1
|
Naturally Occurring Polymorphisms of the Mouse Gammaretrovirus Receptors CAT-1 and XPR1 Alter Virus Tropism and Pathogenicity. Adv Virol 2011; 2011:975801. [PMID: 22312361 PMCID: PMC3265322 DOI: 10.1155/2011/975801] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2011] [Accepted: 07/12/2011] [Indexed: 01/29/2023] Open
Abstract
Gammaretroviruses of several different host range subgroups have been isolated from laboratory mice. The ecotropic viruses infect mouse cells and rely on the host CAT-1 receptor. The xenotropic/polytropic viruses, and the related human-derived XMRV, can infect cells of other mammalian species and use the XPR1 receptor for entry. The coevolution of these viruses and their receptors in infected mouse populations provides a good example of how genetic conflicts can drive diversifying selection. Genetic and epigenetic variations in the virus envelope glycoproteins can result in altered host range and pathogenicity, and changes in the virus binding sites of the receptors are responsible for host restrictions that reduce virus entry or block it altogether. These battleground regions are marked by mutational changes that have produced 2 functionally distinct variants of the CAT-1 receptor and 5 variants of the XPR1 receptor in mice, as well as a diverse set of infectious viruses, and several endogenous retroviruses coopted by the host to interfere with entry.
Collapse
|
2
|
Sørensen AB, Lund AH, Kunder S, Quintanilla-Martinez L, Schmidt J, Wang B, Wabl M, Pedersen FS. Impairment of alternative splice sites defining a novel gammaretroviral exon within gag modifies the oncogenic properties of Akv murine leukemia virus. Retrovirology 2007; 4:46. [PMID: 17617899 PMCID: PMC1936429 DOI: 10.1186/1742-4690-4-46] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2007] [Accepted: 07/06/2007] [Indexed: 01/25/2023] Open
Abstract
Background Mutations of an alternative splice donor site located within the gag region has previously been shown to broaden the pathogenic potential of the T-lymphomagenic gammaretrovirus Moloney murine leukemia virus, while the equivalent mutations in the erythroleukemia inducing Friend murine leukemia virus seem to have no influence on the disease-inducing potential of this virus. In the present study we investigate the splice pattern as well as the possible effects of mutating the alternative splice sites on the oncogenic properties of the B-lymphomagenic Akv murine leukemia virus. Results By exon-trapping procedures we have identified a novel gammaretroviral exon, resulting from usage of alternative splice acceptor (SA') and splice donor (SD') sites located in the capsid region of gag of the B-cell lymphomagenic Akv murine leukemia virus. To analyze possible effects in vivo of this novel exon, three different alternative splice site mutant viruses, mutated in either the SA', in the SD', or in both sites, respectively, were constructed and injected into newborn inbred NMRI mice. Most of the infected mice (about 90%) developed hematopoietic neoplasms within 250 days, and histological examination of the tumors showed that the introduced synonymous gag mutations have a significant influence on the phenotype of the induced tumors, changing the distribution of the different types as well as generating tumors of additional specificities such as de novo diffuse large B cell lymphoma (DLBCL) and histiocytic sarcoma. Interestingly, a broader spectrum of diagnoses was made from the two single splice-site mutants than from as well the wild-type as the double splice-site mutant. Both single- and double-spliced transcripts are produced in vivo using the SA' and/or the SD' sites, but the mechanisms underlying the observed effects on oncogenesis remain to be clarified. Likewise, analyses of provirus integration sites in tumor tissues, which identified 111 novel RISs (retroviral integration sites) and 35 novel CISs (common integration sites), did not clearly point to specific target genes or pathways to be associated with specific tumor diagnoses or individual viral mutants. Conclusion We present here the first example of a doubly spliced transcript within the group of gammaretroviruses, and we show that mutation of the alternative splice sites that define this novel RNA product change the oncogenic potential of Akv murine leukemia virus.
Collapse
Affiliation(s)
- Annette Balle Sørensen
- Department of Molecular Biology, University of Aarhus, Denmark
- The State and University Library, Universitetsparken, DK-8000 Aarhus C, Denmark
| | - Anders H Lund
- Department of Molecular Biology, University of Aarhus, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Sandra Kunder
- Institute of Pathology, GSF-National Research Center for Environment and Health, Neuherberg, Germany
| | | | - Jörg Schmidt
- Department of Comparative Medicine GSF-National Research Center for Environment and Health, Neuherberg, Germany
| | | | - Matthias Wabl
- Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
3
|
Nishigaki K, Hanson C, Thompson D, Yugawa T, Hisasue M, Tsujimoto H, Ruscetti S. Analysis of the disease potential of a recombinant retrovirus containing Friend murine leukemia virus sequences and a unique long terminal repeat from feline leukemia virus. J Virol 2002; 76:1527-32. [PMID: 11773427 PMCID: PMC135779 DOI: 10.1128/jvi.76.3.1527-1532.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022] Open
Abstract
We have molecularly cloned a feline leukemia virus (FeLV) (clone 33) from a domestic cat with acute myeloid leukemia (AML). The long terminal repeat (LTR) of this virus, like the LTRs present in FeLV proviruses from other cats with AML, contains an unusual structure in its U3 region upstream of the enhancer (URE) consisting of three tandem direct repeats of 47 bp. To test the disease potential and specificity of this unique FeLV LTR, we replaced the U3 region of the LTR of the erythroleukemia-inducing Friend murine leukemia virus (F-MuLV) with that of FeLV clone 33. When the resulting virus, F33V, was injected into newborn mice, almost all of the mice eventually developed hematopoietic malignancies, with a significant percentage being in the myeloid lineage. This is in contrast to mice injected with an F-MuLV recombinant containing the U3 region of another FeLV that lacks repetitive URE sequences, none of which developed myeloid malignancies. Examination of tumor proviruses from F33V-infected mice failed to detect any changes in FeLV U3 sequences other than that in the URE. Like F-MuLV-infected mice, those infected with the F-MuLV/FeLV recombinants were able to generate and replicate mink cell focus-inducing viruses. Our studies are consistent with the idea that the presence of repetitive sequences upstream of the enhancer in the LTR of FeLV may favor the activation of this promoter in myeloid cells and contribute to the development of malignancies in this hematopoietic lineage.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cats
- Cell Line
- Cloning, Molecular
- DNA, Viral
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/physiology
- Leukemia Virus, Feline/genetics
- Leukemia, Erythroblastic, Acute/virology
- Leukemia, Experimental/virology
- Leukemia, Myeloid/virology
- Lymphoma/virology
- Mice
- Mink Cell Focus-Inducing Viruses/genetics
- Molecular Sequence Data
- Recombination, Genetic
- Retroviridae
- Retroviridae Infections/virology
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Terminal Repeat Sequences
- Tumor Virus Infections/virology
Collapse
Affiliation(s)
- Kazuo Nishigaki
- Basic Research Laboratory, National Cancer Institute, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Type B leukemogenic virus (TBLV) induces rapidly appearing T-cell tumors in mice. TBLV is highly related to mouse mammary tumor virus (MMTV) except that TBLV long terminal repeats (LTRs) have a deletion of negative regulatory elements and a triplication of sequences flanking the deletion. To determine if the LTR triplication represents a viral enhancer element, we inserted the triplication upstream and downstream in either orientation relative to the thymidine kinase promoter linked to the luciferase gene. These experiments showed that upregulation of reporter gene activity by the TBLV triplication was relatively orientation independent, consistent with the activity of eukaryotic enhancer elements. TBLV enhancer activity was observed in T-cell lines but not in fibroblasts, B cells, or mammary cells, suggesting that enhancer function is cell type dependent. To analyze the transcription factor binding sites that are important for TBLV enhancer function, we prepared substitution mutations in a reconstituted C3H MMTV LTR that recapitulates the deletion observed in the TBLV LTR. Transient transfections showed that a single mutation (556M) decreased TBLV enhancer activity at least 20-fold in two different T-cell lines. This mutation greatly diminished AML-1 (recently renamed RUNX1) binding in gel shift assays with a mutant oligonucleotide, whereas AML-1 binding to a wild-type TBLV oligomer was specific, as judged by competition and supershift experiments. The 556 mutation also reduced TBLV enhancer binding of two other protein complexes, called NF-A and NF-B, that did not appear to be related to c-Myb or Ets. AML-1 overexpression in a mammary cell line enhanced expression from the TBLV LTR approximately 30-fold. These data suggest that binding of AML-1 to the TBLV enhancer, likely in combination with other factors, is necessary for optimal enhancer function.
Collapse
Affiliation(s)
- J A Mertz
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
5
|
Nakamura K, Tanaka Y, Fujino I, Hirayama N, Shitara K, Hanai N. Dissection and optimization of immune effector functions of humanized anti-ganglioside GM2 monoclonal antibody. Mol Immunol 2000; 37:1035-46. [PMID: 11399321 DOI: 10.1016/s0161-5890(01)00021-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
A mouse/human chimeric monoclonal antibody (MAb) KM966, specific for the cell-surface tumor antigen ganglioside GM2, was humanized by the complementarity determining regions (CDRs) grafting method. Not only the amino acid residues in the CDRs but also several in the framework regions (FRs) were changed from the human to the murine residues. A humanized variant, huKM796H/Lm-28, containing eight and five amino acid alterations in variable light (VL) and variable heavy (VH) FRs, respectively, showed a 9-fold reduction in complement-dependent cytotoxicity (CDC) compared to the chimeric KM966, despite tight antigen binding and potent antibody-dependent cellular cytotoxicity (ADCC). Several additional variants were subsequently constructed to improve the CDC of the antibody. One of the variants, designated KM8969, which differs by three amino acids, exhibited a CDC within 3-fold of the chimeric KM966. In addition, humanized KM8969 bound GM2 antigen 1.25-fold more tightly than the chimeric KM966 and showed 5-fold higher ADCC than the chimeric KM966. These results clearly show that the humanized KM8969, having the optimized immune effector functions and theoretically minimal immunogenicity, is an ideal candidate to test the effectiveness of anti-GM2 MAb in human cancer therapy. Taken together, the results obtained here indicate that the ADCC and CDC of an antibody can be dissected independently via engineering of the antibody variable region.
Collapse
Affiliation(s)
- K Nakamura
- Division of Immunology, Tokyo Research Laboratories, Kyowa Hakko Kogyo Co. Ltd., 3-6-6 Asahi-machi, Machida-shi, 194-8533, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
6
|
Laassri M, Gul'ko L, Vinokurova S, Kisseljova N, Veiko V, Kisseljov F. Cloning of E6 and E7 genes of human papilloma virus type 18 and transformation potential of E7 gene and its mutants. Virus Genes 1999; 18:139-49. [PMID: 10403700 DOI: 10.1023/a:1008020719309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/25/2022]
Abstract
E6 and E7 genes of human papilloma virus type 18 have been subcloned from plasmid pC7, carrying an insert of DNA from squamous cell carcinoma of cervix. Both genes in comparison to prototype variant contain one mutation that changes asparagine to leucine. In the case of E6 gene this mutation is mapped in codon 129, in the case of E7 the same change AAC to AAA mapped in codon 92. In addition both genes contain few point mutations that do not change the aminoacid sequences of the protein. Two mutants of E7 gene have been constructed by site directed mutagenesis based on PCR technology-one in codon 10 (change Asp to Asn) and one in codon 24 (change Asp to Gly). The first type of mutation did not influence the transformation potential of the E7 gene in comparison to the parental one with mutation in codon 92. The mutation in codon 24 (region responsible for the interaction with Rb protein) eliminate the transformation potential of the gene. The cells transformed with E7 mutants in codons 10 and 92 were tumorigenic for syngenic rats.
Collapse
Affiliation(s)
- M Laassri
- Institute of Carcinogenesis, Cancer Research Center, Moscow State Research Institute of Genetics and Selection of Microorganisms
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
The complete nucleotide sequence of the genome of Solid-type Reticulum cell Sarcoma 19-6 murine leukemia virus (SRS 19-6 MuLV) was determined. This virus was isolated in mainland China from laboratory mice that had been separated from western mice since the 1930s. The genome is 8,256 nucleotides in length and exhibits a genetic organization characteristic of replication competent MuLVs. Phylogenies constructed from reverse transcriptase (RT) domains showed that SRS 19-6 MuLV is closely related to other MuLV-related retroviruses; however, it has clearly diverged from previously isolated MuLVs. Comparative sequence analysis of the env sequences indicated that SRS 19-6 MuLV encodes a surface (SU) glycoprotein that is related to other ecotropic MuLVs in the VR-A and VR-B variable regions. However, SRS 19-6 MuLV env glycoprotein was distinct from all other MuLVs (ecotropic and non-ecotropic) in the proline-rich hypervariable region. No evidence for recombination with endogenous MuLV env sequences in generation of SRS 19-6 MuLV was observed. Comparisons of long terminal repeat (LTR) sequences revealed that the GV 1.4 molecular clone of Graffi MuLV contained 96% sequence identity to SRS 19-6 MuLV's LTR with 99% identity when comparisons were restricted to the U3 regions of the two viruses. The consensus enhancer binding motifs contained in the U3 regions of the two viruses were nearly identical. Nevertheless the two viruses have previously been shown to induce distinct patterns of disease. Comparisons between 196 and Graffi GV1.4 MuLVs may provide insights into the mechanisms of disease specificity induced by MuLVs.
Collapse
Affiliation(s)
- L M Bundy
- Department of Molecular Biology and Biochemistry, University of California at Irvine 92697, USA
| | | |
Collapse
|
8
|
Barat C, Rassart E. Nuclear factors that bind to the U3 region of two murine myeloid leukemia-inducing retroviruses, Cas-Br-E and Graffi. Virology 1998; 252:82-95. [PMID: 9875319 DOI: 10.1006/viro.1998.9435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Cas-Br-E and Graffi are two myeloid leukemia-inducing murine viruses. Cas-Br-E induces, in NIH-Swiss mice, mostly non-T, non-B leukemia composed of very immature cells with no specific characteristics (Bergeron et al. (1993). Leukemia 7, 954-962). The Graffi murine leukemia virus causes exclusively myeloid leukemia, but the tumor cells are clearly of granulocytic nature (Ru et al. (1993). J. Virol. 67, 4722). We were interested to understand the role of the long terminal repeat (LTR) U3 region in the myeloid specificity of these two retroviruses. We used DNase I footprinting and gel mobility shift assays to identify a number of protein binding sites within Cas-Br-E and Graffi U3 regions. The pattern of protected regions is highly similar for the two viruses. Some factors identified in other murine leukemia viruses, like the core binding factor, also bind to Cas-Br-E and Graffi LTR; however, other binding sites seem specific for these two viruses. Only one difference between them was noted, at the 5' end of the U3 region. Transcriptional activity of both LTRs was also analyzed in various cell lines and compared with other murine leukemia viruses. The results show a slight myeloid specificity for the two LTRs, and indicate that the Graffi enhancer is quite strong in a broad range of cell types.
Collapse
Affiliation(s)
- C Barat
- Département des Sciences Biologiques, Université du Québec à Montréal, Canada
| | | |
Collapse
|
9
|
Granger SW, Fan H. In vivo footprinting of the enhancer sequences in the upstream long terminal repeat of Moloney murine leukemia virus: differential binding of nuclear factors in different cell types. J Virol 1998; 72:8961-70. [PMID: 9765441 PMCID: PMC110313 DOI: 10.1128/jvi.72.11.8961-8970.1998] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
The enhancer sequences in the Moloney murine leukemia virus (M-MuLV) long terminal repeat (LTR) are of considerable interest since they are crucial for virus replication and the ability of the virus to induce T lymphomas. While extensive studies have identified numerous nuclear factors that can potentially bind to M-MuLV enhancer DNA in vitro, it has not been made clear which of these factors are bound in vivo. To address this problem, we carried out in vivo footprinting of the M-MuLV enhancer in infected cells by in vivo treatment with dimethyl sulfate (DMS) followed by visualization through ligation-mediated PCR (LMPCR) and gel electrophoresis. In vivo DMS-LMPCR footprinting of the upstream LTR revealed evidence for factor binding at several previously characterized motifs. In particular, protection of guanines in the central LVb/Ets and Core sites within the 75-bp repeats was detected in infected NIH 3T3 fibroblasts, Ti-6 lymphoid cells, and thymic tumor cells. In contrast, factor binding at the NF-1 sites was found in infected fibroblasts but not in T-lymphoid cells. These results are consistent with the results of previous experiments indicating the importance of the LVb/Ets and Core sequences for many retroviruses and the biological importance especially of the NF-1 sites in fibroblasts and T-lymphoid cells. No evidence for factor binding to the glucocorticoid responsive element and LVa sites was found. Additional sites of protein binding included a region in the GC-rich sequences downstream of the 75-bp repeats (only in fibroblasts), a hypersensitive guanine on the minus strand in the LVc site (only in T-lymphoid cells), and a region upstream of the 75-bp repeats. These experiments provide concrete evidence for the differential in vivo binding of nuclear factors to the M-MuLV enhancers in different cell types.
Collapse
Affiliation(s)
- S W Granger
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, California 92697-3900, USA
| | | |
Collapse
|
10
|
Barat C, Rassart E. Members of the GATA family of transcription factors bind to the U3 region of Cas-Br-E and graffi retroviruses and transactivate their expression. J Virol 1998; 72:5579-88. [PMID: 9621016 PMCID: PMC110213 DOI: 10.1128/jvi.72.7.5579-5588.1998] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023] Open
Abstract
Cas-Br-E and Graffi are two murine viruses that induce myeloid leukemia in mice: while Cas-Br-E induces mostly non-T, non-B leukemia composed of very immature cells, Graffi causes exclusively a granulocytic leukemia (E. Rassart, J. Houde, C. Denicourt, M. Ru, C. Barat, E. Edouard, L. Poliquin, and D. Bergeron, Curr. Top. Microbiol. Immunol. 211:201-210, 1995). In an attempt to understand the basis of the myeloid specificity of these two retroviruses, we used DNase I footprinting analysis and gel mobility shift assays to identify a number of protein binding sites within the Cas-Br-E and Graffi U3 regions. Two protected regions include potential GATA binding sites. Methylation interference analysis with different hematopoietic nuclear extracts showed the importance of the G residues in these GATA sites, and supershift assays clearly identified the binding factors as GATA-1, GATA-2, and GATA-3. Transient assays with long terminal repeat (LTR)-chloramphenicol acetyltransferase constructs showed that these three GATA family members are indeed able to transactivate Cas-Br-E and Graffi LTRs. Thus, the availability and relative abundance of the various members of the GATA family of transcription factors in a given cell type could influence the transcriptional tissue specificity of murine leukemia viruses and hence their disease specificity.
Collapse
Affiliation(s)
- C Barat
- Laboratoire de Biologie Moléculaire, Département de Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada H3C 3P8
| | | |
Collapse
|
11
|
Satoh M, Miyaji H, Nishi T, Mizukami T, Sato S, Itoh S, Hasegawa M. Efficient expression of pro-urokinase by human lymphoblastoid Namalwa KJM-1 cells using moloney retroviral promoter. Cytotechnology 1996; 18:167-72. [PMID: 8920107 DOI: 10.1007/bf00767764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023] Open
Abstract
We have compared the level of expression of several enhancer/promoters in human lymphoblastoid Namalwa KJM-1 cells when fused to a common reporter gene. A cassette containing the pro-urokinase (pro-UK) coding sequence followed by the rabbit beta-globin and simian virus 40 (SV40) 3' nontranslated region was used for evaluation of the enhancer activity. Cells containing Moloney murine leukemia virus (Mo-MuLV) promoter had an average of 10-20 fold higher expression levels of pro-UK than those containing other promoters, such as SV40 early gene promoter, human cytomegalovirus (hCMV) major immediate-early gene promoter, Rous sarcoma virus (RSV) promoter, and chicken beta-actin gene promoter. The expression level of pro-UK under the control of Mo-MuLV promoter was 2-3 micrograms/10(6) cells/day and was constant for more than 6 months. Furthermore, the production of a high producer clone, obtained by using dhfr gene coamplification, reached 30-40 micrograms/10(6) cells/day. Thus, Mo-MuLV promoter showed the desired characteristics for efficient expression of foreign genes in Namalwa KJM-1 cells.
Collapse
Affiliation(s)
- M Satoh
- Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Chen H, Yoshimura FK. Identification of a region of a murine leukemia virus long terminal repeat with novel transcriptional regulatory activities. J Virol 1994; 68:3308-16. [PMID: 8151791 PMCID: PMC236821 DOI: 10.1128/jvi.68.5.3308-3316.1994] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023] Open
Abstract
The 93-bp region downstream of the enhancer (DEN) in the long terminal repeat (LTR) of the mink cell focus-forming virus (MCF13) has been shown to be important for transcriptional activation and viral lymphomagenicity (J. C. Tupper, H. Chen, E. F. Hays, G. C. Bristol, and F. K. Yoshimura, J. Virol. 66:7080-7088, 1992). In this report, we have further explored the role of the DEN region in transcriptional activation. We observed that it has enhancer-like abilities as well as some unique LTR properties. Transcriptional activation by the DEN region involved interactions with enhancer sequences that were either synergistic or additive, depending on the cell type. The most intriguing property of the DEN region is its ability to induce transcription in activated T cells. This activity is unique for the LTR in that no other LTR region can do this. We also examined the role of the DEN region in retroviral lymphomagenesis. We cloned and sequenced proviral LTRs integrated upstream of the cellular c-myc gene from DNA obtained from thymic tumors induced by DEN region deletion mutant viruses in AKR mice. We determined that for transcriptional activation of the c-myc proto-oncogene, enhancer sequences can substitute for the DEN region. This study identifies the significance of non-enhancer sequences in the LTR for the oncogenesis of the MCF13 retrovirus.
Collapse
Affiliation(s)
- H Chen
- Department of Biological Structure, School of Medicine, University of Washington, Seattle 98195
| | | |
Collapse
|
13
|
Sasaki K, Watanabe E, Kawashima K, Sekine S, Dohi T, Oshima M, Hanai N, Nishi T, Hasegawa M. Expression cloning of a novel Gal beta (1-3/1-4) GlcNAc alpha 2,3-sialyltransferase using lectin resistance selection. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)41595-5] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022] Open
|
14
|
Sun W, O'Connell M, Speck NA. Characterization of a protein that binds multiple sequences in mammalian type C retrovirus enhancers. J Virol 1993; 67:1976-86. [PMID: 8445719 PMCID: PMC240266 DOI: 10.1128/jvi.67.4.1976-1986.1993] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/30/2023] Open
Abstract
Mammalian type C retrovirus enhancer factor 1 (MCREF-1) is a nuclear protein that binds several directly repeated sequences (CNGGN6CNGG) in the Moloney and Friend murine leukemia virus (MLV) enhancers (N. R. Manley, M. O'Connell, W. Sun, N. A. Speck, and N. Hopkins, J. Virol. 67:1967-1975, 1993). In this paper, we describe the partial purification of MCREF-1 from calf thymus nuclei and further characterize the binding properties of MCREF-1. MCREF-1 binds four sites in the Moloney MLV enhancer and three sites in the Friend MLV enhancer. Ethylation interference analysis suggests that the MCREF-1 binding site spans two adjacent minor grooves of DNA.
Collapse
Affiliation(s)
- W Sun
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755
| | | | | |
Collapse
|
15
|
Manley NR, O'Connell M, Sun W, Speck NA, Hopkins N. Two factors that bind to highly conserved sequences in mammalian type C retroviral enhancers. J Virol 1993; 67:1967-75. [PMID: 8445718 PMCID: PMC240265 DOI: 10.1128/jvi.67.4.1967-1975.1993] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/30/2023] Open
Abstract
The transcriptional enhancers of the Moloney and Friend murine leukemia viruses (MLV) are important determinants of viral pathogenicity. We used electrophoretic mobility shift and methylation interference assays to study nuclear factors which bind to a region of these enhancers whose sequence is identical between Moloney and Friend viruses and particularly highly conserved among 35 mammalian type C retroviruses whose enhancer sequences have been aligned (E. Golemis, N. A. Speck, and N. Hopkins, J. Virol. 64:534-542, 1990). Previous studies identified sites for the leukemia virus factor b (LVb) and core proteins in this region (N. A. Speck and D. Baltimore, Mol. Cell. Biol. 7:1101-1110, 1987) as well as a site, overlapping those for LVb and core, for a third factor (N. R. Manley, M. A. O'Connell, P. A. Sharp, and N. Hopkins, J. Virol. 63:4210-4223, 1989). Surprisingly, the latter factor appeared to also bind two sites identified in the Friend MLV enhancer, Friend virus factor a and b1 (FVa and FVb1) sites, although the sequence basis for the ability of the protein to bind these diverse sites was not apparent. Here we describe the further characterization of this binding activity, termed MCREF-1 (for mammalian type C retrovirus enhancer factor 1), and the identification of a consensus sequence for its binding, GGN8GG. We also identify a factor, abundant in mouse T-cell lines and designated LVt, which binds to two sites in the Moloney MLV enhancer, overlapping the previously identified LVb and LVc binding sites. These sites contain the consensus binding site for the Ets family of proteins. We speculate on how distinct arrays of these factors may influence the disease-inducing phenotype.
Collapse
Affiliation(s)
- N R Manley
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | | | |
Collapse
|
16
|
Purification of core-binding factor, a protein that binds the conserved core site in murine leukemia virus enhancers. Mol Cell Biol 1992. [PMID: 1309596 DOI: 10.1128/mcb.12.1.89] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022] Open
Abstract
The Moloney murine leukemia virus causes thymic leukemias when injected into newborn mice. A major genetic determinant of the thymic disease specificity of the Moloney virus genetically maps to two protein binding sites in the Moloney virus enhancer, the leukemia virus factor b site and the adjacent core site. Point mutations introduced into either of these sites significantly shifts the disease specificity of the Moloney virus from thymic leukemia to erythroleukemia (N. A. Speck, B. Renjifo, E. Golemis, T. Frederickson, J. Hartley, and N. Hopkins, Genes Dev. 4:233-242, 1990). We have purified several polypeptides that bind to the core site in the Moloney virus enhancer. These proteins were purified from calf thymus nuclear extracts by selective pH denaturation, followed by chromatography on heparin-Sepharose, nonspecific double-stranded DNA-cellulose, and core oligonucleotide-coupled affinity columns. We have achieved greater than 13,000-fold purification of the core-binding factors (CBFs), with an overall yield of approximately 19%. Analysis of purified protein fractions by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis reveals more than 10 polypeptides. Each of the polypeptides was recovered from an SDS-polyacrylamide gel, and those in the molecular size range of 19 to 35 kDa were demonstrated to have core-binding activity. The purified CBFs were shown by DNase I footprint analyses to bind the core site in the Moloney virus enhancer specifically, and also to core motifs in the enhancers from a simian immunodeficiency virus, the immunoglobulin mu chain, and T-cell receptor gamma-chain genes.
Collapse
|
17
|
Wang SW, Speck NA. Purification of core-binding factor, a protein that binds the conserved core site in murine leukemia virus enhancers. Mol Cell Biol 1992; 12:89-102. [PMID: 1309596 PMCID: PMC364072 DOI: 10.1128/mcb.12.1.89-102.1992] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022] Open
Abstract
The Moloney murine leukemia virus causes thymic leukemias when injected into newborn mice. A major genetic determinant of the thymic disease specificity of the Moloney virus genetically maps to two protein binding sites in the Moloney virus enhancer, the leukemia virus factor b site and the adjacent core site. Point mutations introduced into either of these sites significantly shifts the disease specificity of the Moloney virus from thymic leukemia to erythroleukemia (N. A. Speck, B. Renjifo, E. Golemis, T. Frederickson, J. Hartley, and N. Hopkins, Genes Dev. 4:233-242, 1990). We have purified several polypeptides that bind to the core site in the Moloney virus enhancer. These proteins were purified from calf thymus nuclear extracts by selective pH denaturation, followed by chromatography on heparin-Sepharose, nonspecific double-stranded DNA-cellulose, and core oligonucleotide-coupled affinity columns. We have achieved greater than 13,000-fold purification of the core-binding factors (CBFs), with an overall yield of approximately 19%. Analysis of purified protein fractions by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis reveals more than 10 polypeptides. Each of the polypeptides was recovered from an SDS-polyacrylamide gel, and those in the molecular size range of 19 to 35 kDa were demonstrated to have core-binding activity. The purified CBFs were shown by DNase I footprint analyses to bind the core site in the Moloney virus enhancer specifically, and also to core motifs in the enhancers from a simian immunodeficiency virus, the immunoglobulin mu chain, and T-cell receptor gamma-chain genes.
Collapse
Affiliation(s)
- S W Wang
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03756
| | | |
Collapse
|
18
|
Tsichlis PN, Bear SE. Infection by mink cell focus-forming viruses confers interleukin 2 (IL-2) independence to an IL-2-dependent rat T-cell lymphoma line. Proc Natl Acad Sci U S A 1991; 88:4611-5. [PMID: 2052545 PMCID: PMC51715 DOI: 10.1073/pnas.88.11.4611] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022] Open
Abstract
The development of T-cell lymphomas in rodents infected with type C retroviruses has been linked to the generation of a class of envelope (env) recombinant viruses called mink cell focus-forming viruses (MCF viruses) in the preleukemic thymus. To determine whether infection by MCF viruses altered the growth phenotype of retrovirus-induced T-cell lymphomas, a Moloney murine leukemia virus-induced interleukin-2 (IL-2)-dependent rat T-cell lymphoma line (4437A) was infected with MCF-247, modified MCF-V33 (mMCF-V33), or NZB-xenotropic (NZB-X) virus. The effects of virus infection on the IL-2 dependence of these cells was examined by cultivating them in the absence of IL-2. After IL-2 withdrawal, the uninfected and NZB-X-infected cells went through a crisis period characterized by massive death. All the independently maintained cultures of MCF- and mMCF-V33-infected cells, on the other hand, became IL-2 independent without a crisis. All the polytropic virus-infected IL-2-independent cultures contained a population of cells that was polyclonal with regard to polytropic provirus integration. Over this polyclonal background each culture produced multiple clones of cells that were selected rapidly after IL-2 withdrawal. Furthermore, the resulting MCF- or mMCF-V33-infected IL-2-independent cells retained the expression of IL-2 receptor. These data show that MCF and mMCF-V33 viruses may alter the growth phenotype of a T-cell lymphoma line and suggest that their effect on cell growth may be due to the direct interaction of the MCF envelope glycoprotein with cellular components, perhaps the IL-2 receptor.
Collapse
Affiliation(s)
- P N Tsichlis
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111
| | | |
Collapse
|
19
|
Binding of SL3-3 enhancer factor 1 transcriptional activators to viral and chromosomal enhancer sequences. J Virol 1991; 65:42-50. [PMID: 1985206 PMCID: PMC240487 DOI: 10.1128/jvi.65.1.42-50.1991] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022] Open
Abstract
Interactions between SL3-3 enhancer factor 1 (SEF1) proteins and the enhancer of the murine leukemia virus SL3-3 were analyzed. SEF1 proteins were found to interact with two different DNA sequences within the DNA repeat region of the enhancer; these two motifs cooperated in enhancing initiation of transcription in T lymphocytes. Using an electrophoretic mobility shift assay, we identified nucleotides that are important for the SEF1 binding, and we deduced a sequence, 5'-TTTGCGGTTA/T-3' with highly improved binding of SEF1 proteins. We show that many different SEF1 binding sequences exist in the transcription control regions of different viral and cellular genes. The results indicate a general role of SEF1 proteins in T-cell gene expression.
Collapse
|
20
|
Tsichlis PN, Lazo PA. Virus-host interactions and the pathogenesis of murine and human oncogenic retroviruses. Curr Top Microbiol Immunol 1991; 171:95-171. [PMID: 1667631 DOI: 10.1007/978-3-642-76524-7_5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
MESH Headings
- Animals
- Base Sequence
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Viral
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Genes, Viral
- Genetic Markers
- Genetic Predisposition to Disease
- Growth Substances/genetics
- Growth Substances/physiology
- Humans
- Leukemia Virus, Murine/genetics
- Leukemia Virus, Murine/pathogenicity
- Leukemia Virus, Murine/physiology
- Mice/genetics
- Mice/microbiology
- Molecular Sequence Data
- Mutagenesis, Insertional
- Neoplasms/genetics
- Neoplasms/microbiology
- Neoplasms/veterinary
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/microbiology
- Oncogenes
- Proto-Oncogenes
- Proviruses/genetics
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Repetitive Sequences, Nucleic Acid
- Retroviridae/genetics
- Retroviridae/pathogenicity
- Retroviridae/physiology
- Rodent Diseases/genetics
- Rodent Diseases/microbiology
- Signal Transduction
- Virus Integration
- Virus Replication
Collapse
Affiliation(s)
- P N Tsichlis
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111
| | | |
Collapse
|
21
|
Phillips TR, Talbott RL, Lamont C, Muir S, Lovelace K, Elder JH. Comparison of two host cell range variants of feline immunodeficiency virus. J Virol 1990; 64:4605-13. [PMID: 1697907 PMCID: PMC247944 DOI: 10.1128/jvi.64.10.4605-4613.1990] [Citation(s) in RCA: 185] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022] Open
Abstract
Two molecular clones of feline immunodeficiency virus were compared. The first clone, 34TF10, was from a Petaluma, Calif., isolate; the second, PPR, was isolated from a cat in the San Diego, Calif., area. The cats from which the isolates were obtained suffered from chronic debilitating illnesses. The two molecular clones differed in their in vitro host cell range. The 34TF10 clone infected the Crandall feline kidney and G355-5 cell lines, but replicated less efficiently on feline peripheral blood leukocytes. In contrast, the PPR clone productively infected the primary feline peripheral blood leukocytes but not Crandall feline kidney or G355-5 cells. The 34TF10 and PPR clones had an overall sequence identity of 91%. The env gene was the least conserved (85% at the amino acid level). Additionally, the potential open reading frame for a Tat-like protein, ORF 2, contained a stop codon in the 34TF10 isolate which was not found in the PPR clone. This truncation did not prevent in vitro or in vivo replication of 34TF10. Two splice acceptor sites were identified in the 34TF10 clone. One was 5' to the beginning of the putative tat open reading frame, and the other was 5' to the putative vif product. Both of these acceptor sites were conserved in the PPR clone. The long terminal repeats of the viruses were 7% divergent between the two clones, with a lack of conservation in putative NF-kappa B, LBP-1, and CCAAT enhancer-promoter sites.
Collapse
Affiliation(s)
- T R Phillips
- Department of Molecular Biology, Scripps Clinic and Research Foundation, La Jolla, California 92037
| | | | | | | | | | | |
Collapse
|
22
|
Sitbon M, Ellerbrok H, Pozo F, Nishio J, Hayes SF, Evans LH, Chesebro B. Sequences in the U5-gag-pol region influence early and late pathogenic effects of Friend and Moloney murine leukemia viruses. J Virol 1990; 64:2135-40. [PMID: 2182908 PMCID: PMC249371 DOI: 10.1128/jvi.64.5.2135-2140.1990] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022] Open
Abstract
Friend replication-competent murine leukemia virus (F-MuLV), clone 57, induces a severe early hemolytic anemia and a later erythroleukemia after inoculation of newborn IRW or ICFW mice, whereas Moloney MuLV (M-MuLV) induces only lymphoid leukemia. We have shown previously that the attenuated hemolytic and erythroleukemogenic abilities of an F-MuLV variant, clone B3, were due mostly to changes in the env gene and long terminal repeat, respectively. For the present study, we derived two constructs exchanging env fragments of F-MuLV 57 and M-MuLV and compared them with two constructs described by Chatis et al. (J. Virol. 52:248-254, 1984) exchanging the U3 region of the long terminal repeat of the same parental viruses. When comparing the hemolytic effect of these constructs with those of the parent, we found that the U5-gag-pol region of F-MuLV was required for development of severe early hemolytic anemia and that, unlike the env of F-MuLV B3, the env of M-MuLV was fully competent in inducing severe early hemolytic anemia when associated with the F-MuLV U5-gag-pol and U3 regions. As expected, induction of erythroleukemia depended on the presence of the F-MuLV U3 region; however, the presence of both the U3 and U5-gag-pol regions of F-MuLV appeared to be synergistic and was associated with a more rapid appearance of erythroleukemia.
Collapse
Affiliation(s)
- M Sitbon
- Laboratoire d'Immunologie et Oncologie des Maladies Rétrovirales, Hôpital Cochin, Institut National de la Santé et de la Recherche Médicale U152, Paris, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Golemis EA, Speck NA, Hopkins N. Alignment of U3 region sequences of mammalian type C viruses: identification of highly conserved motifs and implications for enhancer design. J Virol 1990; 64:534-42. [PMID: 2153223 PMCID: PMC249141 DOI: 10.1128/jvi.64.2.534-542.1990] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022] Open
Abstract
We aligned published sequences for the U3 region of 35 type C mammalian retroviruses. The alignment reveals that certain sequence motifs within the U3 region are strikingly conserved. A number of these motifs correspond to previously identified sites. In particular, we found that the enhancer region of most of the viruses examined contains a binding site for leukemia virus factor b, a viral corelike element, the consensus motif for nuclear factor 1, and the glucocorticoid response element. Most viruses containing more than one copy of enhancer sequences include these binding sites in both copies of the repeat. We consider this set of binding sites to constitute a framework for the enhancers of this set of viruses. Other highly conserved motifs in the U3 region include the retrovirus inverted repeat sequence, a negative regulatory element, and the CCAAT and TATA boxes. In addition, we identified two novel motifs in the promoter region that were exceptionally highly conserved but have not been previously described.
Collapse
Affiliation(s)
- E A Golemis
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
24
|
Speck NA, Renjifo B, Golemis E, Fredrickson TN, Hartley JW, Hopkins N. Mutation of the core or adjacent LVb elements of the Moloney murine leukemia virus enhancer alters disease specificity. Genes Dev 1990; 4:233-42. [PMID: 2338244 DOI: 10.1101/gad.4.2.233] [Citation(s) in RCA: 165] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
Transcriptional enhancers of replication-competent mouse C-type retroviruses are potent determinants of the distinct disease-inducing phenotypes of different viral isolates and can also strongly influence the incidence and latent period of disease induction. To study the contribution of individual protein-binding sites to viral pathogenicity, we introduced mutations into each of the known nuclear factor-binding sites in the enhancer region of the Moloney murine leukemia virus and injected viruses with these mutations into newborn NFS mice. All viruses induced disease. Viruses with mutations in both copies of the leukemia virus factor a (LVa) site, leukemia virus factor c (LVc) site, or in just the promoter proximal copy of the glucocorticoid response element (GRE) had a latent period of disease onset and disease specificity indistinguishable from that of the wild-type Moloney virus. Viruses with mutations in two or three of the GREs, in both copies of the leukemia virus factor b (LVb) site, in two of the four nuclear factor 1 (NF1) consensus motifs, or in both copies of the conserved viral core element showed a significant delay in latent period of disease induction. Strikingly, viruses with mutations in the core element induced primarily erythroleukemias, and mutations in the LVb site also resulted in a significant incidence of erythroleukemias. These and other genetic and biochemical studies suggest models for how subtle alterations in the highly conserved structure of mouse C-type retrovirus enhancers can produce a dramatic effect on disease specificity.
Collapse
Affiliation(s)
- N A Speck
- Biology Department, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | | | | | |
Collapse
|
25
|
Speck NA, Renjifo B, Hopkins N. Point mutations in the Moloney murine leukemia virus enhancer identify a lymphoid-specific viral core motif and 1,3-phorbol myristate acetate-inducible element. J Virol 1990; 64:543-50. [PMID: 2104942 PMCID: PMC249142 DOI: 10.1128/jvi.64.2.543-550.1990] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022] Open
Abstract
The transcriptional enhancer of the Moloney murine leukemia virus (MoMLV) is organized as a 75-base-pair repeat, and in each copy of the repeat there are multiple binding sites for nuclear factors. We have introduced point mutations into each of the known nuclear factor-binding sites in the MoMLV enhancer, in both copies of the direct repeat, and have analyzed the transcriptional activity conferred by the mutated enhancers by transient-expression assays in both hematopoietic and nonhematopoietic cell lines. Mutation of individual binding sites in the MoMLV enhancer has moderate effects (less than 2-fold to 20-fold) on transcription in six independent cell lines. Several mutations decreased transcription from the MoMLV enhancer ubiquitously (the leukemia virus factor b site and the glucocorticoid response element), whereas others affected transcription specifically in lymphoid cell lines (core motif) or, more significantly, in fibroblasts (nuclear factor 1 site). The transcriptional activity of the MoMLV enhancer can be induced 8- to 10-fold by 1,3-phorbol myristate acetate in Jurkat T cells. Mutations in any of three adjacent binding sites (leukemia virus factor b and c sites and the core motif) within a 28-base-pair region in the center of the direct repeat sequence of the MoMLV enhancer completely attenuate the response to 1,3-phorbol myristate acetate.
Collapse
Affiliation(s)
- N A Speck
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
26
|
Paludan K, Dai HY, Duch M, Jørgensen P, Kjeldgaard NO, Pedersen FS. Different relative expression from two murine leukemia virus long terminal repeats in unintegrated transfected DNA and in integrated retroviral vector proviruses. J Virol 1989; 63:5201-7. [PMID: 2555551 PMCID: PMC251184 DOI: 10.1128/jvi.63.12.5201-5207.1989] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023] Open
Abstract
Results of transient-expression studies have suggested a correlation between tissue-specific pathogenicity of murine leukemia viruses and the relative transcriptional activities of their long terminal repeats in various cell types. To test whether transient-expression ratios are representative of those of integrated proviruses, we developed a system for generation of retroviral transmission vectors differing only in U3. Vectors with the long terminal repeats of leukemogenic SL3-3 and nonleukemogenic Akv viruses were used for infection of a lymphoid cell line. We then compared expression in infected cells with transient expression after DNA transfection. In contrast to a high SL3-3/Akv reporter gene expression ratio in the transient assays, the ratio in stably infected populations was low. Sets of random cell clones from the two infected populations showed wide variation, with a mean value ratio identical to the population ratio but a considerably higher ratio between lowest values. We suggest that the lower expression levels, like transient expression, reflect inherent enhancer strength and that the higher levels represent chromosomal influence. The different pathogenicity, despite the moderate difference in average expression, may then relate to a different capacity for insertional oncogene activation owing to the different inherent enhancer strengths revealed by the transient-expression assays and the least active proviruses.
Collapse
Affiliation(s)
- K Paludan
- Department of Molecular Biology and Plant Physiology, University of Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
27
|
LoSardo JE, Cupelli LA, Short MK, Berman JW, Lenz J. Differences in activities of murine retroviral long terminal repeats in cytotoxic T lymphocytes and T-lymphoma cells. J Virol 1989; 63:1087-94. [PMID: 2644446 PMCID: PMC247802 DOI: 10.1128/jvi.63.3.1087-1094.1989] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023] Open
Abstract
Transcriptional activities of the long terminal repeats (LTRs) of various murine leukemia viruses were tested in the cytotoxic T-cell lines CTLL-1 and CTLL-2. In contrast to T-lymphoma cells, in which the LTRs of T-lymphomagenic virus SL3-3 and Moloney murine leukemia virus are more active than those of other viruses, transcriptional activity in these mature, interleukin-2-dependent cells is not correlated with the specificity of viral leukemogenicity. Several approaches were used to investigate the molecular basis for LTR activity differences in lymphoma cells and mature cytotoxic T cells. Deletion analysis of the Moloney virus LTR showed that the direct repeats associated with enhancer activity have, at most, a slight effect on expression in CTLL-1 cells, whereas they stimulate expression six- to eightfold in T-lymphoma cells. This suggests that the mature T-cell line lacks one or more factors present in T-lymphoma cells that function to augment transcription from the Moloney murine leukemia virus LTR. We also used recombinant viral LTRs to investigate the role of the enhancer core element of SL3-3 in CTLL-1 and CTLL-2 cells. A one-base-pair difference between the core sequences of SL3-3 and nonleukemogenic Akv virus, which is important for SL3-3 activity in T-lymphoma cells, had no effect in these cells. The inability to distinguish the single-base-pair difference in expression assays was correlated with the absence of binding of a cellular factor, S-CBF, to the SL3-3 enhancer core in extracts of CTLL-1 and CTLL-2 nuclei. These studies may have implications for identification of the target cells for viral leukemogenesis, as well as for tracing of changes in the transcriptional machinery during T-lymphocyte differentiation.
Collapse
Affiliation(s)
- J E LoSardo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | | | | | |
Collapse
|
28
|
Abstract
Transient expression assays were used to determine the sequences within the long terminal repeat (LTR) that define the high activity in T-lymphoma cells of the leukemogenic SL3-3 virus in comparison with that of the nonleukemogenic Akv virus. Each of these viruses contains sequences related to the consensus element, the enhancer core. The SL3-3 and Akv enhancer cores differ at a single base pair. Substitution of the Akv core element into the SL3-3 LTR decreased expression in T-lymphoma cells but not in other cell types. Likewise, substitution of the SL3-3 core sequence into the Akv LTR increased expression in T-lymphoma cells but not in other types of hematopoietic cells. These data indicate that the SL3-3 enhancer core sequence functions better than that of Akv in T-lymphoma cells, but in other hematopoietic cell types the two are approximately equivalent. Competition DNA-protein binding assays were used to assess what nuclear factors from T-lymphoma lines and non-T lines bound to the SL3-3 and Akv core elements. Factors were detected that bound specifically to either the SL3-3 or Akv core but not to the other. Another factor was detected that bound equally well to both. However, none of these factors was specific to T-lymphoma cells.
Collapse
Affiliation(s)
- A L Boral
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
29
|
Sakai K, Dewhurst S, Ma XY, Volsky DJ. Differences in cytopathogenicity and host cell range among infectious molecular clones of human immunodeficiency virus type 1 simultaneously isolated from an individual. J Virol 1988; 62:4078-85. [PMID: 3172338 PMCID: PMC253838 DOI: 10.1128/jvi.62.11.4078-4085.1988] [Citation(s) in RCA: 105] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023] Open
Abstract
A cytopathic human immunodeficiency virus type 1 (HIV-1) isolate containing multiple virus genotypes was molecularly cloned, and the biological activity of six randomly selected clones was assessed by transfection into human lymphoid or glial cell lines. Five infectious clones of HIV-1, termed N1T-A through -E, were isolated in this manner. Clones N1T-A, -B, -C, and -E could be distinguished by restriction endonuclease mapping whereas clones N1T-B and -D had identical maps with the enzymes used. Each clone exhibited a distinct host cell range as well as markedly different infection kinetics and cytopathogenic properties when tested in human cell lines of T-lymphocytic, monocytic, and astrocytic origin. In particular, infection with HIV-1 clone N1T-E was characterized by slow kinetics and lack of significant cytopathic effects in acutely and chronically infected cells. Clone N1T-A, similar to the parental isolate N1T, exhibited a wide host cell range, fast kinetics of infection, and high cytopathogenicity. These data indicate that HIV-infected individuals may carry multiple HIV-1 genotypes with distinct cytopathogenic potential and cell tropism. Analysis of virus isolates must take into account the contribution, or masking, of individual virus clones.
Collapse
Affiliation(s)
- K Sakai
- Molecular Virology Laboratory, St. Luke's/Roosevelt Hospital Center, Columbia, New York, New York
| | | | | | | |
Collapse
|
30
|
Ball JK, Diggelmann H, Dekaban GA, Grossi GF, Semmler R, Waight PA, Fletcher RF. Alterations in the U3 region of the long terminal repeat of an infectious thymotropic type B retrovirus. J Virol 1988; 62:2985-93. [PMID: 2839715 PMCID: PMC253737 DOI: 10.1128/jvi.62.8.2985-2993.1988] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023] Open
Abstract
We isolated and characterized a type B thymotropic retrovirus (DMBA-LV) which is highly related to mouse mammary tumor virus (MMTV) isolates and which induces T-cell thymomas with a high incidence and a very short latent period. Regions of nonhomology between the DMBA-LV genome and the MMTV genome were identified by heteroduplex mapping and nucleotide sequence studies. In the electron microscope heteroduplex mapping studies the EcoRI-generated 5' and 3' fragments of the DMBA-LV genome were compared with the corresponding fragments of the MMTV (C3H and GR) genome isolated from mammary tumors. The results indicated that DMBA-LV contained a region of nonhomologous nucleotide sequences in the 3' half of the U3 region of the long terminal repeat (LTR). Nucleotide sequence studies confirmed these results and showed that in this region 440 nucleotides of the MMTV (C3H) sequences were deleted and substituted with a segment of 122 nucleotides. This substituted segment in the form of a tandem repeat structure contained nucleotide sequences derived exclusively from sequences which flanked the substitution loop. The distal glucocorticoid regulatory element was unaltered, and two additional copies of the distal glucocorticoid regulatory element-binding site were present in the substituted region. The restriction endonuclease map of the reconstructed molecular clone of DMBA-LV was identical to that corresponding to unintegrated linear DMBA-LV DNA present in DMBA-LV-induced tumor cell lines. Since the nucleotide sequences of the LTRs present in four different DMBA-LV proviral copies isolated from a single thymoma were identical, we concluded that they were derived from the same parental virus and that this type B retrovirus containing an alteration in the U3 region of its LTR could induce thymic lymphomas. Thus, DMBA-LV represents the first example of a productively replicating type B retrovirus that contains an LTR modified in the U3 region and that has target cell and disease specificity for T cells.
Collapse
Affiliation(s)
- J K Ball
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Spiro C, Li JP, Bestwick RK, Kabat D. An enhancer sequence instability that diversifies the cell repertoire for expression of a murine leukemia virus. Virology 1988; 164:350-61. [PMID: 2835856 DOI: 10.1016/0042-6822(88)90548-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
Studies of recombinants between murine leukemia viruses (MuLVs) that cause thymic or erythroid leukemias have shown that enhancer sequences in the long-terminal repeats (LTRs) can determine the target tissues for pathogenesis. It has been inferred that the enhancers may specifically target viral expression into the cells that then become neoplastic. However, the neoplasms in those studies formed after latencies and contained ultimate viruses (called MCFs) that differed from the injected viruses in their enhancer sequences and envelope (env) genes. Transcriptional activities of LTRs from these proximal and ultimate viruses have not been thoroughly analyzed in different hematopoietic lineages. We present evidence that the enhancer of Friend spleen focus-forming virus (SFFV), an ultimate erythroleukemogenic retrovirus, contains an unstable 42-nucleotide direct repeat. Other ultimate erythroleukemogenic MuLVs (Friend MCFs) contain an enhancer nearly identical to that of SFFV both in its sequence and in its specific instability. The instability occurs in sequences that contain inverted repeats and we propose that it occurs by a simple reverse transcriptase hop mechanism. We constructed plasmids that contain the two forms of the SFFV LTR linked to the bacterial chloramphenicol acetyltransferase (CAT) gene, and we compared these in transient transfection assays with LTR-CAT plasmids constructed from Friend and Moloney MuLVs. The assays employed erythroleukemia cells, thymic lymphoma cells, and fibroblasts. The tropisms of expression correlated only weakly with tissue specificities of pathogenesis and each LTR was active in all cells. The SFFV 42-nucleotide duplication reduced expression in erythroid cells and increased expression in fibroblasts. We conclude that retroviral enhancers do not stringently direct gene expression into specific cell lineages, but on the contrary they are leaky and contain replicative instabilities that also may facilitate viral entrenchment throughout the host. These results have important implications for understanding murine retroviral evolution and the multi-step process of leukemogenesis.
Collapse
Affiliation(s)
- C Spiro
- Department of Biochemistry, School of Medicine, Oregon Health Sciences University, Portland 97201
| | | | | | | |
Collapse
|
32
|
Identification of a common ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid tumors. Mol Cell Biol 1988. [PMID: 2827004 DOI: 10.1128/mcb.8.1.301] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022] Open
Abstract
AKXD-23 recombinant inbred mice develop myeloid tumors at a high frequency, unlike other AKXD recombinant inbred strains which develop B-cell lymphomas, T-cell lymphomas, or both. AKXD-23 myeloid tumors are monoclonal, and their DNA contains somatically acquired proviruses, suggesting that they are retrovirally induced. We identified a common site of ecotropic proviral integration that is present in the DNA of all AKXD-23 myeloid tumors that were analyzed and in the DNA of all myeloid tumors that occur in AKXD strains other than AKXD-23. We designated this locus Evi-1 (ecotropic viral integration site 1). Rearrangements in the Evi-1 locus were also detected in the DNA of a number of myeloid tumors and myeloid cell lines isolated from strains other than AKXD. In contrast, few Evi-1 rearrangements were detected in the DNA of T- or B-cell tumors. Evi-1 may thus identify a new proto-oncogene locus that is involved in myeloid disease.
Collapse
|
33
|
Mucenski ML, Taylor BA, Ihle JN, Hartley JW, Morse HC, Jenkins NA, Copeland NG. Identification of a common ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid tumors. Mol Cell Biol 1988; 8:301-8. [PMID: 2827004 PMCID: PMC363121 DOI: 10.1128/mcb.8.1.301-308.1988] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023] Open
Abstract
AKXD-23 recombinant inbred mice develop myeloid tumors at a high frequency, unlike other AKXD recombinant inbred strains which develop B-cell lymphomas, T-cell lymphomas, or both. AKXD-23 myeloid tumors are monoclonal, and their DNA contains somatically acquired proviruses, suggesting that they are retrovirally induced. We identified a common site of ecotropic proviral integration that is present in the DNA of all AKXD-23 myeloid tumors that were analyzed and in the DNA of all myeloid tumors that occur in AKXD strains other than AKXD-23. We designated this locus Evi-1 (ecotropic viral integration site 1). Rearrangements in the Evi-1 locus were also detected in the DNA of a number of myeloid tumors and myeloid cell lines isolated from strains other than AKXD. In contrast, few Evi-1 rearrangements were detected in the DNA of T- or B-cell tumors. Evi-1 may thus identify a new proto-oncogene locus that is involved in myeloid disease.
Collapse
Affiliation(s)
- M L Mucenski
- Mammalian Genetics Laboratory, National Cancer Institute, Frederick, Maryland 21701
| | | | | | | | | | | | | |
Collapse
|
34
|
Mucenski ML, Taylor BA, Copeland NG, Jenkins NA. Characterization of somatically acquired ecotropic and mink cell focus-forming viruses in lymphomas of AKXD recombinant inbred mice. J Virol 1987; 61:2929-33. [PMID: 3039180 PMCID: PMC255826 DOI: 10.1128/jvi.61.9.2929-2933.1987] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023] Open
Abstract
The DNA of lymphomas from 12 AKXD recombinant inbred mouse strains was analyzed to determine the presence of somatically acquired ecotropic and mink cell focus-forming proviruses. Mink cell focus-forming proviruses were associated primarily with T-cell lymphomas, whereas ecotropic proviruses were associated with lymphomas of B-cell and myeloid lineages. A model based on the results is proposed to explain the variation in lymphoma types observed in different AKXD strains.
Collapse
|
35
|
Ishimoto A, Takimoto M, Adachi A, Kakuyama M, Kato S, Kakimi K, Fukuoka K, Ogiu T, Matsuyama M. Sequences responsible for erythroid and lymphoid leukemia in the long terminal repeats of Friend-mink cell focus-forming and Moloney murine leukemia viruses. J Virol 1987; 61:1861-6. [PMID: 3033317 PMCID: PMC254191 DOI: 10.1128/jvi.61.6.1861-1866.1987] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023] Open
Abstract
Despite the high degree of homology (91%) between the nucleotide sequences of the Friend-mink cell focus-forming (MCF) and the Moloney murine leukemia virus (MuLV) genomic long terminal repeats (LTRs), the pathogenicities determined by the LTR sequences of the two viruses are quite different. Friend-MCF MuLV is an erythroid leukemia virus, and Moloney MuLV is a lymphoid leukemia virus. To map the LTR sequences responsible for the different disease specificities, we constructed nine viruses with LTRs recombinant between the Friend-MCF and Moloney MuLVs. Analysis of the leukemia induced with the recombinant viruses showed that a 195-base-pair nucleotide sequence, including a 75-base-pair nucleotide Moloney enhancer, is responsible for the tissue-specific leukemogenicity of Moloney MuLV. However, not only the enhancer but also its downstream sequences appear to be necessary. The Moloney virus enhancer and its downstream sequence exerted a dominant effect over that of the Friend-MCF virus, but the enhancer sequence alone did not. The results that three of the nine recombinant viruses induced both erythroid and lymphoid leukemias supported the hypothesis that multiple viral genetic determinants control both the ability to cause leukemia and the type of leukemia induced.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA, Recombinant/physiology
- DNA, Viral/physiology
- Enhancer Elements, Genetic
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/pathogenicity
- Gene Expression Regulation
- Genes, Viral
- Leukemia Virus, Murine/genetics
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Experimental/genetics
- Leukemia, Lymphoid/genetics
- Mice
- Mink Cell Focus-Inducing Viruses/genetics
- Mink Cell Focus-Inducing Viruses/pathogenicity
- Moloney murine leukemia virus/genetics
- Moloney murine leukemia virus/pathogenicity
- Organ Specificity
- Recombination, Genetic
- Repetitive Sequences, Nucleic Acid
- Sequence Homology, Nucleic Acid
Collapse
|
36
|
Short MK, Okenquist SA, Lenz J. Correlation of leukemogenic potential of murine retroviruses with transcriptional tissue preference of the viral long terminal repeats. J Virol 1987; 61:1067-72. [PMID: 3029400 PMCID: PMC254064 DOI: 10.1128/jvi.61.4.1067-1072.1987] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023] Open
Abstract
Recombination studies have established that retroviral long terminal repeats (LTRs) are important genetic determinants of the viral capacity to induce hematopoietic tumors and to specify the type of cell making up the tumor. Plasmids containing LTRs of several murine leukemia viruses linked to the chloramphenicol acetyltransferase gene were tested in transient assays to measure relative rates of transcriptional activity in different types of hematopoietic cells. LTRs of the thymomagenic viruses SL3-3, Moloney leukemia virus, and a Moloney mink cell focus-forming virus all expressed to higher levels than other LTRs in T-lymphocyte cell lines. Conversely, the LTRs of Friend leukemia virus and a polycythemic spleen focus-forming virus expressed to higher levels than other LTRs in erythroleukemia cells. The LTR of nonleukemogenic Akv virus induced a relatively low level of activity compared with the others in all cells tested. Thus the relative level of LTR-driven expression in various types of cells corresponds to the type of tumor caused by the intact virus in vivo. These results provide direct evidence that the tissue specificity of the transcriptional activity of LTRs plays a critical role in determining the target cell for retroviral oncogenesis.
Collapse
|
37
|
Li Y, Golemis E, Hartley JW, Hopkins N. Disease specificity of nondefective Friend and Moloney murine leukemia viruses is controlled by a small number of nucleotides. J Virol 1987; 61:693-700. [PMID: 3468264 PMCID: PMC254008 DOI: 10.1128/jvi.61.3.693-700.1987] [Citation(s) in RCA: 145] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023] Open
Abstract
Moloney murine leukemia virus induces T cell lymphomas after injection into NFS mice, whereas the nondefective Friend virus induces erythroleukemias. Previous studies showed that sequences encompassing the viral transcriptional signals in U3 are the primary determinant of this phenotype in recombinants between these two viruses. To more precisely identify the sequences responsible, we constructed additional recombinants, within U3, between Friend and Moloney viruses and assayed these recombinants for for their disease specificity. We found that a fragment 191 bases long that included the direct repeat (enhancer) region plus 22 nucleotides to its 3' side from Friend virus was sufficient to convert Moloney virus to a virus that induced only erythroleukemias. A 171-base-long fragment of Moloney virus, including just the direct repeat, converted Friend virus to a virus that induced primarily lymphomas (about 85% of mice injected). We also constructed Moloney and Friend virus variants with one rather than two copies of the enhancer element. These viruses retained their disease specificity, although they exhibited a marked increase in the latent period of disease induction. Together the results suggest that 25 or fewer nucleotide differences, lying within and also just 3' of the direct repeat, are the primary determinant of the distinct disease specificities of nondefective Friend and Moloney viruses.
Collapse
|
38
|
AKXD recombinant inbred strains: models for studying the molecular genetic basis of murine lymphomas. Mol Cell Biol 1987. [PMID: 3025647 DOI: 10.1128/mcb.6.12.4236] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/23/2023] Open
Abstract
We analyzed the lymphoma susceptibility of 13 AKXD recombinant inbred mouse strains derived from AKR/J, a highly lymphomatous strain, and DBA/2J, a weakly lymphomatous strain. Of the 13 strains used, 12 showed a high incidence of lymphoma development. However, the average age at onset of lymphoma varied considerably among the different AKXD strains, suggesting that they have segregated several loci that affect lymphoma susceptibility. A relatively unambiguous classification of lymphomas was made possible by using histopathology in addition to detailed molecular characterization of rearrangements in immunoglobulin heavy and kappa light genes and in T-cell receptor beta-chain genes. Among the 12 highly lymphomatous strains, only 2 were identified that, like the parental AKR/J strain, died primarily of T-cell lymphomas. Three strains died primarily of B-cell lymphomas, and one strain primarily of myeloid lymphomas. Six strains were susceptible to both T-cell and B-cell lymphomas. Thus, these strains have segregated genes that affect both lymphoma susceptibility and lymphoma type and should prove to be useful models for studying the molecular genetic basis of murine lymphomas.
Collapse
|
39
|
Ostertag W, Stocking C, Johnson GR, Kluge N, Kollek R, Franz T, Hess N. Transforming genes and target cells of murine spleen focus-forming viruses. Adv Cancer Res 1987; 48:193-355. [PMID: 3039810 DOI: 10.1016/s0065-230x(08)60693-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
|
40
|
Sitbon M, Sola B, Evans L, Nishio J, Hayes SF, Nathanson K, Garon CF, Chesebro B. Hemolytic anemia and erythroleukemia, two distinct pathogenic effects of Friend MuLV: mapping of the effects to different regions of the viral genome. Cell 1986; 47:851-9. [PMID: 3465451 DOI: 10.1016/0092-8674(86)90800-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Abstract
Two different pathogenic effects of the Friend ecotropic murine leukemia virus (F-MuLV) were distinguished by serial examinations of hematocrits and reticulocyte counts of IRW mice inoculated as newborns. F-MuLV induced hemolytic anemia with increased levels of erythropoiesis, which was detectable as early as 13 days of age, whereas blocked erythroid differentiation, associated with erythroleukemia, was apparent only after 30 days of age. Using strains of Friend-MuLV with different virulences, we constructed recombinant viruses that allowed us to map the hemolytic effect and the ability to induce rapid erythroleukemia to different regions of the viral genome. Moreover, the ability of the virus to induce rapid erythroleukemia appeared to be independent of the presence of severe early hemolytic anemia.
Collapse
MESH Headings
- Anemia, Hemolytic/blood
- Anemia, Hemolytic/microbiology
- Animals
- Erythrocyte Count
- Erythropoiesis
- Friend murine leukemia virus/genetics
- Friend murine leukemia virus/pathogenicity
- Genes, Viral
- Leukemia, Erythroblastic, Acute/blood
- Leukemia, Erythroblastic, Acute/microbiology
- Leukemia, Experimental/blood
- Leukemia, Experimental/microbiology
- Mice
- Mice, Inbred Strains
- Reticulocytes/microbiology
- Splenomegaly
- Virulence
Collapse
|
41
|
Mucenski ML, Taylor BA, Jenkins NA, Copeland NG. AKXD recombinant inbred strains: models for studying the molecular genetic basis of murine lymphomas. Mol Cell Biol 1986; 6:4236-43. [PMID: 3025647 PMCID: PMC367204 DOI: 10.1128/mcb.6.12.4236-4243.1986] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023] Open
Abstract
We analyzed the lymphoma susceptibility of 13 AKXD recombinant inbred mouse strains derived from AKR/J, a highly lymphomatous strain, and DBA/2J, a weakly lymphomatous strain. Of the 13 strains used, 12 showed a high incidence of lymphoma development. However, the average age at onset of lymphoma varied considerably among the different AKXD strains, suggesting that they have segregated several loci that affect lymphoma susceptibility. A relatively unambiguous classification of lymphomas was made possible by using histopathology in addition to detailed molecular characterization of rearrangements in immunoglobulin heavy and kappa light genes and in T-cell receptor beta-chain genes. Among the 12 highly lymphomatous strains, only 2 were identified that, like the parental AKR/J strain, died primarily of T-cell lymphomas. Three strains died primarily of B-cell lymphomas, and one strain primarily of myeloid lymphomas. Six strains were susceptible to both T-cell and B-cell lymphomas. Thus, these strains have segregated genes that affect both lymphoma susceptibility and lymphoma type and should prove to be useful models for studying the molecular genetic basis of murine lymphomas.
Collapse
|
42
|
Sherman L, Gazit A, Yaniv A, Dahlberg JE, Tronick SR. Nucleotide sequence analysis of the long terminal repeat of integrated caprine arthritis encephalitis virus. Virus Res 1986; 5:145-55. [PMID: 3765821 DOI: 10.1016/0168-1702(86)90014-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023]
Abstract
The nucleotide sequence of the long terminal repeat (LTR) of caprine arthritis encephalitis virus (CAEV), a prototype lentivirus was determined. 6-bp directly repeated host cell sequences flank the 376-bp proviral LTRs. By comparison with other retroviral sequences, the CAEV LTR likely contains U3, R and U5 regions 207, 86 and 83 base-pairs in length, respectively. Sequences conforming to consensus transcriptional promoter sites were identified in the U3 region upstream of a potential transcription initiation site. A consensus polyadenylation signal is present 20 bases upstream of the putative R-U5 border and a potential poly(A) addition site. Sequence comparisons of the CAEV LTR with those of other retroviruses uncovered significant similarities with that of visna virus. No other global homologies with other retrovirus LTRs could be detected. CAEV utilizes a primer binding site complementary to lysine tRNA as does visna, AIDS associated retroviruses, and mouse mammary tumor virus. The putative primer for positive-strand DNA synthesis identified in the CAEV sequence is identical to that of visna virus and very similar to those of AIDS retroviruses and MMTV. In addition, a stretch that includes the TATA box of the CAEV LTR resembles closely the corresponding region in the AIDS retrovirus. These and other findings further strengthen the classification of AIDS retrovirus as a lentivirus.
Collapse
|
43
|
Wolff L, Ruscetti S. Tissue tropism of a leukemogenic murine retrovirus is determined by sequences outside of the long terminal repeats. Proc Natl Acad Sci U S A 1986; 83:3376-80. [PMID: 3010293 PMCID: PMC323516 DOI: 10.1073/pnas.83.10.3376] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023] Open
Abstract
Although it has been previously determined that the long terminal repeat (LTR) sequences of several murine retroviruses specify the major tissue tropism of leukemias they induce, data reported here show that the LTR is not responsible for tissue tropism in the case of all leukemogenic viruses. In an effort to determine whether LTR sequences of the acute erythroleukemia-inducing spleen focus-forming virus (SFFV), like those of the other murine leukemia viruses, are uniquely required to confer tissue specificity to the virus, we prepared recombinant SFFVs in which the LTR region containing promoter and enhancer functions was replaced with analogous LTR regions from Friend and Moloney ecotropic and mink cell focus-inducing viruses. It was found that all of the SFFV constructs, even those with a LTR derived from lymphoma-inducing viruses such as Moloney murine leukemia virus, transformed erythroid cells in vitro and induced exclusively an erythroid disease. These results demonstrate that sequences in SFFV that determine the tissue-specific nature of the disease reside outside the LTR.
Collapse
|
44
|
Sitbon M, Evans L, Nishio J, Wehrly K, Chesebro B. Analysis of two strains of Friend murine leukemia viruses differing in ability to induce early splenomegaly: lack of relationship with generation of recombinant mink cell focus-forming viruses. J Virol 1986; 57:389-93. [PMID: 3001361 PMCID: PMC252743 DOI: 10.1128/jvi.57.1.389-393.1986] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023] Open
Abstract
Friend murine leukemia helper viruses (F-MuLV) 57 and B3 were indistinguishable by genomic structural analyses with RNase T1-resistant oligonucleotide fingerprinting and by antigenic reactivity with a panel of 31 monoclonal antibodies directed against murine leukemia viruses. Nevertheless, F-MuLV 57 and B3 had strikingly different virulences. Approximately 2 months after inoculation, IRW and NFS/N mice inoculated as newborns with F-MuLV 57 had gross splenomegaly caused by erythroid proliferation. In contrast, an equivalent dose of F-MuLV B3 induced spleen or lymph node enlargement 4 to 13 months after inoculation. Although most cases of spleen enlargement in F-MuLV B3-inoculated mice were due to erythroid proliferation, lymphoid or myeloid proliferation was also frequently observed. The replication of both F-MuLV 57 and B3 was equally efficient, and both viruses generated recombinant dual-tropic mink cell focus-forming (MCF) viruses with the same kinetics and efficiency. Moreover, MCF viruses induced by F-MuLV 57 and B3 had the same antigenic patterns. Therefore, the ability of F-MuLV to induce early splenomegaly did not correlate with the generation of recombinant MCF viruses.
Collapse
|
45
|
Friend C, Pogo BG. The molecular pathology of Friend erythroleukemia virus strains. An overview. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 780:181-95. [PMID: 3896311 DOI: 10.1016/0304-419x(85)90002-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023]
|