1
|
Lipovsek M, Fierro A, Pérez EG, Boffi JC, Millar NS, Fuchs PA, Katz E, Elgoyhen AB. Tracking the molecular evolution of calcium permeability in a nicotinic acetylcholine receptor. Mol Biol Evol 2014; 31:3250-65. [PMID: 25193338 PMCID: PMC4245820 DOI: 10.1093/molbev/msu258] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Angélica Fierro
- Department of Organic Chemistry, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Edwin G Pérez
- Department of Organic Chemistry, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Boffi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Neil S Millar
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Paul A Fuchs
- Department of Otolaryngology, Head and Neck Surgery, and Center for Hearing and Balance, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eleonora Katz
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina Departamento de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Voges D, Berendes R, Demange P, Benz J, Göttig P, Liemann S, Huber R, Burger A. Structure and function of the ion channel model system annexin V. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 71:209-39. [PMID: 8644490 DOI: 10.1002/9780470123171.ch4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- D Voges
- Abteilung Strukturforschung, Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Ligand-gated channels activated by excitatory neurotransmitters: glutamate, acetylcholine, ATP or serotonin are cation channels permeable to Ca2+. Molecular cloning revealed a large variety of the ligand-gated channel subunits differentially expressed in mammalian brain. Many of them have different Ca2+ permeability providing immense diversity in Ca2+ entry mediated by ligand-gated channels during synaptic transmission. Functional analysis of cloned channels allowed to identify structural elements in the pore forming regions determining Ca2+ permeability for many types of ligand-gated channels. The functional role of the Ca2+ entry mediated by various ligand-gated channels in mammalian central nervous system is less understood. The studies reviewed in this article provide information about known structural determinants of Ca2+ permeability of the ligand-gated channels and the role of this particular pathway of Ca2+ entry in cell function.
Collapse
Affiliation(s)
- N Burnashev
- Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany.
| |
Collapse
|
4
|
Arias HR. Binding sites for exogenous and endogenous non-competitive inhibitors of the nicotinic acetylcholine receptor. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1376:173-220. [PMID: 9748559 DOI: 10.1016/s0304-4157(98)00004-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nicotinic acetylcholine receptor (AChR) is the paradigm of the neurotransmitter-gated ion channel superfamily. The pharmacological behavior of the AChR can be described as three basic processes that progress sequentially. First, the neurotransmitter acetylcholine (ACh) binds the receptor. Next, the intrinsically coupled ion channel opens upon ACh binding with subsequent ion flux activity. Finally, the AChR becomes desensitized, a process where the ion channel becomes closed in the prolonged presence of ACh. The existing equilibrium among these physiologically relevant processes can be perturbed by the pharmacological action of different drugs. In particular, non-competitive inhibitors (NCIs) inhibit the ion flux and enhance the desensitization rate of the AChR. The action of NCIs was studied using several drugs of exogenous origin. These include compounds such as chlorpromazine (CPZ), triphenylmethylphosphonium (TPMP+), the local anesthetics QX-222 and meproadifen, trifluoromethyl-iodophenyldiazirine (TID), phencyclidine (PCP), histrionicotoxin (HTX), quinacrine, and ethidium. In order to understand the mechanism by which NCIs exert their pharmacological properties several laboratories have studied the structural characteristics of their binding sites, including their respective locations on the receptor. One of the main objectives of this review is to discuss all available experimental evidence regarding the specific localization of the binding sites for exogenous NCIs. For example, it is known that the so-called luminal NCIs bind to a series of ring-forming amino acids in the ion channel. Particularly CPZ, TPMP+, QX-222, cembranoids, and PCP bind to the serine, the threonine, and the leucine ring, whereas TID and meproadifen bind to the valine and extracellular rings, respectively. On the other hand, quinacrine and ethidium, termed non-luminal NCIs, bind to sites outside the channel lumen. Specifically, quinacrine binds to a non-annular lipid domain located approximately 7 A from the lipid-water interface and ethidium binds to the vestibule of the AChR in a site located approximately 46 A away from the membrane surface and equidistant from both ACh binding sites. The non-annular lipid domain has been suggested to be located at the intermolecular interfaces of the five AChR subunits and/or at the interstices of the four (M1-M4) transmembrane domains. One of the most important concepts in neurochemistry is that receptor proteins can be modulated by endogenous substances other than their specific agonists. Among membrane-embedded receptors, the AChR is one of the best examples of this behavior. In this regard, the AChR is non-competitively modulated by diverse molecules such as lipids (fatty acids and steroids), the neuropeptide substance P, and the neurotransmitter 5-hydroxytryptamine (5-HT). It is important to take into account that the above mentioned modulation is produced through a direct binding of these endogenous molecules to the AChR. Since this is a physiologically relevant issue, it is useful to elucidate the structural components of the binding site for each endogenous NCI. In this regard, another important aim of this work is to review all available information related to the specific localization of the binding sites for endogenous NCIs. For example, it is known that both neurotransmitters substance P and 5-HT bind to the lumen of the ion channel. Particularly, the locus for substance P is found in the deltaM2 domain, whereas the binding site for 5-HT and related compounds is putatively located on both the serine and the threonine ring. Instead, fatty acid and steroid molecules bind to non-luminal sites. More specifically, fatty acids may bind to the belt surrounding the intramembranous perimeter of the AChR, namely the annular lipid domain, and/or to the high-affinity quinacrine site which is located at a non-annular lipid domain. Additionally, steroids may bind to a site located on the extracellular hydrophi
Collapse
Affiliation(s)
- H R Arias
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, and Universidad Nacional del Sur, Blanca, Argentina.
| |
Collapse
|
5
|
Wiley LJ, Ferrara DR, Sangster NC, Weiss AS. The nicotinic acetylcholine alpha-subunit gene tar-1 is located on the X chromosome but its coding sequence is not involved in levamisole resistance in an isolate of Trichostrongylus colubriformis. Mol Biochem Parasitol 1997; 90:415-22. [PMID: 9476789 DOI: 10.1016/s0166-6851(97)00179-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The polymerase chain reaction was used to amplify fragments comprising the known reading frame of the nematode nicotinic acetylcholine alpha-subunit gene tar-1. Sequences were derived from DNA prepared from bulk collections of worms and from individual male and female Trichostrongylus colubriformis. In each case a levamisole-resistant (BCk) and a drug susceptible population were examined. Although several nucleotide transitions were detected no amino acid sequence variations were found between the isolates and between individual worms, indicating that the coding sequence of this gene is not responsible for levamisole-resistance in the isolate tested. However, an intronic allelic T/C variation at position 4955 was observed in both populations. It has been reported that levamisole-resistance in the BCk isolate of T. colubriformis is due to a sex-linked recessive gene or gene complex. A restriction fragment length polymorphism formed by the allelic variation was found and was detectable by digestion with the restriction endonuclease NlaIII. Statistical comparison of allele frequencies from individual male and female worms was consistent with sex-linkage of tar-1 (P < 0.05) but showed no correlation with levamisole resistance status. The polymorphism described will provide a useful X-chromosome marker and represents the first mapped genetic locus in this species.
Collapse
Affiliation(s)
- L J Wiley
- Department of Veterinary Anatomy and Pathology, University of Sydney, NSW, Australia
| | | | | | | |
Collapse
|
6
|
Arias HR. Topology of ligand binding sites on the nicotinic acetylcholine receptor. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 25:133-91. [PMID: 9403137 DOI: 10.1016/s0165-0173(97)00020-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The nicotinic acetylcholine receptor (AChR) presents two very well differentiated domains for ligand binding that account for different cholinergic properties. In the hydrophilic extracellular region of both alpha subunits there exist the binding sites for agonists such as the neurotransmitter acetylcholine (ACh) and for competitive antagonists such as d-tubocurarine. Agonists trigger the channel opening upon binding while competitive antagonists compete for the former ones and inhibit its pharmacological action. Identification of all residues involved in recognition and binding of agonist and competitive antagonists is a primary objective in order to understand which structural components are related to the physiological function of the AChR. The picture for the localisation of the agonist/competitive antagonist binding sites is now clearer in the light of newer and better experimental evidence. These sites are mainly located on both alpha subunits in a pocket approximately 30-35 A above the surface membrane. Since both alpha subunits are sequentially identical, the observed high and low affinity for agonists on the receptor is conditioned by the interaction of the alpha subunit with the delta or the gamma chain, respectively. This relationship is opposite for curare-related drugs. This molecular interaction takes place probably at the interface formed by the different subunits. The principal component for the agonist/competitive antagonist binding sites involves several aromatic residues, in addition to the cysteine pair at 192-193, in three loops-forming binding domains (loops A-C). Other residues such as the negatively changed aspartates and glutamates (loop D), Thr or Tyr (loop E), and Trp (loop F) from non-alpha subunits were also found to form the complementary component of the agonist/competitive antagonist binding sites. Neurotoxins such as alpha-, kappa-bungarotoxin and several alpha-conotoxins seem to partially overlap with the agonist/competitive antagonist binding sites at multiple point of contacts. The alpha subunits also carry the binding site for certain acetylcholinesterase inhibitors such as eserine and for the neurotransmitter 5-hydroxytryptamine which activate the receptor without interacting with the classical agonist binding sites. The link between specific subunits by means of the binding of ACh molecules might play a pivotal role in the relative shift among receptor subunits. This conformational change would allow for the opening of the intrinsic receptor cation channel transducting the external chemical signal elicited by the agonist into membrane depolarisation. The ion flux activity can be inhibited by non-competitive inhibitors (NCIs). For this kind of drugs, a population of low-affinity binding sites has been found at the lipid-protein interface of the AChR. In addition, several high-affinity binding sites have been found to be located at different rings on the M2 transmembrane domain, namely luminal binding sites. In this regard, the serine ring is the locus for exogenous NCIs such as chlorpromazine, triphenylmethylphosphonium, the local anaesthetic QX-222, phencyclidine, and trifluoromethyliodophenyldiazirine. Trifluoromethyliodophenyldiazirine also binds to the valine ring, which is the postulated site for cembranoids. Additionally, the local anaesthetic meproadifen binding site seems to be located at the outer or extracellular ring. Interestingly, the M2 domain is also the locus for endogenous NCIs such as the neuropeptide substance P and the neurotransmitter 5-hydroxytryptamine. In contrast with this fact, experimental evidence supports the hypothesis for the existence of other NCI high-affinity binding sites located not at the channel lumen but at non-luminal binding domains. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- H R Arias
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina.
| |
Collapse
|
7
|
Bouzat C, Barrantes FJ. Assigning functions to residues in the acetylcholine receptor channel region (review). Mol Membr Biol 1997; 14:167-77. [PMID: 9491368 DOI: 10.3109/09687689709048179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review is concerned with the functional domains of the nicotinic acetylcholine receptor (AChR) involved in ion permeation. These comprise the ion pore and its gate. The latter allows the channel to be almost exclusively closed in the absence of agonist and favours ion flux in its presence. Early photoaffinity labelling experiments using open-channel blockers and site-directed mutagenesis studies identified M2 of each AChR subunit as the transmembrane domain lining the walls of the ion pore. Several biochemical, electrophysiological, and mutagenesis studies as well as molecular modelling and in vitro studies of ion channel formation with synthetic peptides corroborate these findings. Point mutations combined with electrophysiological techniques have contributed to dissecting the AChR channel region assigning functions to individual amino acid residues, thus revealing structural and functional stratification of the M2 channel domain. Specific residues have been found to be structural determinants of conductance, ion selectivity, gating, and desensitization. The three-dimensional structure of the AChR protein at 9A resolution suggests a possible arrangement of the M2 alpha-helices in the open and closed states, respectively. In spite of the current wealth of knowledge on the AChR ion channel stemming from the combination of experimental approaches discussed in this review, the mechanistic structure by which the interaction with the agonist favours the opening of the cationic channel remains unknown.
Collapse
Affiliation(s)
- C Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, UNS-CONICET, Argentina
| | | |
Collapse
|
8
|
Ferrer-Montiel AV, Sun W, Montal M. A single tryptophan on M2 of glutamate receptor channels confers high permeability to divalent cations. Biophys J 1996; 71:749-58. [PMID: 8842213 PMCID: PMC1233531 DOI: 10.1016/s0006-3495(96)79274-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ionotropic glutamate receptors (iGluRs) of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate/kainate subtype display lower permeability to Ca2+ than the N-methyl-D-aspartate (NMDA) subtype. The well-documented N/Q/R site on the M2 transmembrane segment (M2) is an important determinant of the distinct Ca2+ permeability exhibited by members of the non-NMDA receptor subfamily. This site, however, does not completely account for the different permeation properties displayed by non-NMDA and NMDA receptors, suggesting the involvement of other molecular determinants. We have identified additional molecular elements on M2 of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate/kainate receptor GluR1 that specify its permeation properties. Higher permeability to divalent over monovalent cations is conferred on GluR1 by a tryptophan at position 577, whereas blockade by external divalent cations is imparted by an asparagine at position 582. Hence, the permeation properties of ionotropic glutamate receptors appear to be primarily specified by two distinct determinants on M2, the well-known N/Q/R site and the newly identified L/W site. These findings substantiate the notion that M2 is a structural component of the pore lining.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Calcium/metabolism
- Cations, Divalent/metabolism
- Cell Membrane Permeability
- DNA, Complementary
- Female
- Kinetics
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Oocytes/physiology
- Point Mutation
- Receptors, AMPA/biosynthesis
- Receptors, AMPA/chemistry
- Receptors, AMPA/physiology
- Receptors, Glutamate/biosynthesis
- Receptors, Glutamate/chemistry
- Receptors, Glutamate/physiology
- Receptors, Kainic Acid/biosynthesis
- Receptors, Kainic Acid/chemistry
- Receptors, Kainic Acid/physiology
- Receptors, N-Methyl-D-Aspartate/chemistry
- Receptors, N-Methyl-D-Aspartate/physiology
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Tryptophan
- Xenopus
Collapse
Affiliation(s)
- A V Ferrer-Montiel
- Department of Biology, University of California San Diego, La Jolla 92093-0366, USA
| | | | | |
Collapse
|
9
|
Francis MM, Papke RL. Muscle-type nicotinic acetylcholine receptor delta subunit determines sensitivity to noncompetitive inhibitors, while gamma subunit regulates divalent permeability. Neuropharmacology 1996; 35:1547-56. [PMID: 9025102 DOI: 10.1016/s0028-3908(96)00103-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heterologous expression of nicotinic acetylcholine receptor (nAChR) RNAs in Xenopus oocytes was used to examine the structural basis for pharmacological and physiological differences between muscle-type and neuronal nAChRs. Neuronal nAChRs have a higher permeability to calcium than muscle-type nAChRs and display inward rectification. while muscle-type nAChRs have a linear current-voltage relation. In addition, neuronal nAChRs are more sensitive to inhibition by a class of compounds known as "ganglionic blockers". It has been shown previously that neuronal-muscle hybrid receptors show increased sensitivity to the use-dependent inhibitor of neuronal nAChRs, BTMPS, based on the presence of a neuronal beta subunit. In this study, we report that omission of gamma subunit RNA has a similar effect. alpha beta delta receptors exhibit prolonged inhibition by BTMPS; show a significant permeability to divalent ions, display inward rectification and are more sensitive to mecamylamine. However, while pharmacological effects are associated with the presence of an additional delta subunit, the physiological changes described seem to be associated with the presence or absence of a gamma subunit. These results suggest that, for nAChRs, as is also the case for non-NMDA ionotropic glutamate receptors, the crucial functional property of limiting calcium permeability can be served by a single subunit.
Collapse
Affiliation(s)
- M M Francis
- Department of Neuroscience, University of Florida, Gainesville 32610-0244, USA
| | | |
Collapse
|
10
|
Abstract
We present a new model of the origin of schizophrenia based on biophysical ionic shunts in neuronal (electrical) pathways. Microstructural and molecular evidence is presented for the way in which changes in the neuronal membrane ionic channels may facilitate membrane property rearrangement, leading to a change in the density and composition of the ion channel charge which in turn causes a change in ionic flow orientation and distribution. We suggest that, under abnormal conditions, ionic flow shunts are created which redirect the biophysical collateral neuronal (electrical) pathways, resulting in psychiatric signs and symptoms. This model is complementary to the biological basis of schizophrenia.
Collapse
Affiliation(s)
- Y Naisberg
- Sha'ar Menashe Medical Center for Mental Health, Hefer, Israel
| | | | | |
Collapse
|
11
|
Ferrer-Montiel AV, Sun W, Montal M. Molecular design of the N-methyl-D-aspartate receptor binding site for phencyclidine and dizolcipine. Proc Natl Acad Sci U S A 1995; 92:8021-5. [PMID: 7644531 PMCID: PMC41278 DOI: 10.1073/pnas.92.17.8021] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The N-methyl-D-aspartate receptor (NMDAR), a pivotal entity for synaptic plasticity and excitotoxicity in the brain, is a target of psychotomimetic drugs such as phencyclidine (PCP) and dizolcipine (MK-801). In contrast, a related glutamate receptor, the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate/kainate receptor GluR1, is weakly sensitive to these drugs. Three point mutations on GluR1, mimicking homologous residues on the NMDAR, confer the PCP and MK-801 blockade properties that are characteristic of the NMDAR--namely, high potency, voltage dependence, and use dependence. The molecular determinants that specify the PCP block appear confined to the putative M2 transmembrane segment, whereas the sensitivity to MK-801 requires an interplay between residues from M2 and M3. Given the plausible involvement of the NMDAR in the etiology of several neurodegenerative diseases and in excitotoxic neuronal cell death, tailored glutamate receptors with specific properties may be models for designing and screening new drugs targeted to prevent glutamate-mediated neural damage.
Collapse
Affiliation(s)
- A V Ferrer-Montiel
- Department of Biology, University of California San Diego, La Jolla 92093-0366, USA
| | | | | |
Collapse
|
12
|
Galzi JL, Changeux JP. Neuronal nicotinic receptors: molecular organization and regulations. Neuropharmacology 1995; 34:563-82. [PMID: 7566492 DOI: 10.1016/0028-3908(95)00034-4] [Citation(s) in RCA: 207] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J L Galzi
- Institut Pasteur, URA CNRS D1284, Département des biotechnologies, Paris, France
| | | |
Collapse
|
13
|
Gotti C, Hanke W, Maury K, Moretti M, Ballivet M, Clementi F, Bertrand D. Pharmacology and biophysical properties of alpha 7 and alpha 7-alpha 8 alpha-bungarotoxin receptor subtypes immunopurified from the chick optic lobe. Eur J Neurosci 1994; 6:1281-91. [PMID: 7981870 DOI: 10.1111/j.1460-9568.1994.tb00318.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two chick optic lobe alpha-bungarotoxin receptor subtypes (alpha 7 and alpha 7-alpha 8) were immunopurified using polyclonal antibodies raised against synthetic peptides of chick alpha 7 and alpha 8 alpha-bungarotoxin receptor subunits. The alpha 7 subtype contained the M(r) 57,000 alpha 7 subunit, and represented 60-70% of the alpha-bungarotoxin receptors; the alpha 7-alpha 8 subtype contained the M(r) 57,000 alpha 7 and alpha 8 subunits, and represented only 20-25% of the receptors. Both subtypes also had an additional M(r) 52,000 subunit. The affinity of these subtypes for alpha-bungarotoxin as well as antagonists was similar. However, the alpha 7-alpha 8 subtype displayed consistently higher affinities for agonists. When reconstituted in planar lipid bilayers, the alpha 7-alpha 8 subtype displayed several conductance states of 10-50 pS; the alpha 7 subtype had only one conductance state of 45 pS. The alpha 7-alpha 8 subtype was activated by lower agonist concentrations than the alpha 7 subtype. When expressed in Xenopus oocytes, the alpha 8 subunit formed functional homomeric receptors that desensitized rapidly. These channels were blocked by alpha-bungarotoxin and displayed a higher affinity for agonists than the alpha 7 homomeric receptor. Taken together, these data indicate that at least two alpha-bungarotoxin subtypes are present in the chick optic lobe. They operate as ligand-gated channels and display different agonist sensitivities and kinetics/conductance properties.
Collapse
Affiliation(s)
- C Gotti
- Department of Medical Pharmacology, University of Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Demange P, Voges D, Benz J, Liemann S, Göttig P, Berendes R, Burger A, Huber R. Annexin V: the key to understanding ion selectivity and voltage regulation? Trends Biochem Sci 1994; 19:272-6. [PMID: 7519374 DOI: 10.1016/0968-0004(94)90002-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Annexin V is a Ca(2+)-dependent membrane-binding protein that forms voltage-dependent Ca2+ channels in phospholipid bilayers and is the first ion channel to be structurally and functionally characterized. Data outlined here indicate that key amino acid residues act as selectivity filters and voltage sensors, thereby regulating the permeability of the channel pore to ions.
Collapse
Affiliation(s)
- P Demange
- Abteilung Strukturforschung, Max Planck Institut für Biochemie, Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Devillers-Thiéry A, Galzi JL, Eiselé JL, Bertrand S, Bertrand D, Changeux JP. Functional architecture of the nicotinic acetylcholine receptor: a prototype of ligand-gated ion channels. J Membr Biol 1993; 136:97-112. [PMID: 7508983 DOI: 10.1007/bf02505755] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- A Devillers-Thiéry
- Unité Associée au Centre National de la Recherche Scientifique D 1284, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
16
|
Berendes R, Voges D, Demange P, Huber R, Burger A. Structure-function analysis of the ion channel selectivity filter in human annexin V. Science 1993; 262:427-30. [PMID: 7692599 DOI: 10.1126/science.7692599] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electrophysiology and structural studies were performed on an annexin V variant containing a mutation of glutamic acid-95 to serine in the center of the pore region. The mutation resulted in a lower single channel conductance for calcium and a strongly increased conductance for sodium and potassium, indicating that glutamic acid-95 is a crucial constituent of the ion selectivity filter. There were only minor differences in the crystal structures of mutant and wild-type annexin V around the mutation site; however, the mutant showed structural differences elsewhere, including the presence of a calcium binding site in domain III unrelated to the mutation. Analysis of the membrane-bound form of annexin V by electron microscopy revealed no differences between the wild type and mutant.
Collapse
Affiliation(s)
- R Berendes
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | |
Collapse
|