a theory confirmed by molecular biology data. In particular, the rrn operon, which is the key phylogeny marker, locates chloroplasts on the tree of Cyanobacteria. Chloroplast ancestry and diversity can be also traced with the rpoС and psbA genes, rbc operon, and other molecular criteria of prime importance. Another criterion, also highly reliable, is light-harvesting complex (LHC). LHC pigment and protein moieties specify light acclimation strategies in evolutionary retrospect and modern biosphere. The onset of symbiosis between eukaryotic host and pre-chloroplast, as well as further mutual adjustment of partners depended on physiological competence of LHC. In this review, the criterion of LHC is applied to the origin and diversity of chloroplasts. In particular, ancient cyanobacterium possessing tandem antenna (encoded by the cbp genes and the pbp genes, correspondingly), and defined as a prochlorophyte, is argued to be chloroplast ancestor.
Collapse
Affiliation(s)
- Alexander V Pinevich
- St. Petersburg State University, Department of Microbiology, St. Petersburg, Russia.
| |
Collapse
|
42
|
Zhu QL, Bao J, Liu J, Zheng JL. High salinity acclimatization alleviated cadmium toxicity in Dunaliella salina: Transcriptomic and physiological evidence. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 223:105492. [PMID: 32361487 DOI: 10.1016/j.aquatox.2020.105492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/29/2019] [Revised: 03/29/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
In the present study, we tested the hypothesis that high salinity acclimatization can mitigate cadmium (Cd) toxicity in the microalga Dunaliella salina. To this end, microalgal cells were subjected to high salinity (60 g/L) for 12 weeks until the growth rate remained stable between generations and were then exposed to 2.5 mg/L of Cd for 4 days. Acute Cd toxicity impaired cell growth by increasing Cd bioaccumulation and lipid peroxidation, which reduced cellular pigment, total protein, and glutathione content. It also significantly weakened photosynthetic efficiency and total antioxidant capacity. However, acclimatization to high salinity alleviated these negative effects under Cd stress. To understand the potential mechanisms behind this phenomenon, 12 cDNA libraries from control, Cd-exposed (Cd), high salinity-acclimated (Salinity), and high salinity-acclimated with Cd exposure (Salinity + Cd) cells were derived using RNA sequencing. A total of 2019, 1799, 2150 and 1256 differentially expressed genes (DEGs) were identified from sample groups Salinity / Control, Cd / Control, Salinity + Cd / Control, and Salinity + Cd / Cd, respectively. Some of these DEGs were significantly enriched in ribosome, photosynthesis, stress defense, and photosynthesis-antenna proteins. Among these genes, 82 ribosomal genes were up-regulated in Salinity / Control (corrected P = 3.8 × 10-28), while 81 were down-regulated in Cd / Control (corrected P = 1.1 × 10-24). Moreover, high salinity acclimatization up-regulated 8 photosynthesis genes and 18 stress defense genes compared with the control. Additionally, 3 photosynthesis genes, 11 stress defense genes and 11 genes encoding light harvesting proteins were up-regulated by high salinity acclimatization under Cd exposure. Overall, high salinity acclimatization mitigated Cd toxicity, possibly by up-regulating the transcription of photosynthesis, stress defense, and ribosomal genes. These results provide new insights on cross-tolerance in microalgae.
Collapse
Affiliation(s)
- Qing-Ling Zhu
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, 1 Zheda Road, Dinghai District, Zhoushan, 316000, Zhejiang, PR China; College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Jingjing Bao
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, 1 Zheda Road, Dinghai District, Zhoushan, 316000, Zhejiang, PR China
| | - Jianhua Liu
- Institute of Marine Biology & Pharmacology, Ocean College, Zhejiang University, 1 Zheda Road, Dinghai District, Zhoushan, 316000, Zhejiang, PR China; College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| |
Collapse
|
43
|
Xu X, Zhang S, Cheng Z, Li T, Jia Y, Wang G, Yang Z, Xian J, Yang Y, Zhou W. Transcriptome analysis revealed cadmium accumulation mechanisms in hyperaccumulator Siegesbeckia orientalis L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18853-18865. [PMID: 32207009 DOI: 10.1007/s11356-020-08387-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/20/2019] [Accepted: 03/10/2020] [Indexed: 05/28/2023]
Abstract
Siegesbeckia orientalis L. was identified as a novel Cd-hyperaccumulator and valuable phytoremediation material. However, the molecular mechanisms underlying Cd accumulation in S. orientalis are largely unknown. In this study, RNA-Seq analysis was performed to study the Cd-accumulating mechanisms in its roots with or without Cd treatment. The RNA-seq analysis generated 312 million pairs of clean reads and 78G sequencing data. De novo transcriptome assembly produced 355,070 transcripts with an average length of 823.59 bp and 194,207 unigenes with an average length of 605.68 bp. Comparative transcriptome analyses identified a large number of differentially expressed genes in roots under Cd stress, and functional annotation suggested that S. orientalis utilizes various biological pathways involving many gene networks working simultaneously to cope with the stress. This study revealed that four biological pathways were mainly involved in S. orientalis tolerance to Cd stress, including reactive oxygen species scavenging, phenylpropanoid biosynthesis pathway, Cd absorption and transport, and ABA signaling pathway. The genes related to photosynthesis and heavy metal transport are likely the potential candidates and could be further investigated to determine their roles in Cd tolerance in S. orientalis roots. These findings will be useful to understand the Cd accumulation mechanisms in S. orientalis and facilitate the study of phytoremediation at the molecular level in plants.
Collapse
Affiliation(s)
- Xiaoxun Xu
- School of Environment Sciences, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Soil Environment Protection of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shirong Zhang
- School of Environment Sciences, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Soil Environment Protection of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Zhang Cheng
- School of Environment Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yongxia Jia
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guiyin Wang
- School of Environment Sciences, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Soil Environment Protection of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhanbiao Yang
- School of Environment Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junren Xian
- School of Environment Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanxiang Yang
- School of Environment Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
44
|
Guo W, Cheng J, Ali KA, Kumar S, Guo C. Conversion of NaHCO 3 to Na 2 CO 3 with a growth of Arthrospira platensis cells in 660 m 2 raceway ponds with a CO 2 bicarbonation absorber. Microb Biotechnol 2020; 13:470-478. [PMID: 31646765 PMCID: PMC7017820 DOI: 10.1111/1751-7915.13497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
The weight ratio of Na2 CO3 /NaHCO3 was investigated in order to improve microalgal productivity in large-scale industrial operations by converting NaHCO3 to Na2 CO3 with a growth of Arthrospira platensis cells in 660 m2 raceway ponds. Two microalgal cultivation systems with a NaHCO3 by-product (SPBP) and a CO2 bicarbonation absorber (CBAP) were firstly thoroughly introduced. There was a 13.3% decrease in the initial weight ratio of Na2 CO3 /NaHCO3 resulting in a 25.3% increase in the biomass growth rate with CBAP, compared to that of SPBP. Increased sunlight intensity, solution temperature and pH all resulted in both a higher HCO 3 - absorbance and CO 3 2 - release, thereby increasing the weight ratio of Na2 CO3 /NaHCO3 during the growth of A. platensis. The biomass growth rate was peaked at 39.9 g m-2 day-1 when the weight ratio of Na2 CO3 /NaHCO3 was 3.7. Correspondingly, the cell pigments (chlorophyll a and carotenoid) and trichome size (helix pitch and trichome length) reached to a maximum state of 8.47 mg l-1 , 762 μg l-1 , 57 and 613 μm under the CBAP system.
Collapse
Affiliation(s)
- Wangbiao Guo
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Jun Cheng
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Kubar Ameer Ali
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Santosh Kumar
- State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhou310027China
| | - Caifeng Guo
- Ordos Jiali Spirulina Co., LtdOrdos016199China
| |
Collapse
|
45
|
Kosugi M, Ozawa SI, Takahashi Y, Kamei Y, Itoh S, Kudoh S, Kashino Y, Koike H. Red-shifted chlorophyll a bands allow uphill energy transfer to photosystem II reaction centers in an aerial green alga, Prasiola crispa, harvested in Antarctica. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148139. [DOI: 10.1016/j.bbabio.2019.148139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/05/2019] [Revised: 11/14/2019] [Accepted: 12/04/2019] [Indexed: 12/22/2022]
|
46
|
Patil S, Shinde M, Prashant R, Kadoo N, Upadhyay A, Gupta V. Comparative Proteomics Unravels the Differences in Salt Stress Response of Own-Rooted and 110R-Grafted Thompson Seedless Grapevines. J Proteome Res 2019; 19:583-599. [PMID: 31808345 DOI: 10.1021/acs.jproteome.9b00420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023]
Abstract
Thompson Seedless, a commonly grown table grape variety, is sensitive to salinity when grown on its own roots, and therefore, it is frequently grafted onto salinity-tolerant wild grapevine rootstocks. Rising soil salinity is a growing concern in irrigated agricultural systems. The accumulation of salts near the root zone severely hampers plant growth, leading to a decrease in the productive lifespan of grapevine and causing heavy yield losses to the farmer. In the present study, we investigated the differences in response to salinity between own-rooted Thompson Seedless (TSOR) and 110R-grafted Thompson Seedless (TS110R) grapevines, wherein 110R is reported to be a salt-tolerant rootstock. The grapevines were subjected to salt stress by treating them with a 150 mM NaCl solution. The stress-induced changes in protein abundance were investigated using a label-free shotgun proteomics approach at three time-points viz. 6 h, 48 h, and 7 days of salt treatment. A total of 2793 proteins were identified, of which 246 were differentially abundant at various time-points in TSOR and TS110R vines. The abundance of proteins involved in several biological processes such as photosynthesis, amino acid metabolism, translation, chlorophyll biosynthesis, and generation of precursor metabolites was significantly affected by salt stress in both the vines but at different stages of stress. The results revealed that TSOR vines responded fervently to salt stress, while TS110R vines adopted a preventive approach. The findings of this study add to the knowledge of salinity response in woody and grafted plants and hence open the scope for further studies on salt stress-specific differences induced by grafting.
Collapse
Affiliation(s)
- Sucheta Patil
- Biochemical Sciences Division , CSIR-National Chemical Laboratory , Pune 411008 , India.,Academy of Scientific and Innovative Research , Ghaziabad 201002 , India
| | - Manisha Shinde
- ICAR-National Research Centre for Grapes , Pune 412307 , India
| | - Ramya Prashant
- Biochemical Sciences Division , CSIR-National Chemical Laboratory , Pune 411008 , India
| | - Narendra Kadoo
- Biochemical Sciences Division , CSIR-National Chemical Laboratory , Pune 411008 , India.,Academy of Scientific and Innovative Research , Ghaziabad 201002 , India
| | | | - Vidya Gupta
- Biochemical Sciences Division , CSIR-National Chemical Laboratory , Pune 411008 , India.,Academy of Scientific and Innovative Research , Ghaziabad 201002 , India
| |
Collapse
|
47
|
Saccon F, Durchan M, Kaňa R, Prášil O, Ruban AV, Polívka T. Spectroscopic Properties of Violaxanthin and Lutein Triplet States in LHCII are Independent of Carotenoid Composition. J Phys Chem B 2019; 123:9312-9320. [DOI: 10.1021/acs.jpcb.9b06293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesco Saccon
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS London, U.K
| | - Milan Durchan
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Radek Kaňa
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Ondřej Prášil
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| | - Alexander V. Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS London, U.K
| | - Tomáš Polívka
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
48
|
Phosphorylation-guarded light-harvesting complex II contributes to broad-spectrum blast resistance in rice. Proc Natl Acad Sci U S A 2019; 116:17572-17577. [PMID: 31405986 DOI: 10.1073/pnas.1905123116] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023] Open
Abstract
Environmental conditions are key factors in the progression of plant disease epidemics. Light affects the outbreak of plant diseases, but the underlying molecular mechanisms are not well understood. Here, we report that the light-harvesting complex II protein, LHCB5, from rice is subject to light-induced phosphorylation during infection by the rice blast fungus Magnaporthe oryzae We demonstrate that single-nucleotide polymorphisms (SNPs) in the LHCB5 promoter control the expression of LHCB5, which in turn correlates with the phosphorylation of LHCB5. LHCB5 phosphorylation enhances broad-spectrum resistance of rice to M. oryzae through the accumulation of reactive oxidative species (ROS) in the chloroplast. We also show that LHCB5 phosphorylation-induced resistance is inheritable. Our results uncover an immunity mechanism mediated by phosphorylation of light-harvesting complex II.
Collapse
|
49
|
Sekhar S, Panda D, Kumar J, Mohanty N, Biswal M, Baig MJ, Kumar A, Umakanta N, Samantaray S, Pradhan SK, Shaw BP, Swain P, Behera L. Comparative transcriptome profiling of low light tolerant and sensitive rice varieties induced by low light stress at active tillering stage. Sci Rep 2019; 9:5753. [PMID: 30962576 PMCID: PMC6453891 DOI: 10.1038/s41598-019-42170-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/05/2018] [Accepted: 03/22/2019] [Indexed: 11/30/2022] Open
Abstract
Low light intensity is a great limitation for grain yield and quality in rice. However, yield is not significantly reduced in low light tolerant rice varieties. The work therefore planned for comparative transcriptome profiling under low light stress to decipher the genes involved and molecular mechanism of low light tolerance in rice. At active tillering stage, 50% low light exposure for 1 day, 3 days and 5 days were given to Swarnaprabha (low light tolerant) and IR8 (low light sensitive) rice varieties. Illumina (HiSeq) platform was used for transcriptome sequencing. A total of 6,652 and 12,042 genes were differentially expressed due to low light intensity in Swarnaprabha and IR8, respectively as compared to control. CAB, LRP, SBPase, MT15, TF PCL1 and Photosystem I & II complex related gene expressions were mostly increased in Swarnaprabha upon longer duration of low light exposure which was not found in IR8 as compared to control. Their expressions were validated by qRT-PCR. Overall study suggested that the maintenance of grain yield in the tolerant variety under low light might be results of accelerated expression of the genes which enable the plant to keep the photosynthetic processes moving at the same pace even under low light.
Collapse
Affiliation(s)
- Sudhanshu Sekhar
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Darshan Panda
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Jitendra Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Niharika Mohanty
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Monalisha Biswal
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Mirza J Baig
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | | | | | - Sharat K Pradhan
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Birendra P Shaw
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Padmini Swain
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Lambodar Behera
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India.
| |
Collapse
|
50
|
Mazaheri M, Heckwolf M, Vaillancourt B, Gage JL, Burdo B, Heckwolf S, Barry K, Lipzen A, Ribeiro CB, Kono TJY, Kaeppler HF, Spalding EP, Hirsch CN, Robin Buell C, de Leon N, Kaeppler SM. Genome-wide association analysis of stalk biomass and anatomical traits in maize. BMC PLANT BIOLOGY 2019; 19:45. [PMID: 30704393 PMCID: PMC6357476 DOI: 10.1186/s12870-019-1653-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/15/2018] [Accepted: 01/14/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Maize stover is an important source of crop residues and a promising sustainable energy source in the United States. Stalk is the main component of stover, representing about half of stover dry weight. Characterization of genetic determinants of stalk traits provide a foundation to optimize maize stover as a biofuel feedstock. We investigated maize natural genetic variation in genome-wide association studies (GWAS) to detect candidate genes associated with traits related to stalk biomass (stalk diameter and plant height) and stalk anatomy (rind thickness, vascular bundle density and area). RESULTS Using a panel of 942 diverse inbred lines, 899,784 RNA-Seq derived single nucleotide polymorphism (SNP) markers were identified. Stalk traits were measured on 800 members of the panel in replicated field trials across years. GWAS revealed 16 candidate genes associated with four stalk traits. Most of the detected candidate genes were involved in fundamental cellular functions, such as regulation of gene expression and cell cycle progression. Two of the regulatory genes (Zmm22 and an ortholog of Fpa) that were associated with plant height were previously shown to be involved in regulating the vegetative to floral transition. The association of Zmm22 with plant height was confirmed using a transgenic approach. Transgenic lines with increased expression of Zmm22 showed a significant decrease in plant height as well as tassel branch number, indicating a pleiotropic effect of Zmm22. CONCLUSION Substantial heritable variation was observed in the association panel for stalk traits, indicating a large potential for improving useful stalk traits in breeding programs. Genome-wide association analyses detected several candidate genes associated with multiple traits, suggesting common regulatory elements underlie various stalk traits. Results of this study provide insights into the genetic control of maize stalk anatomy and biomass.
Collapse
Affiliation(s)
- Mona Mazaheri
- Department of Agronomy, University of Wisconsin, Madison, WI 53706 USA
- Department of Energy, Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53706 USA
| | - Marlies Heckwolf
- Department of Agronomy, University of Wisconsin, Madison, WI 53706 USA
- Department of Energy, Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53706 USA
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy, Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824 USA
| | - Joseph L. Gage
- Department of Agronomy, University of Wisconsin, Madison, WI 53706 USA
| | - Brett Burdo
- Department of Agronomy, University of Wisconsin, Madison, WI 53706 USA
| | - Sven Heckwolf
- Department of Botany, University of Wisconsin, Madison, WI 53706 USA
| | - Kerrie Barry
- Department of Energy, Joint Genome Institute, Walnut Creek, California, 94598 USA
| | - Anna Lipzen
- Department of Energy, Joint Genome Institute, Walnut Creek, California, 94598 USA
| | - Camila Bastos Ribeiro
- Genótika Super Sementes. Colonizador Ênio Pipino - St. Industrial Sul, Sinop, MT 78550-098 Brazil
| | - Thomas J. Y. Kono
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St Paul, MN 55108 USA
- Present address: Minnesota Supercomputing Institute, 117 Pleasant Street SE, Minneapolis, MN 55455 USA
| | - Heidi F. Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, WI 53706 USA
- Department of Energy, Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53706 USA
| | - Edgar P. Spalding
- Department of Botany, University of Wisconsin, Madison, WI 53706 USA
| | - Candice N. Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St Paul, MN 55108 USA
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy, Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824 USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824 USA
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin, Madison, WI 53706 USA
- Department of Energy, Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53706 USA
| | - Shawn M. Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, WI 53706 USA
- Department of Energy, Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53706 USA
| |
Collapse
|