1
|
Dobrovolny HM. How do viruses get around? A review of mathematical modeling of in-host viral transmission. Virology 2025; 604:110444. [PMID: 39908773 DOI: 10.1016/j.virol.2025.110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/08/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Mathematical models of within host viral infections have provided important insights into the dynamics of viral infections. There has been much progress in adding more detailed biological processes to these models, such as incorporating the immune response, drug resistance, and viral coinfections. Unfortunately, the default assumption for the majority of these models is that virus is released from infected cells, travels through extracellular space, and deposits on another cell. This mode of transmission is known as cell-free infection. However, virus can also tunnel directly from one cell to another or cause neighboring cells to fuse, processes that also pass the infection to new cells. Additionally, most models do not explicitly include the transport of virus from one cell to another when describing cell-free transmission. In this review, we examine the current state of mathematical modeling that explicitly examines transmission beyond the cell-free assumption. While mathematical models have been developed to examine these processes, there are further improvements that can be made to better capture known viral dynamics.
Collapse
Affiliation(s)
- Hana M Dobrovolny
- Department of Physics & Astronomy, Texas Christian University, United States.
| |
Collapse
|
2
|
Baba Y, Kamata A, Kouno M, Takahashi S. Autoimmune hemolytic anemia associated with herpes zoster. J Dermatol 2023; 50:e94-e95. [PMID: 36152300 DOI: 10.1111/1346-8138.16594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2022] [Revised: 08/23/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Yuko Baba
- Department of Dermatology, Tokyo Dental College, Ichikawa General Hospital, Chiba, Japan
| | - Aki Kamata
- Department of Dermatology, Tokyo Dental College, Ichikawa General Hospital, Chiba, Japan
| | - Michiyoshi Kouno
- Department of Dermatology, Tokyo Dental College, Ichikawa General Hospital, Chiba, Japan
| | - Shinichi Takahashi
- Department of Dermatology, Tokyo Dental College, Ichikawa General Hospital, Chiba, Japan
| |
Collapse
|
3
|
Pan D, Wang W, Cheng T. Current Methods for the Detection of Antibodies of Varicella-Zoster Virus: A Review. Microorganisms 2023; 11:microorganisms11020519. [PMID: 36838484 PMCID: PMC9965970 DOI: 10.3390/microorganisms11020519] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Infection with the varicella-zoster virus (VZV) causes chickenpox and shingles, which lead to significant morbidity and mortality globally. The detection of serum VZV-specific antibodies is important for the clinical diagnosis and sero-epidemiological research of VZV infection, and for assessing the effect of VZV vaccine immunization. Over recent decades, a variety of methods for VZV antibody detection have been developed. This review summarizes and compares the current methods for detecting VZV antibodies, and discussed future directions for this field.
Collapse
|
4
|
Beaudoin-Bussières G, Arduini A, Bourassa C, Medjahed H, Gendron-Lepage G, Richard J, Pan Q, Wang Z, Liang C, Finzi A. SARS-CoV-2 Accessory Protein ORF8 Decreases Antibody-Dependent Cellular Cytotoxicity. Viruses 2022; 14:v14061237. [PMID: 35746708 PMCID: PMC9230529 DOI: 10.3390/v14061237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022] Open
Abstract
Viruses use many different strategies to evade host immune responses. In the case of SARS-CoV-2, its Spike mutates rapidly to escape from neutralizing antibodies. In addition to this strategy, ORF8, a small accessory protein encoded by SARS-CoV-2, helps immune evasion by reducing the susceptibility of SARS-CoV-2-infected cells to the cytotoxic CD8+ T cell response. Interestingly, among all accessory proteins, ORF8 is rapidly evolving and a deletion in this protein has been linked to milder disease. Here, we studied the effect of ORF8 on peripheral blood mononuclear cells (PBMC). Specifically, we found that ORF8 can bind monocytes as well as NK cells. Strikingly, ORF8 binds CD16a (FcγRIIIA) with nanomolar affinity and decreases the overall level of CD16 at the surface of monocytes and, to a lesser extent, NK cells. This decrease significantly reduces the capacity of PBMCs and particularly monocytes to mediate antibody-dependent cellular cytotoxicity (ADCC). Overall, our data identifies a new immune-evasion activity used by SARS-CoV-2 to escape humoral responses.
Collapse
Affiliation(s)
- Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (G.B.-B.); (C.B.); (H.M.); (G.G.-L.); (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Ariana Arduini
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.A.); (Q.P.); (Z.W.)
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Catherine Bourassa
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (G.B.-B.); (C.B.); (H.M.); (G.G.-L.); (J.R.)
| | - Halima Medjahed
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (G.B.-B.); (C.B.); (H.M.); (G.G.-L.); (J.R.)
| | - Gabrielle Gendron-Lepage
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (G.B.-B.); (C.B.); (H.M.); (G.G.-L.); (J.R.)
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (G.B.-B.); (C.B.); (H.M.); (G.G.-L.); (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Qinghua Pan
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.A.); (Q.P.); (Z.W.)
| | - Zhen Wang
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.A.); (Q.P.); (Z.W.)
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.A.); (Q.P.); (Z.W.)
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada
- Correspondence: (C.L.); (A.F.)
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada; (G.B.-B.); (C.B.); (H.M.); (G.G.-L.); (J.R.)
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G4, Canada
- Correspondence: (C.L.); (A.F.)
| |
Collapse
|
5
|
Pseudorabies virus glycoprotein gE suppresses interferon-β production via CREB-binding protein degradation. Virus Res 2020; 291:198220. [PMID: 33152381 DOI: 10.1016/j.virusres.2020.198220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/23/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS) is a main sensor used to detect microbial DNA in the cytoplasm, which subsequently induces the production of interferon (IFN) via the cGAS/STING/IRF3 signaling pathway, leading to an antiviral response. However, some viruses have evolved multiple strategies to escape this process. Pseudorabies virus (PRV) is a double-stranded DNA virus belonging to the Alphaherpesvirinae subfamily, which can cause serious damage to the porcine industry. Many herpesvirus components have been reported to counteract IFN production, whereas little is known of PRV. In the present study, we found that PRV glycoprotein E (gE) was involved in counteracting cGAS/STING-mediated IFN production. Ectopic expression of gE decreased cGAS/STING-mediated IFN-β promoter activity and the level of mRNA expression. Moreover, gE targeted at or downstream of IRF3 was found to inhibit IFN-β production. However, gE did not affect the phosphorylation, dimerization and nuclear translocation of IRF3. Furthermore, gE is located on the nuclear membrane and could subsequently degrade CREB-binding protein (CBP). MG132, a proteasome inhibitor, decreased CBP degradation and restored the IFN-β production induced by gE. Finally, gE-deleted PRV induced a higher level of IFN-β production and reduced CBP degradation compared to wild-type PRV. Together, these results demonstrate that PRV gE can inhibit cGAS/STING-mediated IFN-β production by degrading CBP to interrupt the enhanced assembly of IRF3 and CBP.
Collapse
|
6
|
Abstract
BACKGROUND Vitamin B 12 deficiency is an uncommon disorder in infancy. Most cases are because of maternal deficiency resulting from insufficient storage and/or reduced intake and are generally seen in exclusively breast-fed infants. Accentuation of the hemolytic process has never been described in association with Varicella Zoster Virus (VZV) infections. OBSERVATION We describe a 9-months-old breast-fed infant with megaloblastic anemia secondary to maternal vitamin B 12 deficiency. He presented severe pancytopenia and regression of motor functions and developed hemolytic crisis during a VZV infection. CONCLUSIONS Nutritional cobalamin deficiency should be considered in anemic infants with a history of prolonged exclusive breastfeeding and delayed developmental milestones. VZV infection can trigger a hemolytic process in infants with severe megaloblastic anemia secondary to B12 deficiency. A normal mean corpuscular volume does not rule out megaloblastic anemia, when the condition is combined with severe hemolysis.
Collapse
|
7
|
Quantitative measurement of varicella-zoster virus infection by semiautomated flow cytometry. Appl Environ Microbiol 2009; 75:2027-36. [PMID: 19201967 DOI: 10.1128/aem.02006-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV; human herpesvirus 3) is the etiological cause of chickenpox and, upon reactivation from latency, zoster. Currently, vaccines are available to prevent both diseases effectively. A critical requirement for the manufacturing of safe and potent vaccines is the measurement of the biological activity to ensure proper dosing and efficacy, while minimizing potentially harmful secondary effects induced by immunization. In the case of live virus-containing vaccines, such as VZV-containing vaccines, biological activity is determined using an infectivity assay in a susceptible cellular host in vitro. Infectivity measurements generally rely on the enumeration of plaques by visual inspection of an infected cell monolayer. These plaque assays are generally very tedious and labor intensive and have modest throughput and high associated variability. In this study, we have developed a flow cytometry assay to measure the infectivity of the attenuated vaccine strain (vOka/Merck) of VZV in MRC-5 cells with improved throughput. The assay is performed in 96-well tissue culture microtiter plates and is based on the detection and quantification of infected cells expressing VZV glycoproteins on their surfaces. Multiple assay parameters have been investigated, including specificity, limit of detection, limit of quantification, range of linear response, signal-to-noise ratio, and precision. This novel assay appears to be in good concordance with the classical plaque assay results and therefore provides a viable, higher-throughput alternative to the plaque assay.
Collapse
|
8
|
Deletion of the first cysteine-rich region of the varicella-zoster virus glycoprotein E ectodomain abolishes the gE and gI interaction and differentially affects cell-cell spread and viral entry. J Virol 2008; 83:228-40. [PMID: 18945783 DOI: 10.1128/jvi.00913-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) glycoprotein E (gE) is the most abundant glycoprotein in infected cells and, in contrast to those of other alphaherpesviruses, is essential for viral replication. The gE ectodomain contains a unique N-terminal region required for viral replication, cell-cell spread, and secondary envelopment; this region also binds to the insulin-degrading enzyme (IDE), a proposed VZV receptor. To identify new functional domains of the gE ectodomain, the effect of mutagenesis of the first cysteine-rich region of the gE ectodomain (amino acids 208 to 236) was assessed using VZV cosmids. Deletion of this region was compatible with VZV replication in vitro, but cell-cell spread of the rOka-DeltaCys mutant was reduced significantly. Deletion of the cysteine-rich region abolished the binding of the mutant gE to gI but not to IDE. Preventing gE binding to gI altered the pattern of gE expression at the plasma membrane of infected cells and the posttranslational maturation of gI and its incorporation into viral particles. In contrast, deletion of the first cysteine-rich region did not affect viral entry into human tonsil T cells in vitro or into melanoma cells infected with cell-free VZV. These experiments demonstrate that gE/gI heterodimer formation is essential for efficient cell-cell spread and incorporation of gI into viral particles but that it is dispensable for infectious varicella-zoster virion formation and entry into target cells. Blocking gE binding to gI resulted in severe impairment of VZV infection of human skin xenografts in SCIDhu mice in vivo, documenting the importance of cell fusion mediated by this complex for VZV virulence in skin.
Collapse
|
9
|
Egress of light particles among filopodia on the surface of Varicella-Zoster virus-infected cells. J Virol 2008; 82:2821-35. [PMID: 18184710 DOI: 10.1128/jvi.01821-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) is renowned for its very low titer when grown in cultured cells. There remains no single explanation for the low infectivity. In this study, viral particles on the surfaces of infected cells were examined by several imaging technologies. Few surface particles were detected at 48 h postinfection (hpi), but numerous particles were observed at 72 and 96 hpi. At 72 hpi, 75% of the particles resembled light (L) particles, i.e., envelopes without capsids. By 96 hpi, 85% of all particles resembled L particles. Subsequently, the envelopes of complete virions and L particles were investigated to determine their glycoprotein constituents. Glycoproteins gE, gI, and gB were detected in the envelopes of both types of particles in similar numbers; i.e., there appeared to be no difference in the glycoprotein content of the L particles. The viral particles emerged onto the cell surface amid actin-based filopodia, which were present in abundance within viral highways. Viral particles were easily detected at the base of and along the exterior surfaces of the filopodia. VZV particles were not detected within filopodia. In short, these results demonstrate that VZV infection of cultured cells produces a larger proportion of aberrant coreless particles than has been seen with any other previously examined alphaherpesvirus. Further, these results suggested a major disassociation between capsid formation and envelopment as an explanation for the invariably low VZV titer in cultured cells.
Collapse
|
10
|
Budt M, Reinhard H, Bigl A, Hengel H. Herpesviral Fcgamma receptors: culprits attenuating antiviral IgG? Int Immunopharmacol 2005; 4:1135-48. [PMID: 15251110 PMCID: PMC7173100 DOI: 10.1016/j.intimp.2004.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2004] [Revised: 05/17/2004] [Accepted: 05/28/2004] [Indexed: 12/18/2022]
Abstract
Production of IgG in response to virus infection is central to antiviral immune effector functions and a hallmark of B cell memory. Antiviral antibodies (Abs) recognising viral glycoproteins or protein antigen displayed on the surface of virions or virus-infected cells are crucial in rendering the virus noninfectious and in eliminating viruses or infected cells, either acting alone or in conjunction with complement. In many instances, passive transfer of Abs is sufficient to protect from viral infection. Herpesviruses (HV) are equipped with a large array of immunomodulatory functions which increase the efficiency of infection by dampening the antiviral immunity. Members of the α- and β-subfamily of the Herpesviridae are distinct in encoding transmembrane glycoproteins which selectively bind IgG via its Fc domain. The Fc-binding proteins constitute viral Fcγ receptors (vFcγRs) which are expressed on the cell surface of infected cells. Moreover, vFcγRs are abundantly incorporated into the envelope of virions. Despite their molecular and structural heterogeneity, the vFcγRs generally interfere with IgG-mediated effector functions like antibody (Ab)-dependent cellular cytolysis, complement activation and neutralisation of infectivity of virions. vFcγRs may thus contribute to the limited therapeutic potency of antiherpesviral IgG in clinical settings. A detailed molecular understanding of vFcγRs opens up the possibility to design recombinant IgG molecules resisting vFcγRs. Engineering IgG with a better antiviral efficiency represents a new therapeutic option against herpesviral diseases.
Collapse
Affiliation(s)
| | | | | | - Hartmut Hengel
- Corresponding author: Tel.: +49-1888-754-2502; fax: +49-1888-754-2328.
| |
Collapse
|
11
|
Abstract
The immune system has a variety of tools at its disposal to combat virus infections. These can be subdivided roughly into two categories: 'first line defence', consisting of the non-specific, innate immune system, and 'adaptive immune response', acquired over time following virus infection or vaccination. During evolution, viruses have developed numerous, and often very ingenious, strategies to counteract efficient recognition of virions or virus-infected cells by both innate and adaptive immunity. This review will focus on the different strategies that viruses use to avoid recognition by one of the components of the immune system: the complement system. Complement evasion is of particular importance for viruses, since complement activation is a crucial component of innate immunity (alternative and mannan-binding lectin activation pathway) as well as of adaptive immunity (classical, antibody-dependent complement activation).
Collapse
Affiliation(s)
- Herman W Favoreel
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Gerlinde R Van de Walle
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Hans J Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Maurice B Pensaert
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| |
Collapse
|
12
|
Mo C, Lee J, Sommer M, Grose C, Arvin AM. The requirement of varicella zoster virus glycoprotein E (gE) for viral replication and effects of glycoprotein I on gE in melanoma cells. Virology 2002; 304:176-86. [PMID: 12504560 DOI: 10.1006/viro.2002.1556] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
The glycoprotein E (gE) of varicella zoster virus (VZV), encoded by ORF68, is the most abundant viral glycoprotein. In the current experiments, we demonstrated that ORF68 deletion was incompatible with recovery of infectious virus from VZV cosmids. Replacing ORF68 at a nonnative AvrII site in the genome restored infectivity. Further, we found that VZV gE could be expressed under the control of the Tet-On promoter in stably transfected melanoma cell lines (Met-gE cells) without evidence of toxicity. In these Met-gE cells, gE colocalized with gamma-adaptin, a trans Golgi network marker, in perinuclear sites, but did not reach plasma membranes. In order to investigate how infection altered gE localization, we made a recombinant virus, vOka-MSPgE, with ORF68 from the VZV MSP strain. VZV MSP encodes a mutant gE protein (D150N) that lacks the mAb epitope, 3B3 (Santos et al., Virology 275, 306-317, 2000), whereas Met-gE protein binds mAb 3B3. Within 48 h after Met-gE cells were infected with vOka-MSPgE, the steady-state distribution of Met-gE protein extended beyond the perinuclear areas to other cytoplasmic sites and to plasma membranes. A second recombinant, vOka-MSPgE without gI (vOka-MSPgEdeltagI), was constructed to investigate Met-gE protein distribution in the absence of gI. The redistribution of Met-gE protein which was observed by 48 h after vOka-MSPgE infection did not occur until 5 days (140 h) within vOka-MSPgEdeltagI infected cells. After vOka-MSPgE infection of Met-gE cells, most Met-gE protein was in the final 94K mature form by 72 h. However, progression to predominance of mature gE was delayed in Met-gE cells infected with vOka-MSPgEdeltagI. These observations confirm our hypothesis that VZV gE is essential, based upon the demonstration of restored infectivity after replacing ORF68 in a nonnative site in the genome, and provide further evidence of the role of gI in facilitating the maturation and intracellular distribution of this critical VZV glycoprotein.
Collapse
Affiliation(s)
- Chengjun Mo
- Department of Pediatrics, Stanford University School of Medicine, California 93405, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
Simian varicella virus (SVV) is closely related to human varicella-zoster virus (VZV) and induces a varicella-like disease in nonhuman primates. The SVV genome encodes a glycoprotein E (gE) which is homologous to the gE of VZV and other alphaherpesviruses. The SVV gE was expressed in Escherichia coli and rabbits were immunized with the recombinant gE fusion proteins to generate polyclonal gE antiserum. Immunofluorescence and immunoprecipitation analyses demonstrated that the SVV gE is expressed on the surface and within SVV-infected cells. The gE is also expressed on SVV virions as indicated by serum neutralization assay. The mature SVV gE is glycosylated and is similar in size ( approximately 100 kd) to the mature VZV gE. Immunohistochemical analysis detected gE within skin vesicles and lung tissue of SVV-infected monkeys. Analysis of the humoral immune response to gE in an SVV-infected monkey determined that anti-gE antibody is induced as early as day 9 postinfection and persists at high titer for longer than 4 months. The simian varicella model offers an opportunity to investigate the role of gE in viral pathogenesis and immunity and to evaluate its potential as a varicella vaccine.
Collapse
Affiliation(s)
- W L Gray
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Slot 511, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
14
|
Lilley BN, Ploegh HL, Tirabassi RS. Human cytomegalovirus open reading frame TRL11/IRL11 encodes an immunoglobulin G Fc-binding protein. J Virol 2001; 75:11218-21. [PMID: 11602761 PMCID: PMC114701 DOI: 10.1128/jvi.75.22.11218-11221.2001] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2001] [Accepted: 08/20/2001] [Indexed: 11/20/2022] Open
Abstract
Several herpesviruses encode Fc receptors that may play a role in preventing antibody-mediated clearance of the virus in vivo. Human cytomegalovirus (HCMV) induces an Fc-binding activity in cells upon infection, but the gene that encodes this Fc-binding protein has not been identified. Here, we demonstrate that the HCMV AD169 open reading frame TRL11 and its identical copy, IRL11, encode a type I membrane glycoprotein that possesses IgG Fc-binding capabilities.
Collapse
Affiliation(s)
- B N Lilley
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
15
|
Santos RA, Hatfield CC, Cole NL, Padilla JA, Moffat JF, Arvin AM, Ruyechan WT, Hay J, Grose C. Varicella-zoster virus gE escape mutant VZV-MSP exhibits an accelerated cell-to-cell spread phenotype in both infected cell cultures and SCID-hu mice. Virology 2000; 275:306-17. [PMID: 10998331 DOI: 10.1006/viro.2000.0507] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Varicella-zoster virus is considered to have one of the most stable genomes of all human herpesviruses. In 1998, we reported the unanticipated discovery of a wild-type virus that had lost an immunodominant B-cell epitope on the gE ectodomain (VZV-MSP); the gE escape mutant virus exhibited an unusual pattern of egress. Further studies have now documented a markedly enhanced cell-to-cell spread by the mutant virus in cell culture. This property was investigated by laser scanning confocal microscopy combined with a software program that allows the measurement of pixel intensity of the fluorescent signal. For this new application of imaging technology, the VZV immediate early protein 62 (IE 62) was selected as the fluoresceinated marker. By 48 h postinfection, the number of IE 62-positive pixels in the VZV-MSP-infected culture was nearly fourfold greater than the number of pixels in a culture infected with a low-passage laboratory strain. Titrations by infectious center assays supported the above image analysis data. Confirmatory studies in the SCID-hu mouse documented that VZV-MSP spread more rapidly than other VZV strains in human fetal skin implants. Generally, the cytopathology and vesicle formation produced by other strains at 21 days postinfection were demonstrable with VZV-MSP at 14 days. To assess whether additional genes were contributing to the unusual VZV-MSP phenotype, approximately 20 kb of the VZV-MSP genome was sequenced, including ORFs 31 (gB), 37 (gH), 47, 60 (gL), 61, 62 (IE 62), 66, 67 (gI), and 68 (gE). Except for a few polymorphisms, as well as the previously discovered mutation within gE, the nucleotide sequences within most open reading frames were identical to the prototype VZV-Dumas strain. In short, VZV-MSP represents a novel variant virus with a distinguishable phenotype demonstrable in both infected cell cultures and SCID-hu mice.
Collapse
Affiliation(s)
- R A Santos
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Alconada A, Bauer U, Sodeik B, Hoflack B. Intracellular traffic of herpes simplex virus glycoprotein gE: characterization of the sorting signals required for its trans-Golgi network localization. J Virol 1999; 73:377-87. [PMID: 9847342 PMCID: PMC103843 DOI: 10.1128/jvi.73.1.377-387.1999] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) and varicella-zoster virus (VZV) are two pathogenic human alphaherpesviruses whose intracellular assembly is thought to follow different pathways. VZV presumably acquires its envelope in the trans-Golgi network (TGN), and it has recently been shown that its major envelope glycoprotein, VZV-gE, accumulates in this compartment when expressed alone. In contrast, the envelopment of HSV has been proposed to occur at the inner nuclear membrane, although to which compartment the gE homolog (HSV-gE) is transported is unknown. For this reason, we have studied the intracellular traffic of HSV-gE and have found that this glycoprotein accumulates at steady state in the TGN, both when expressed from cloned cDNA and in HSV-infected cells. In addition, HSV-gE cycles between the TGN and the cell surface and requires a conserved tyrosine-containing motif within its cytoplasmic tail for proper trafficking. These results show that VZV-gE and HSV-gE have similar intracellular trafficking pathways, probably reflecting the presence of similar sorting signals in the cytoplasmic domains of both molecules, and suggest that the respective viruses, VZV and HSV, could use the same subcellular organelle, the TGN, for their envelopment.
Collapse
Affiliation(s)
- A Alconada
- Institut de Biologie, EP CNRS 525, Institut Pasteur de Lille, 59021 Lille Cedex, France
| | | | | | | |
Collapse
|
17
|
Mammen M, Choi SK, Whitesides GM. Polyvalente Wechselwirkungen in biologischen Systemen: Auswirkungen auf das Design und die Verwendung multivalenter Liganden und Inhibitoren. Angew Chem Int Ed Engl 1998. [DOI: 10.1002/(sici)1521-3757(19981016)110:20<2908::aid-ange2908>3.0.co;2-2] [Citation(s) in RCA: 522] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
|
18
|
Abstract
Open reading frames within the unique short segment of alphaherpesvirus genomes participate in egress and cell-to-cell spread. The case of varicella-zoster virus (VZV) is of particular interest not only because the virus is highly cell associated but also because its most prominent cell surface protein, gE, bears semblance to the mammalian Fc receptor Fc gammaRII. A previous study demonstrated that when expressed alone in cells, VZV gE was endocytosed from the cell surface through a tyrosine localization motif in its cytoplasmic tail (J. K. Olson and C. Grose, J. Virol. 71:4042-4054, 1997). Since VZV gE is normally found in association with gI in the infected cell, the present study was directed at defining the trafficking of the VZV gE:gI protein complex. First, VZV gI underwent endocytosis and recycling when it was expressed alone in cells, and interestingly, VZV gI contained a methionine-leucine internalization motif in its cytoplasmic tail. Second, VZV gI was found by confocal microscopy to colocalize with VZV gE during endocytosis and recycling in cells. Third, by a quantitative internalization assay, VZV gE:gI was shown to undergo endocytosis more efficiently (steady state, 55 to 60%) than either gE alone (steady state, approximately 32%) or gI alone (steady state, approximately 45%). Further, examination of endocytosis-deficient mutant proteins demonstrated that VZV gI exerted a more pronounced effect than gE on internalization of the complex. Most importantly, therefore, these studies suggest that VZV gI behaves as an accessory component by facilitating the endocytosis of the major constituent gE and thereby modulating the trafficking of the entire cell surface gE:gI Fc receptor complex.
Collapse
Affiliation(s)
- J K Olson
- Department of Microbiology and Immunology Program, University of Iowa College of Medicine, Iowa City 52242, USA
| | | |
Collapse
|
19
|
Olson JK, Grose C. Endocytosis and recycling of varicella-zoster virus Fc receptor glycoprotein gE: internalization mediated by a YXXL motif in the cytoplasmic tail. J Virol 1997; 71:4042-54. [PMID: 9094682 PMCID: PMC191557 DOI: 10.1128/jvi.71.5.4042-4054.1997] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023] Open
Abstract
Varicella-zoster virus (VZV) encodes a cell surface Fc receptor, glycoprotein gE. VZV gE has previously been shown to display several features common to nonviral cell surface receptors. Most recently, VZV gE was reported to be tyrosine phosphorylated on a dimeric form (J. K. Olson, G. A. Bishop, and C. Grose, J. Virol. 71:110-119, 1997). Thereafter, attention focused on the ability of VZV gE to undergo receptor-mediated endocytosis. The current transient transfection studies demonstrated by confocal microscopy and internalization assays that VZV gE was endocytosed when expressed in HeLa cells. Endocytosis of gE was shown to be dependent on clathrin-coated vesicle formation within the cells. Subsequent colocalization studies showed that endocytosis of VZV gE closely mimicked endocytosis of the transferrin receptor. The gE cytoplasmic tail and more specifically tyrosine residue 582 were determined by mutagenesis studies to be important for efficient internalization of the protein; this tyrosine residue is part of a conserved YXXL motif. The amount of gE internalized at any given time reached a steady state of 32%. In addition, like the transferrin receptor, internalized gE recycled to the cell surface. The finding of gE endocytosis provided insight into earlier documentation of gE serine/threonine and tyrosine phosphorylation, since these phosphorylation events may serve as sorting signals for internalized receptors. Taken together with the previous discovery that both human and simian immunodeficiency virus envelope proteins can undergo endocytosis, the gE findings suggest that endocytosis of envelope components may be a posttranslational regulatory mechanism among divergent families of enveloped viruses.
Collapse
Affiliation(s)
- J K Olson
- Department of Microbiology and Immunology Program, University of Iowa College of Medicine, Iowa City 52242, USA
| | | |
Collapse
|
20
|
Olson JK, Bishop GA, Grose C. Varicella-zoster virus Fc receptor gE glycoprotein: serine/threonine and tyrosine phosphorylation of monomeric and dimeric forms. J Virol 1997; 71:110-9. [PMID: 8985329 PMCID: PMC191030 DOI: 10.1128/jvi.71.1.110-119.1997] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023] Open
Abstract
Varicella-zoster virus (VZV) glycoprotein gE is the predominant viral cell surface molecule; it behaves as an Fc receptor for immunoglobulin G, but its central function may be more closely related to viral egress and cell-to-cell spread. To further analyze the receptor properties of VZV gE, the gE gene (also called open reading frame 68) was expressed by a baculovirus vector in insect cells. The recombinant baculovirus gE product had a molecular mass of 64 kDa, smaller than the previously documented 98 kDa of mature gE expressed in mammalian cells. The major reason for the lowered molecular mass was diminished glycosylation. In addition to the 64-kDa form, a larger (130-kDa) form was observed in insect cells and represented dimerized 64-kDa molecules. Both the monomeric and dimeric gE forms were highly phosphorylated in insect cells. Protein kinase assays conducted in vitro with [gamma-32P]ATP and [gamma-32P]GTP indicated that endogenous casein kinase II was phosphorylating monomeric gE, while the dimeric gE form was phosphorylated by another kinase which did not utilize [gamma-32P]GTP. When immobilized recombinant gE molecules were probed with a monoclonal antibody which specifically recognizes a phosphotyrosine linkage, the gE dimer was found to be tyrosine phosphorylated whereas the monomer was not similarly modified. When recombinant gE produced in HeLa cells was probed with the same antiphosphotyrosine antibody, a dimeric gE form at 130 kDa was detected on the cell surface. These results suggested that VZV gE closely resembled other cell surface receptors, being modified on its various forms by both serine/threonine and tyrosine protein kinases. In this case, tyrosine phosphorylation occurred on a previously unrecognized and underglycosylated VZV gE dimeric product.
Collapse
Affiliation(s)
- J K Olson
- Department of Microbiology and Immunology Program, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | |
Collapse
|
21
|
Friedman HM, Wang L, Fishman NO, Lambris JD, Eisenberg RJ, Cohen GH, Lubinski J. Immune evasion properties of herpes simplex virus type 1 glycoprotein gC. J Virol 1996; 70:4253-60. [PMID: 8676446 PMCID: PMC190356 DOI: 10.1128/jvi.70.7.4253-4260.1996] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/01/2023] Open
Abstract
Herpes simplex virus type I (HSV-1) glycoprotein gC binds complement component C3b, and purified gC inhibits complement activation. Two HSV strains carrying mutations in the gC gene which rendered them unable to bind C3b were compared with wild-type and marker-rescued viruses to evaluate the role of gC on the virion in protecting HSV-1 from complement-mediated neutralization. The gC mutant viruses were markedly susceptible to neutralization by nonimmune human serum, showing up to a 5,000-fold decline in titer after 1 h of incubation with serum. In contrast, wild-type or marker-rescued viruses showed a twofold reduction in titer. Studies with hypogammaglobulinemic and immunoglobulin G-depleted serum supported the observation that neutralization occurred in the absence of antibody. Neutralization of gC mutant strains by nonimmune serum was rapid; their half-life was 2 to 2.5 min, compared with 1 h for wild-type virus. Ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA)-treated human serum or C4-deficient guinea pig serum failed to neutralize gC mutant strains, indicating a role for components of the classical complement pathway. gC had little additional effect on neutralization by the combination of antibody plus complement compared with complement alone. The results indicate that the magnitude of the protection offered by gC-1 is larger than previously recognized; that in the absence of gC-1, complement neutralization is rapid and is mediated by components of the classical complement pathway; and that gC mainly protects against antibody-independent complement neutralization, suggesting a probable role for gC early in infection, before antibodies develop.
Collapse
Affiliation(s)
- H M Friedman
- Department of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The pathway of envelopment and egress of the varicella-zoster virus (VZV) and the primary site of viral production within the epidermal layer of the skin are not fully understood. There are several hypotheses to explain how the virus may receive an envelope as it travels to the surface of the monolayer. In this study, we expand earlier reports and provide a more detailed explanation of the growth of VZV in human melanoma cells. Human melanoma cells were selected because they are a malignant derivative of the melanocyte, the melanin-producing cell which originates in the neural crest. We were able to observe the cytopathic effects of syncytial formation and the pattern of egress of virions at the surfaces of infected monolayers by scanning electron microscopy and laser-scanning confocal microscopy. The egressed virions did not appear uniformly over the syncytial surface, rather they were present in elongated patterns which were designated viral highways. In order to document the pathway by which VZV travels from the host cell nucleus to the outer cell membrane, melanoma cells were infected and then processed for examination by transmission electron microscopy (TEM) at increasing intervals postinfection. At the early time points, within minutes to hours postinfection, it was not possible to localize the input virus by TEM. Thus, viral particles first observed at 24 h postinfection were considered progeny virus. On the basis of the TEM observations, the following sequence of events was considered most likely. Nucleocapsids passed through the inner nuclear membrane and acquired an envelope, after which they were seen in the endoplasmic reticulum. Enveloped virions within vacuoles derived from the endoplasmic reticulum passed into the cytoplasm. Thereafter, vacuoles containing nascent enveloped particles acquired viral glycoproteins by fusion with vesicles derived from the Golgi. The vacuoles containing virions fused with the outer plasma membrane and the particles appeared on the surface of the infected cell. Late in infection, enveloped virions were also present within the nuclei of infected cells; the most likely mechanism was retrograde flow from the perinuclear space back into the nucleus. Thus, this study suggests a role for the melanocyte in the pathogenesis of VZV infection, because all steps in viral egress can be accounted for if VZV subsumes the cellular pathways required for melanogenesis.
Collapse
Affiliation(s)
- R Harson
- Department of Microbiology, University of Iowa College of Medicine, Iowa City 52242, USA
| | | |
Collapse
|
23
|
Nikkels AF, Delvenne P, Debrus S, Sadzot-Delvaux C, Piette J, Rentier B, Piérard GE. Distribution of varicella-zoster virus gpI and gpII and corresponding genome sequences in the skin. J Med Virol 1995; 46:91-6. [PMID: 7636508 DOI: 10.1002/jmv.1890460202] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023]
Abstract
In the course of varicella-zoster virus (VZV) infection, some viral capsid antigens are found in the epidermis and dermis. The aim of this study was to investigate the localisation of two major VZV glycoproteins (gpI and gpII) and of their respective genes in the skin. The distribution of VZV gpI and II in 27 formalin fixed paraffin embedded skin biopsies from herpes zoster eruptions were compared by immunohistochemistry. Double immunostaining was carried our to identify infected cells. The presence of viral nucleic acids coding for gpI and gpII was examined by in situ hybridisation. The distribution of gpI and gpII and their corresponding genome sequences was similar in the epidermis. gpI and gpII were also detected in dermal FXIIIa positive dendrocytes, in Mac 387 and CD68 positive macrophages, and in perineural and endothelial cells. However, the corresponding viral nucleic acids were rarely and barely detected in these cells of the dermis. It is concluded that VZV infection of epithelial cells follows a different course than in dermal cells.
Collapse
Affiliation(s)
- A F Nikkels
- Department of Dermatopathology, Chu du Sart Tilman, Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
24
|
Oleszak EL, Kuzmak J, Hogue B, Parr R, Collisson EW, Rodkey LS, Leibowitz JL. Molecular mimicry between Fc receptor and S peplomer protein of mouse hepatitis virus, bovine corona virus, and transmissible gastroenteritis virus. Hybridoma (Larchmt) 1995; 14:1-8. [PMID: 7768529 DOI: 10.1089/hyb.1995.14.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2023]
Abstract
We have previously demonstrated molecular mimicry between the S peplomer protein of mouse hepatitis virus (MHV) and Fc gamma R (Fc gamma R). A monoclonal antibody (MAb) to mouse Fc gamma R (2.4G2 anti-Fc gamma R MAb), purified rabbit immunoglobulin, but not their F(ab')2 fragments, as well as mouse and rat IgG, immunoprecipitated (1) recombinant S peplomer protein expressed by a vaccinia virus recombinant in human, rabbit, and mouse cells, and (2) natural S peplomer protein from cells infected with several strains of MHV and MHV escaped mutants. We report here results of studies documenting molecular mimicry between Fc gamma R and S peplomer protein of viruses representing three distinct antigenic subgroups of the Coronaviridae. We have shown a molecular mimicry between the S peplomer protein of bovine corona virus (BCV) and Fc gamma R. The 2.4G2 anti-Fc gamma R MAb, rabbit IgG, but not its F(ab')2 fragments, as well as homologous bovine serum, free of anti-BCV antibodies, immunoprecipitated S peplomer protein of BCV (Mebus strain). In contrast, we did not find molecular mimicry between S peplomer protein of human corona virus (HCV-OC43) and Fc gamma R. Although the OC43 virus belongs to the same antigenic group as MHV and BCV, MAb specific for human Fc gamma RI or Fc gamma RII and purified human IgG1, IgG2, and IgG3 myeloma proteins did not immunoprecipitate the S peplomer protein from HCV-OC43-infected RD cells. In addition, we did demonstrate molecular mimicry between the S peplomer protein of porcine transmissible gastroenteritis virus (TGEV) and Fc gamma R. TGEV belongs to the second antigenic subgroup of coronaviridae.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E L Oleszak
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Thäle R, Lucin P, Schneider K, Eggers M, Koszinowski UH. Identification and expression of a murine cytomegalovirus early gene coding for an Fc receptor. J Virol 1994; 68:7757-65. [PMID: 7966565 PMCID: PMC237237 DOI: 10.1128/jvi.68.12.7757-7765.1994] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023] Open
Abstract
Several herpesviruses, including cytomegalovirus, induce receptors for the Fc domain of murine immunoglobulin G (IgG) molecules. Viral genes coding for these receptors have been characterized only for alphaherpesviruses. In this report, we describe a new approach that led to the identification of an Fc receptor (FcR) of murine cytomegalovirus (MCMV). The Fc fragment of IgG precipitated glycoproteins (gp) of 86 to 88 and 105 kDa from MCMV-infected cells. Deglycosylation by endoglycosidase F resulted in a protein with a molecular mass of 64 kDa. Injection of complete MCMV DNA or of DNA fragments, and the subsequent testing of cytoplasmic binding of IgG by immunofluorescence microscopy, was used to search for the coding region in the MCMV genome. The gene was located in the HindIII J fragment, map units 0.838 to 0.846, where an open reading frame of 1,707 nucleotides predicts a gp of 569 amino acids with a calculated molecular mass of 65 kDa. The sequence of this gp is related to those of the gE proteins of herpes simplex virus type 1 and varicella-zoster virus. The defined length of the mRNA, 1,838 nucleotides, was in agreement with that of a 1.9-kb RNA expressed throughout the replication cycle, starting at the early stages of infection. Expression of the gene fcr1 by recombinant vaccinia virus resulted in the synthesis of gp86/88 and gp105, each with FcR properties, and the correct identification of the gene encoding the FcR was confirmed by the DNA injection method.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Line, Transformed
- Cytomegalovirus/genetics
- Cytomegalovirus/immunology
- DNA Primers
- DNA, Complementary
- Embryo, Mammalian
- Genes, Viral
- Genetic Vectors
- Immunoglobulin Fc Fragments/metabolism
- Immunoglobulin G/metabolism
- Kinetics
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/isolation & purification
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Oligodeoxyribonucleotides
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Receptors, Fc/biosynthesis
- Receptors, Fc/isolation & purification
- Receptors, Fc/metabolism
- Restriction Mapping
- Vaccinia virus
- Viral Proteins
Collapse
Affiliation(s)
- R Thäle
- Department of Virology, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
26
|
Yao Z, Grose C. Unusual phosphorylation sequence in the gpIV (gI) component of the varicella-zoster virus gpI-gpIV glycoprotein complex (VZV gE-gI complex). J Virol 1994; 68:4204-11. [PMID: 8207795 PMCID: PMC236343 DOI: 10.1128/jvi.68.7.4204-4211.1994] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023] Open
Abstract
Varicella-zoster virus (VZV) glycoprotein gpIV, to be renamed VZV gI, forms a heterodimer with glycoprotein gpI (gE) which functions as an Fc receptor in virus-infected cells. Like VZV gpI (gE), this viral glycoprotein is phosphorylated in cell culture during biosynthesis. In this report, we investigated the nature and specificity of the phosphorylation event involving VZV gpIV (gI). Phosphoamino acid analysis indicated that gpIV (gI) was modified mainly on serine residues. To identify the precise location of the phosphorylation site on the 64-kDa protein, a step-by-step mutagenesis procedures was followed. Initially a tailless mutant was generated, and this truncated product was no longer phosphorylated. Thereafter, point mutations were made within the cytoplasmic tail of gpIV (gI) at potential phosphorylation sites. The phosphorylation site was localized to the following sequence: Ser-Pro-Pro (amino acids 343 to 345). Examination of the point mutants established that serine 343 in the cytoplasmic tail was the major phosphoacceptor. In addition, we found that the prolines located immediately to the C terminus of serine 343 were an integral part of the kinase recognition sequence. This site was located immediately N terminal to a predicted beta-turn secondary structure. By comparison with known substrate consensus sequences for various protein kinases, these data suggested that the phosphorylation of VZV gpIV (gI) was catalyzed by a proline-directed protein kinase. Computer homology analysis of other alphaherpesviruses demonstrated that a similar potential phosphorylation site was highly conserved in the cytoplasmic tails of herpes simplex virus type 1 gI, equine herpesvirus type 1 gI, and pseudorabies virus gp63.
Collapse
Affiliation(s)
- Z Yao
- Department of Microbiology, University of Iowa College of Medicine, Iowa City 52242
| | | |
Collapse
|
27
|
Dubin G, Basu S, Mallory DL, Basu M, Tal-Singer R, Friedman HM. Characterization of domains of herpes simplex virus type 1 glycoprotein E involved in Fc binding activity for immunoglobulin G aggregates. J Virol 1994; 68:2478-85. [PMID: 7511171 PMCID: PMC236725 DOI: 10.1128/jvi.68.4.2478-2485.1994] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023] Open
Abstract
Herpes simplex virus type 1 glycoproteins gE and gI form receptors for the Fc domain of immunoglobulin G (IgG) which are expressed on the surface of infected cells and on the virion envelope and which protect the virus from immune attack. Glycoprotein gE-1 is a low-affinity Fc receptor (FcR) that binds IgG aggregates, while gE-1 and gI-1 form a complex which serves as a higher-affinity FcR capable of binding IgG monomers. In this study, we describe two approaches used to map an Fc binding domain on gE-1 for IgG aggregates. First, we constructed nine plasmids encoding gE-1/gD-1 fusions proteins, each containing a large gE-1 peptide inserted into the ectodomain of gD-1. Fusion proteins were tested for FcR activity with IgG-sensitized erythrocytes in a rosetting assay. Three of the fusion proteins containing overlapping gE-1 peptides demonstrated FcR activity; the smallest peptide that retained Fc binding activity includes gE-1 amino acids 183 to 402. These results indicate that an Fc binding domain is located between gE-1 amino acids 183 and 402. To more precisely map the Fc binding domain, we tested a panel of 21 gE-1 linker insertion mutants. Ten mutants with insertions between gE-1 amino acids 235 and 380 failed to bind IgG-sensitized erythrocytes, while each of the remaining mutants demonstrated wild-type Fc binding activity. Taken together, these results indicate that the region of gE-1 between amino acids 235 and 380 forms an FcR domain. A computer-assisted analysis of the amino acid sequence of gE-1 demonstrates an immunoglobulin-like domain contained within this region (residues 322 to 359) which shares homology with mammalian FcRs.
Collapse
Affiliation(s)
- G Dubin
- Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia 19104-6073
| | | | | | | | | | | |
Collapse
|
28
|
Huemer HP, Larcher C, van Drunen Littel-van den Hurk S, Babiuk LA. Species selective interaction of Alphaherpesvirinae with the "unspecific" immune system of the host. Arch Virol 1993; 130:353-64. [PMID: 8390825 DOI: 10.1007/bf01309666] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/30/2023]
Abstract
During evolution Herpesviridae have developed glycoproteins, which interact with essential components of the immune system. Besides immunoglobulin-binding proteins (= Fc-receptors), expressed by several members of the herpesfamily, the interaction with the complement system plays a role in the pathogenicity of herpes simplex virus. Here we report that the ability to interact with the third complement component (C3), the central mediator of complement activation, was also found among several animal alphaherpesviruses. This interaction appeared to be species-selective as the viral proteins preferentially bound to the C3 originated from the respective host. That could provide a possible explanation for the evolution of a variety of herpesviruses as the species tropism observed among Herpesviridae may be influenced by specific adaptation of protective virus-proteins to the immune system of the different hosts. The data have critical implications for the studies of virus host interactions in heterologous systems and support a role for the C3-binding proteins in pathogenesis. Since the C3-binding proteins are conserved among different herpesviruses they could serve as suitable subunit-vaccine candidates.
Collapse
Affiliation(s)
- H P Huemer
- Institute for Hygiene, University of Innsbruck, Austria
| | | | | | | |
Collapse
|
29
|
Yao Z, Jackson W, Grose C. Identification of the phosphorylation sequence in the cytoplasmic tail of the varicella-zoster virus Fc receptor glycoprotein gpI. J Virol 1993; 67:4464-73. [PMID: 8392591 PMCID: PMC237829 DOI: 10.1128/jvi.67.8.4464-4473.1993] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/30/2023] Open
Abstract
Varicella-zoster virus (VZV) glycoprotein gpI, the homolog of herpes simplex virus gE, functions as a receptor for the Fc portion of immunoglobulin G. Like other cell surface receptors, this viral receptor is highly phosphorylated in cell culture. To identify the precise location of the cellular kinase-mediated phosphorylation, we generated a tailless deletion mutant and several point mutants which had altered serine and threonine residues within the cytoplasmic domain of gpI. The mutated and wild-type genes of gpI were transfected and expressed within a vaccinia virus-T7 polymerase transfection system in order to determine what effect these mutations had on the phosphorylation state of the protein in vivo and in vitro. Truncation of the cytoplasmic domain of gpI diminished the phosphorylation of gpI in vivo. Examination of the point mutants established that the major phosphorylation sequence of gpI was located between amino acids 593 and 598, a site which included four phosphorylatable serine and threonine residues. Phosphorylation analyses of the mutant and wild-type glycoproteins confirmed that gpI was a substrate for casein kinase II, with threonines 596 and 598 being critical residues. Although the mutant glycoproteins were phosphorylated by casein kinase I, protease V8 partial digestion profiles suggested that casein kinase II exerted the major effect. Thus, these mutagenesis studies demonstrated that the gpI cytoplasmic sequence Ser-Glu-Ser-Thr-Asp-Thr was phosphorylated in mammalian cells in the absence of any other herpesvirus products. Since the region defined by transfection was consistent with results obtained with in vitro phosphorylation by casein kinase II, we propose that VZV gpI is a physiologic substrate for casein kinase II. Immunofluorescence and pulse-chase experiments demonstrated that the mutant glycoproteins were processed and transported to the outer cell membrane.
Collapse
Affiliation(s)
- Z Yao
- Department of Microbiology, University of Iowa College of Medicine, Iowa City 52242-1083
| | | | | |
Collapse
|
30
|
Yao Z, Jackson W, Forghani B, Grose C. Varicella-zoster virus glycoprotein gpI/gpIV receptor: expression, complex formation, and antigenicity within the vaccinia virus-T7 RNA polymerase transfection system. J Virol 1993; 67:305-14. [PMID: 8380078 PMCID: PMC237364 DOI: 10.1128/jvi.67.1.305-314.1993] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/30/2023] Open
Abstract
The unique short region of the varicella-zoster virus (VZV) genome contains two open reading frames which encode glycoproteins designated gpI and gpIV (herpes simplex virus homologs gE and gI, respectively). Like its herpesviral counterpart gE, the VZV gpI gene product functions as a cell surface receptor (V. Litwin, W. Jackson, and C. Grose, J. Virol. 66:3643-3651, 1992). To evaluate the biosynthesis of the two VZV glycoproteins and further explore their relationship to one another, the two glycoprotein genes were individually cloned into a pTM1 vector under control of the T7 promoter. Transfection of the cloned gpI or gpIV construct into HeLa cells previously infected with vaccinia recombinant virus expressing bacteriophage T7 polymerase resulted in a much higher level expression of each VZV glycoprotein than previously achieved. Synthesis of both gpI and gpIV included intermediary partially glycosylated forms and mature N- and O-linked final product. Transfections in the presence of 32Pi demonstrated that the mature forms of both gpI and gpIV were phosphorylated, while similar experiments with [35S]sulfate showed that only the mature gpI was sulfated. When gpI and gpIV were coexpressed in the same cell, the two glycoproteins were complexed to each other, as both proteins could be immunoprecipitated by antibodies against either gpI or gpIV. Coprecipitation did not occur as a result of a shared epitope, because gpI expressed alone was not precipitated by antibody to gpIV, and gpIV expressed alone was not precipitated by antibody to gpI. Pulse-chase analysis demonstrated that the gpI-gpIV association occurred early in processing; furthermore, this complex formation interfered with posttranslational modifications and thereby reduced the M(r)s of the mature forms of both gpI and gpIV. Similarly, the molecular masses of the cotransfected gene products corresponded with those of the infected cell glycoproteins, a result which suggested that authentic gpI and gpIV were ordinarily found within a complex. Thus, the adjacent open reading frames 67 and 68 code for two glycoproteins which in turn form a distinctive sulfated and phosphorylated cell surface complex with receptor properties.
Collapse
Affiliation(s)
- Z Yao
- Department of Microbiology, University of Iowa College of Medicine, University Hospital, Iowa City 52242-1083
| | | | | | | |
Collapse
|
31
|
Abstract
Nearly two decades ago, it was observed that cells infected with herpes simplex virus (HSV) acquired an IgG Fc binding activity. The properties of the viral Fc receptor (FcR) have now been characterized by several laboratories. The Fc binding activity appears on the surface of the infected cell prior to formation of progeny virions. The FcR induced by HSV has been identified as the HSV glycoprotein, gE. When HSV gE forms a complex with a second HSV glycoprotein, gI, the receptor binds IgG with higher affinity. Varicella-zoster virus (VZV), which is closely related to HSV, has also been shown to induce an FcR. Like the HSV FcR, the FcR specified by VZV possesses characteristics common to viral glycoproteins. VZV encodes two glycoproteins, gpI and gpIV, which are the homologs of HSV gE and gI. The VZV glycoproteins have many properties common to cell surface receptors, including O-linked glycans and phosphorylation sites. However, extensive computer-assisted analyses of the amino acid sequences of VZV gpI and gpIV did not uncover regions of homology to the human cellular Fc receptors for IgG.
Collapse
Affiliation(s)
- V Litwin
- Department of Microbiology, University of Iowa College of Medicine, Iowa City
| | | |
Collapse
|
32
|
Snoeck R, Schols D, Sadzot-Delvaux C, Cloes JM, Andrei G, De Clercq E, Piette J, Rentier B. Flow cytometric method for the detection of gpI antigens of varicella zoster virus and evaluation of anti-VZV agents. J Virol Methods 1992; 38:243-54. [PMID: 1325472 DOI: 10.1016/0166-0934(92)90114-s] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
Abstract
Varicella zoster virus (VZV) is responsible for a primary infection (varicella) and, upon reactivation, zoster, which in immunocompromised patients, may both lead to life-threatening disseminated disease. There is a great need for antiviral compounds that are effective inhibitors of VZV replication and for rapid and accurate methods for evaluating viral sensitivity to candidate anti-VZV drugs. With the monoclonal antibody (mAb) (VL8), which is directed against the gpI of VZV, and using the fluorescence-activated cell sorter (FACS) we could readily demonstrate expression of the VZV gpI antigen at 3-4 days after VZV infection. (E)-5-(2-Bromovinyl)-2'-deoxyuridine (BVDU), (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine (HPMPA) and (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine (HPMC) were shown to be potent inhibitors of VZV replication by this assay. HPMPA and HPMPC were also active against thymidine kinase-deficient (TK-) VZV whereas BVDU was not. The flow cytometric method based on the use of mAb VL8 may be of considerable help for the early diagnosis of VZV infection and evaluation of viral sensitivity to antiviral drugs.
Collapse
Affiliation(s)
- R Snoeck
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ito M, Mizutani K, Nakano T, Yasuda N, Kamiya T, Kitamura K, Torigoe S, Ihara T, Kamiya H, Sakurai M. Flow cytometric analysis of effects of cytokines on the expression of varicella-zoster virus glycoproteins. Antiviral Res 1992; 18:317-26. [PMID: 1329652 DOI: 10.1016/0166-3542(92)90064-c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
Abstract
Varicella-zoster virus (VZV)-infected human embryonic fibroblast (HEF) cells were stained with monoclonal antibodies directed against VZV glycoprotein I, II and IV, and then labeled with fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse IgG. The cells were analyzed by flow cytometry. VZV-infected cells expressing VZV glycoproteins were clearly distinguished from uninfected cells. This method was useful for analyzing expression of VZV glycoproteins in different experimental conditions. Interferon alpha, beta, and gamma and tumor necrosis factor (TNF)-alpha reduced the percentage of positive cells and the mean fluorescence intensity of the cells expressing VZV glycoproteins. Interleukin(IL)-1 beta, IL-6 and TNF-beta had little effect on the expression of VZV glycoproteins.
Collapse
Affiliation(s)
- M Ito
- Department of Pediatrics, Mie University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ling P, Kinchington PR, Sadeghi-Zadeh M, Ruyechan WT, Hay J. Transcription from varicella-zoster virus gene 67 (glycoprotein IV). J Virol 1992; 66:3690-8. [PMID: 1316476 PMCID: PMC241153 DOI: 10.1128/jvi.66.6.3690-3698.1992] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022] Open
Abstract
Three transcripts map to the varicella-zoster virus (VZV) open reading frame (ORF) 67, which encodes glycoprotein IV (gpIV). All of these transcripts are polyadenylated and are transcribed from left to right towards the genomic terminal short repeats. Previous Northern (RNA) blot analyses suggested that the most abundant of these transcripts (1.65 kb) might code for gpIV. We performed S1 nuclease protection and primer extension assays and determined that the 5' terminus of the 1.65-kb transcript maps 91 bp upstream from the gpIV initiation codon. An AT-rich region (ATAAA), -28 bp from the cap site, is a potential TATA box, and at -71 bp there is a consensus CCAAT box motif. The 3' end of the 1.65-kb transcript is 20 bp downstream of two overlapping polyadenylation signals, AATAAA and ATTAAA, and just downstream of the 3' terminus is a GU-rich sequence. These results are reminiscent of data from our analysis of the VZV gpV gene, confirming that VZV appears able to use unusual TATA box motifs. Many canonical TATA sequences are present upstream from these VZV transcriptional start sites but, apparently, are not used. We tested sequences upstream from the gpIV cap site for promoter activity in transient expression experiments by cloning a DNA fragment (+63 to -343 bp) into pCAT3M, which contains a chloramphenicol acetyltransferase reporter gene. This clone showed little constitutive promoter activity but was activated more than 200-fold by infection with VZV and 5-fold with herpes simplex virus. The two known VZV transactivating genes (those for ORF 4 and ORF 62) were tested for their abilities to activate expression from the gpIV promoter by using their cognate promoters. The ORF 4 gene was minimally active, whereas the ORF 62 gene gave twofold induction; both genes, acting together, gave fivefold induction. However, replacement of the IE62 promoter with the immediate-early cytomegalovirus promoter in the ORF 62 construct gave over 40-fold induction of chloramphenicol acetyltransferase activity under the gpIV promoter in the same assay.
Collapse
Affiliation(s)
- P Ling
- Department of Microbiology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | | | | | | | | |
Collapse
|
35
|
Litwin V, Jackson W, Grose C. Receptor properties of two varicella-zoster virus glycoproteins, gpI and gpIV, homologous to herpes simplex virus gE and gI. J Virol 1992; 66:3643-51. [PMID: 1316474 PMCID: PMC241147 DOI: 10.1128/jvi.66.6.3643-3651.1992] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022] Open
Abstract
The varicella-zoster virus (VZV) genome contains 70 reading frames (ORF), 5 of which encode the glycoproteins gpI, gpII, gpIII, gpIV, and gpV. ORF 67 and 68 lie adjacent to each other in the unique short region of the VZV genome and code for gpIV and gpI, respectively. These two genes, which are contained within the HindIII C fragment of the VZV genome, were subcloned in the correct orientation downstream from the promoter regions of the eukaryotic expression vectors pCMV5 and pBJ. After transfection, 5 to 20% of the Cos cells bound antibody specific for the given glycoprotein. In this study, it was shown that only the cells transfected with the gpI construct bound to the Fc fragment of human immunoglobulin G. Neither the transfected gpIV gene product nor the vector only bound to the Fc fragment. Thus, VZV gpI is confirmed to be the VZV-encoded Fc-binding glycoprotein. Like the wild-type form of gpI expressed in VZV-infected cells, gpI precipitated from transfected cells contained both N-linked and O-linked glycans and was heavily sialated. In addition, the transfected gpI gene product was phosphorylated both in cell culture and in protein kinase assays by mammalian casein kinases I and II. Extensive computer-assisted analyses of the VZV gpI sequence, as well as those of alphaherpesviral homolog glycoproteins, disclosed properties similar to those of other cell surface receptors; these included (i) exocytoplasmic regions rich in cysteine residues, (ii) membrane-proximal regions with potential O-linked glycosylation sites, and (iii) cytoplasmic domains with consensus phosphorylation sites.
Collapse
Affiliation(s)
- V Litwin
- Department of Microbiology, University of Iowa College of Medicine, Iowa City 52242
| | | | | |
Collapse
|
36
|
Dubin G, Fishman NO, Eisenberg RJ, Cohen GH, Friedman HM. The role of herpes simplex virus glycoproteins in immune evasion. Curr Top Microbiol Immunol 1992; 179:111-20. [PMID: 1323450 DOI: 10.1007/978-3-642-77247-4_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
Affiliation(s)
- G Dubin
- Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia
| | | | | | | | | |
Collapse
|
37
|
Dubin G, Socolof E, Frank I, Friedman HM. Herpes simplex virus type 1 Fc receptor protects infected cells from antibody-dependent cellular cytotoxicity. J Virol 1991; 65:7046-50. [PMID: 1658396 PMCID: PMC250825 DOI: 10.1128/jvi.65.12.7046-7050.1991] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022] Open
Abstract
Recent studies indicate that the herpes simplex virus type 1 (HSV-1) Fc receptor (FcR) can bind antiviral immunoglobulin G by participating in antibody bipolar bridging. This occurs when the Fab domain of an immunoglobulin G molecule binds to its antigenic target and the Fc domain binds to the HSV-1 FcR. In experiments comparing cells infected with wild-type HSV-1 (NS) and cells infected with an FcR-deficient mutant (ENS), we demonstrate that participation of the HSV-1 FcR in antibody bipolar bridging reduces the effectiveness of antibody-dependent cellular cytotoxicity.
Collapse
Affiliation(s)
- G Dubin
- Department of Medicine, University of Pennsylvania, Philadelphia
| | | | | | | |
Collapse
|
38
|
Abstract
The herpesvirus family contains several important human pathogens. Human herpesviruses include herpes simplex virus type 1 and 2, varicella-zoster virus, human cytomegalovirus, Epstein-Barr virus and human T-cell lymphotropic virus. The general property of herpesviruses is their ability to establish latency and to be periodically reactivated. All human herpesviruses contain a subset of genes encoding viral glycoproteins that are clearly homologous, and their similarity is significantly greater among members of the same subfamily. Membrane glycoproteins specified by human herpesviruses are important determinants of viral pathogenicity. They are exposed on the viral envelope and on the surface of infected cells. They mediate entry of the virus into cells and cell-to-cell spread of infection and also influence tissue tropism and host range. Viral membrane glycoproteins are also the most important elicitors of protective immune response and are therefore the best candidates for subunit vaccines.
Collapse
Affiliation(s)
- R Manservigi
- Institute of Microbiology, University of Ferrara, Italy
| | | |
Collapse
|