1
|
Muller A, Sullivan J, Schwarzer W, Wang M, Park-Windhol C, Hasler PW, Janeschitz-Kriegl L, Duman M, Klingler B, Matsell J, Hostettler SM, Galliker P, Hou Y, Balmer P, Virág T, Barrera LA, Young L, Xu Q, Magda DP, Kilin F, Khadka A, Moreau PH, Fellmann L, Azoulay T, Quinodoz M, Karademir D, Leppert J, Fratzl A, Kosche G, Sharma R, Montford J, Cattaneo M, Croyal M, Cronin T, Picelli S, Grison A, Cowan CS, Kusnyerik Á, Anders P, Renner M, Nagy ZZ, Szabó A, Bharti K, Rivolta C, Scholl HPN, Bryson D, Ciaramella G, Roska B, György B. High-efficiency base editing in the retina in primates and human tissues. Nat Med 2025; 31:490-501. [PMID: 39779923 PMCID: PMC11835749 DOI: 10.1038/s41591-024-03422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/14/2024] [Indexed: 01/11/2025]
Abstract
Stargardt disease is a currently untreatable, inherited neurodegenerative disease that leads to macular degeneration and blindness due to loss-of-function mutations in the ABCA4 gene. We have designed a dual adeno-associated viral vector encoding a split-intein adenine base editor to correct the most common mutation in ABCA4 (c.5882G>A, p.Gly1961Glu). We optimized ABCA4 base editing in human models, including retinal organoids, induced pluripotent stem cell-derived retinal pigment epithelial (RPE) cells, as well as adult human retinal explants and RPE/choroid explants in vitro. The resulting gene therapy vectors achieved high levels of gene correction in mutation-carrying mice and in female nonhuman primates, with average editing of 75% of cones and 87% of RPE cells in vivo, which has the potential to translate to a clinical benefit. No off-target editing was detectable in human retinal explants and RPE/choroid explants. The high editing rates in primates show promise for efficient gene editing in other ocular diseases that are targetable by base editing.
Collapse
Affiliation(s)
- Alissa Muller
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | | | - Wibke Schwarzer
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Mantian Wang
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | | | - Pascal W Hasler
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Lucas Janeschitz-Kriegl
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Mert Duman
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Beryll Klingler
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Jane Matsell
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Simon Manuel Hostettler
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Patricia Galliker
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Yanyan Hou
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Pierre Balmer
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | | | | | | | - Quan Xu
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Dániel Péter Magda
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ferenc Kilin
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | | | | | - Lyne Fellmann
- SILABE, Université de Strasbourg, Niederhausbergen, France
| | | | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Duygu Karademir
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Juna Leppert
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Alex Fratzl
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Georg Kosche
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jair Montford
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marco Cattaneo
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Mikaël Croyal
- Nantes Université, CNRS, INSERM, L'institut du thorax, Nantes, France
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | - Therese Cronin
- Université de Nantes, CHU de Nantes, INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Nantes, France
| | - Simone Picelli
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Alice Grison
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Cameron S Cowan
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Ákos Kusnyerik
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Philipp Anders
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Magdalena Renner
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Arnold Szabó
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Hendrik P N Scholl
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- European Vision Institute, Basel, Switzerland
- Medical University of Vienna, Department of Clinical Pharmacology, Vienna, Austria
| | | | | | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.
- Department of Ophthalmology, University of Basel, Basel, Switzerland.
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.
| | - Bence György
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.
- Department of Ophthalmology, University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Oshitari T. Translational Research and Therapies for Neuroprotection and Regeneration of the Optic Nerve and Retina: A Narrative Review. Int J Mol Sci 2024; 25:10485. [PMID: 39408817 PMCID: PMC11476551 DOI: 10.3390/ijms251910485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Most retinal and optic nerve diseases pose significant threats to vision, primarily due to irreversible retinal neuronal cell death, a permanent change, which is a critical factor in their pathogenesis. Conditions such as glaucoma, retinitis pigmentosa, diabetic retinopathy, and age-related macular degeneration are the top four leading causes of blindness among the elderly in Japan. While standard treatments-including reduction in intraocular pressure, anti-vascular endothelial growth factor therapies, and retinal photocoagulation-can partially delay disease progression, their therapeutic effects remain limited. To address these shortcomings, a range of neuroprotective and regenerative therapies, aimed at preventing retinal neuronal cell loss, have been extensively studied and increasingly integrated into clinical practice over the last two decades. Several of these neuroprotective therapies have achieved on-label usage worldwide. This narrative review introduces several neuroprotective and regenerative therapies for retinal and optic nerve diseases that have been successfully translated into clinical practice, providing foundational knowledge and success stories that serve as valuable references for researchers in the field.
Collapse
Affiliation(s)
- Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan; ; Tel.: +81-43-226-2124; Fax: +81-43-224-4162
- Department of Ophthalmology, International University of Health and Welfare School of Medicine, 4-3 Kozunomori, Narita 286-8686, Japan
| |
Collapse
|
3
|
Ng BW, Kaukonen MK, McClements ME, Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Genetic therapies and potential therapeutic applications of CRISPR activators in the eye. Prog Retin Eye Res 2024; 102:101289. [PMID: 39127142 DOI: 10.1016/j.preteyeres.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. In vivo experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology in vivo, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.
Collapse
Affiliation(s)
- Benjamin Wj Ng
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maria K Kaukonen
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
4
|
Meng X, Jia R, Zhao X, Zhang F, Chen S, Yu S, Liu X, Dou H, Feng X, Zhang J, Wang N, Xu B, Yang L. In vivo genome editing via CRISPR/Cas9-mediated homology-independent targeted integration for Bietti crystalline corneoretinal dystrophy treatment. Nat Commun 2024; 15:3773. [PMID: 38710738 DOI: 10.1038/s41467-024-48092-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
Bietti crystalline corneoretinal dystrophy (BCD) is an autosomal recessive chorioretinal degenerative disease without approved therapeutic drugs. It is caused by mutations in CYP4V2 gene, and about 80% of BCD patients carry mutations in exon 7 to 11. Here, we apply CRISPR/Cas9 mediated homology-independent targeted integration (HITI)-based gene editing therapy in HEK293T cells, BCD patient derived iPSCs, and humanized Cyp4v3 mouse model (h-Cyp4v3mut/mut) using two rAAV2/8 vectors via sub-retinal administration. We find that sgRNA-guided Cas9 generates double-strand cleavage on intron 6 of the CYP4V2 gene, and the HITI donor inserts the carried sequence, part of intron 6, exon 7-11, and a stop codon into the DNA break, achieving precise integration, effective transcription and translation both in vitro and in vivo. HITI-based editing restores the viability of iPSC-RPE cells from BCD patient, improves the morphology, number and metabolism of RPE and photoreceptors in h-Cyp4v3mut/mut mice. These results suggest that HITI-based editing could be a promising therapeutic strategy for those BCD patients carrying mutations in exon 7 to 11, and one injection will achieve lifelong effectiveness.
Collapse
Affiliation(s)
- Xiang Meng
- Department of Ophthalmology, Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Ruixuan Jia
- Department of Ophthalmology, Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | | | - Fan Zhang
- Beijing Chinagene Co., LTD, Beijing, China
| | | | - Shicheng Yu
- Department of Ophthalmology, Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Xiaozhen Liu
- Department of Ophthalmology, Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Hongliang Dou
- Department of Ophthalmology, Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Xuefeng Feng
- Department of Ophthalmology, Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | | | - Ni Wang
- Beijing Chinagene Co., LTD, Beijing, China
| | - Boling Xu
- Department of Ophthalmology, Third Hospital, Peking University, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Liping Yang
- Department of Ophthalmology, Third Hospital, Peking University, Beijing, China.
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
5
|
Anguita R, Charteris D. Visual loss in surgical retinal disease: retinal imaging and photoreceptor cell counts. Br J Ophthalmol 2023; 107:1583-1589. [PMID: 36396343 DOI: 10.1136/bjo-2022-321845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022]
Abstract
Vision loss after detachment of the neurosensory retina is a complex process which is not fully understood. Clinical factors have been identified which contribute to loss of macular function after retinal detachment and laboratory studies have played an important role in understanding the cellular and subcellular pathological processes which underlie the loss of visual function. As clinical imaging has advanced, multiple studies have focused on identifying and correlating clinicopathological features with visual outcomes in patients with rhegmatogenous retinal detachment. Optical coherence tomography, fundus autofluorescence, optical coherence tomography angiography and adaptive optics studies have contributed to the understanding of the anatomical changes in relation to clinical outcomes. A clear understanding of the macular pathology of retinal detachment is fundamental to develop strategies to improve outcomes in patients with rhegmatogenous retinal detachment and analogous retinal diseases where macular neurosensory retinal detachment is part of the pathology. This review assesses the evidence from experimental and pathological studies together with clinical imaging analyses (optical coherence tomography, fundus autofluorescence, optical coherence tomography angiography and adaptive optics) and the contribution of these studies to our understanding of visual outcomes.
Collapse
Affiliation(s)
- Rodrigo Anguita
- Vitreoretinal Unit, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - David Charteris
- Vitreoretinal Unit, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Cideciyan AV, Jacobson SG, Swider M, Sumaroka A, Sheplock R, Krishnan AK, Garafalo AV, Guziewicz KE, Aguirre GD, Beltran WA, Heon E. Photoreceptor Function and Structure in Autosomal Dominant Vitelliform Macular Dystrophy Caused by BEST1 Mutations. Invest Ophthalmol Vis Sci 2022; 63:12. [PMID: 36512348 DOI: 10.1167/iovs.63.13.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose The purpose of this study was to evaluate rod and cone function and outer retinal structure within macular lesions, and surrounding extralesional areas of patients with autosomal dominant Best vitelliform macular dystrophy caused by BEST1 mutations. Methods Seventeen patients from seven families were examined with dark- and light-adapted chromatic perimetry and optical coherence tomography. Subsets of patients had long-term follow-up (14-22 years, n = 6) and dark-adaptation kinetics measured (n = 5). Results Within central lesions with large serous retinal detachments, rod sensitivity was severely reduced but visual acuity and cone sensitivity were relatively retained. In surrounding extralesional areas, there was a mild but detectable widening of the subretinal space in some patients and some retinal areas. Available evidence was consistent with subretinal widening causing slower dark-adaptation kinetics. Over long-term follow-up, some eyes showed formation of de novo satellite lesions at retinal locations that years previously demonstrated subretinal widening. A subclinical abnormality consisting of a retina-wide mild thickening of the outer nuclear layer was evident in many patients and thickening increased in the subset of patients with long-term follow-up. Conclusions Outcome measures for future clinical trials should include evaluations of rod sensitivity within central lesions and quantitative measures of outer retinal structure in normal-appearing regions surrounding the lesions.
Collapse
Affiliation(s)
- Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Rebecca Sheplock
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Arun K Krishnan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexandra V Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Karina E Guziewicz
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Gustavo D Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - William A Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Ma X, Sechrest ER, Fajardo D, Zhu P, Dyka F, Wang Y, Lobanova E, Boye SE, Baehr W, Deng WT. Gene Therapy in Opn1mw-/-/Opn1sw-/- Mice and Implications for Blue Cone Monochromacy Patients with Deletion Mutations. Hum Gene Ther 2022; 33:708-718. [PMID: 35272502 PMCID: PMC9347391 DOI: 10.1089/hum.2021.298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Blue cone monochromacy (BCM) is a congenital vision disorder affecting both middle-wavelength (M) and long-wavelength (L) cone photoreceptors of the human retina. BCM results from abolished expression of green and red light-sensitive visual pigments expressed in M- and L-cones, respectively. Previously, we showed that gene augmentation therapy to deliver either human L- or M-opsin rescues dorsal M-opsin dominant cone photoreceptors structurally and functionally in treated M-opsin knockout (Opn1mw-/-) mice. Although Opn1mw-/- mice represent a disease model for BCM patients with deletion mutations, at the cellular level, dorsal cones of Opn1mw-/- mice still express low levels of S-opsin, which are different from L- and M-cones of BCM patients carrying a congenital opsin deletion. To determine whether BCM cones lacking complete opsin expression from birth would benefit from AAV-mediated gene therapy, we evaluated the outcome of gene therapy, and determined the therapeutic window and longevity of rescue in a mouse model lacking both M- and S-opsin (Opn1mw-/-/Opn1sw-/-). Our data show that cones of Opn1mw-/-/Opn1sw-/- mice are viable at younger ages but undergo rapid degeneration. AAV-mediated expression of human L-opsin promoted cone outer segment regeneration and rescued cone-mediated function when mice were injected subretinally at 2 months of age or younger. Cone-mediated function and visually guided behavior were maintained for at least 8 months post-treatment. However, when mice were treated at 5 and 7 months of age, the chance and effectiveness of rescue was significantly reduced, although cones were still present in the retina. Crossing Opn1mw-/-/Opn1sw-/- mice with proteasomal activity reporter mice (UbG76V-GFP) did not reveal GFP accumulation in Opn1mw-/-/Opn1sw-/- cones eliminating impaired degradation of ubiquitinated proteins as stress factor contributing to cone loss. Our results demonstrate that AAV-mediated gene augmentation therapy can rescue cone structure and function in a mouse model with a congenital opsin deletion, but also emphasize the importance that early intervention is crucial for successful therapy.
Collapse
Affiliation(s)
- Xiajie Ma
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Emily R. Sechrest
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Diego Fajardo
- Division of Cellular and Molecular Therapeutics, Department of Pediatrics; University of Florida, Gainesville, Florida, USA
| | - Ping Zhu
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Frank Dyka
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yixiao Wang
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ekaterina Lobanova
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Shannon E. Boye
- Division of Cellular and Molecular Therapeutics, Department of Pediatrics; University of Florida, Gainesville, Florida, USA
| | - Wolfgang Baehr
- Department of Ophthalmology and Visual Science, University of Utah, Salt Lake City, Utah, USA
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, USA
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Wen-Tao Deng
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
8
|
Botto C, Dalkara D, El-Amraoui A. Progress in Gene Editing Tools and Their Potential for Correcting Mutations Underlying Hearing and Vision Loss. Front Genome Ed 2021; 3:737632. [PMID: 34778871 PMCID: PMC8581640 DOI: 10.3389/fgeed.2021.737632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Blindness and deafness are the most frequent sensory disorders in humans. Whatever their cause - genetic, environmental, or due to toxic agents, or aging - the deterioration of these senses is often linked to irreversible damage to the light-sensing photoreceptor cells (blindness) and/or the mechanosensitive hair cells (deafness). Efforts are increasingly focused on preventing disease progression by correcting or replacing the blindness and deafness-causal pathogenic alleles. In recent years, gene replacement therapies for rare monogenic disorders of the retina have given positive results, leading to the marketing of the first gene therapy product for a form of childhood hereditary blindness. Promising results, with a partial restoration of auditory function, have also been reported in preclinical models of human deafness. Silencing approaches, including antisense oligonucleotides, adeno-associated virus (AAV)-mediated microRNA delivery, and genome-editing approaches have also been applied to various genetic forms of blindness and deafness The discovery of new DNA- and RNA-based CRISPR/Cas nucleases, and the new generations of base, prime, and RNA editors offers new possibilities for directly repairing point mutations and therapeutically restoring gene function. Thanks to easy access and immune-privilege status of self-contained compartments, the eye and the ear continue to be at the forefront of developing therapies for genetic diseases. Here, we review the ongoing applications and achievements of this new class of emerging therapeutics in the sensory organs of vision and hearing, highlighting the challenges ahead and the solutions to be overcome for their successful therapeutic application in vivo.
Collapse
Affiliation(s)
- Catherine Botto
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| |
Collapse
|
9
|
Genome editing in large animal models. Mol Ther 2021; 29:3140-3152. [PMID: 34601132 DOI: 10.1016/j.ymthe.2021.09.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 12/21/2022] Open
Abstract
Although genome editing technologies have the potential to revolutionize the way we treat human diseases, barriers to successful clinical implementation remain. Increasingly, preclinical large animal models are being used to overcome these barriers. In particular, the immunogenicity and long-term safety of novel gene editing therapeutics must be evaluated rigorously. However, short-lived small animal models, such as mice and rats, cannot address secondary pathologies that may arise years after a gene editing treatment. Likewise, immunodeficient mouse models by definition lack the ability to quantify the host immune response to a novel transgene or gene-edited locus. Large animal models, including dogs, pigs, and non-human primates (NHPs), bear greater resemblance to human anatomy, immunology, and lifespan and can be studied over longer timescales with clinical dosing regimens that are more relevant to humans. These models allow for larger scale and repeated blood and tissue sampling, enabling greater depth of study and focus on rare cellular subsets. Here, we review current progress in the development and evaluation of novel genome editing therapies in large animal models, focusing on applications in human immunodeficiency virus 1 (HIV-1) infection, cancer, and genetic diseases including hemoglobinopathies, Duchenne muscular dystrophy (DMD), hypercholesterolemia, and inherited retinal diseases.
Collapse
|
10
|
Martinez Velazquez LA, Ballios BG. The Next Generation of Molecular and Cellular Therapeutics for Inherited Retinal Disease. Int J Mol Sci 2021; 22:ijms222111542. [PMID: 34768969 PMCID: PMC8583900 DOI: 10.3390/ijms222111542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
Inherited retinal degenerations (IRDs) are a diverse group of conditions that are often characterized by the loss of photoreceptors and blindness. Recent innovations in molecular biology and genomics have allowed us to identify the causative defects behind these dystrophies and to design therapeutics that target specific mechanisms of retinal disease. Recently, the FDA approved the first in vivo gene therapy for one of these hereditary blinding conditions. Current clinical trials are exploring new therapies that could provide treatment for a growing number of retinal dystrophies. While the field has had early success with gene augmentation strategies for treating retinal disease based on loss-of-function mutations, many novel approaches hold the promise of offering therapies that span the full spectrum of causative mutations and mechanisms. Here, we provide a comprehensive review of the approaches currently in development including a discussion of retinal neuroprotection, gene therapies (gene augmentation, gene editing, RNA modification, optogenetics), and regenerative stem or precursor cell-based therapies. Our review focuses on technologies that are being developed for clinical translation or are in active clinical trials and discusses the advantages and limitations for each approach.
Collapse
Affiliation(s)
| | - Brian G. Ballios
- Department of Ophthalmology and Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 3A9, Canada
- Correspondence:
| |
Collapse
|
11
|
Hernández-Juárez J, Rodríguez-Uribe G, Borooah S. Toward the Treatment of Inherited Diseases of the Retina Using CRISPR-Based Gene Editing. Front Med (Lausanne) 2021; 8:698521. [PMID: 34660621 PMCID: PMC8517184 DOI: 10.3389/fmed.2021.698521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Inherited retinal dystrophies [IRDs] are a common cause of severe vision loss resulting from pathogenic genetic variants. The eye is an attractive target organ for testing clinical translational approaches in inherited diseases. This has been demonstrated by the approval of the first gene supplementation therapy to treat an autosomal recessive IRD, RPE65-linked Leber congenital amaurosis (type 2), 4 years ago. However, not all diseases are amenable for treatment using gene supplementation therapy, highlighting the need for alternative strategies to overcome the limitations of this supplementation therapeutic modality. Gene editing has become of increasing interest with the discovery of the CRISPR-Cas9 platform. CRISPR-Cas9 offers several advantages over previous gene editing technologies as it facilitates targeted gene editing in an efficient, specific, and modifiable manner. Progress with CRISPR-Cas9 research now means that gene editing is a feasible strategy for the treatment of IRDs. This review will focus on the background of CRISPR-Cas9 and will stress the differences between gene editing using CRISPR-Cas9 and traditional gene supplementation therapy. Additionally, we will review research that has led to the first CRISPR-Cas9 trial for the treatment of CEP290-linked Leber congenital amaurosis (type 10), as well as outline future directions for CRISPR-Cas9 technology in the treatment of IRDs.
Collapse
Affiliation(s)
- Jennifer Hernández-Juárez
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, San Diego, CA, United States
| | - Genaro Rodríguez-Uribe
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Mexico.,Department of Ocular Genetics and Research, CODET Vision Institute, Tijuana, Mexico
| | - Shyamanga Borooah
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
12
|
Thompson MK, Sobol RW, Prakash A. Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. BIOLOGY 2021; 10:530. [PMID: 34198612 PMCID: PMC8232306 DOI: 10.3390/biology10060530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
The earliest methods of genome editing, such as zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALENs), utilize customizable DNA-binding motifs to target the genome at specific loci. While these approaches provided sequence-specific gene-editing capacity, the laborious process of designing and synthesizing recombinant nucleases to recognize a specific target sequence, combined with limited target choices and poor editing efficiency, ultimately minimized the broad utility of these systems. The discovery of clustered regularly interspaced short palindromic repeat sequences (CRISPR) in Escherichia coli dates to 1987, yet it was another 20 years before CRISPR and the CRISPR-associated (Cas) proteins were identified as part of the microbial adaptive immune system, by targeting phage DNA, to fight bacteriophage reinfection. By 2013, CRISPR/Cas9 systems had been engineered to allow gene editing in mammalian cells. The ease of design, low cytotoxicity, and increased efficiency have made CRISPR/Cas9 and its related systems the designer nucleases of choice for many. In this review, we discuss the various CRISPR systems and their broad utility in genome manipulation. We will explore how CRISPR-controlled modifications have advanced our understanding of the mechanisms of genome stability, using the modulation of DNA repair genes as examples.
Collapse
Affiliation(s)
- Marlo K. Thompson
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Robert W. Sobol
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Aishwarya Prakash
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
13
|
Chung SH, Sin TN, Ngo T, Yiu G. CRISPR Technology for Ocular Angiogenesis. Front Genome Ed 2020; 2:594984. [PMID: 34713223 PMCID: PMC8525361 DOI: 10.3389/fgeed.2020.594984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
Among genome engineering tools, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based approaches have been widely adopted for translational studies due to their robustness, precision, and ease of use. When delivered to diseased tissues with a viral vector such as adeno-associated virus, direct genome editing can be efficiently achieved in vivo to treat different ophthalmic conditions. While CRISPR has been actively explored as a strategy for treating inherited retinal diseases, with the first human trial recently initiated, its applications for complex, multifactorial conditions such as ocular angiogenesis has been relatively limited. Currently, neovascular retinal diseases such as retinopathy of prematurity, proliferative diabetic retinopathy, and neovascular age-related macular degeneration, which together constitute the majority of blindness in developed countries, are managed with frequent and costly injections of anti-vascular endothelial growth factor (anti-VEGF) agents that are short-lived and burdensome for patients. By contrast, CRISPR technology has the potential to suppress angiogenesis permanently, with the added benefit of targeting intracellular signals or regulatory elements, cell-specific delivery, and multiplexing to disrupt different pro-angiogenic factors simultaneously. However, the prospect of permanently suppressing physiologic pathways, the unpredictability of gene editing efficacy, and concerns for off-target effects have limited enthusiasm for these approaches. Here, we review the evolution of gene therapy and advances in adapting CRISPR platforms to suppress retinal angiogenesis. We discuss different Cas9 orthologs, delivery strategies, and different genomic targets including VEGF, VEGF receptor, and HIF-1α, as well as the advantages and disadvantages of genome editing vs. conventional gene therapies for multifactorial disease processes as compared to inherited monogenic retinal disorders. Lastly, we describe barriers that must be overcome to enable effective adoption of CRISPR-based strategies for the management of ocular angiogenesis.
Collapse
Affiliation(s)
| | | | | | - Glenn Yiu
- Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
14
|
Konishi CT, Long C. Progress and challenges in CRISPR-mediated therapeutic genome editing for monogenic diseases. J Biomed Res 2020; 35:148-162. [PMID: 33402545 PMCID: PMC8038532 DOI: 10.7555/jbr.34.20200105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
There are an estimated 10 000 monogenic diseases affecting tens of millions of individuals worldwide. The application of CRISPR/Cas genome editing tools to treat monogenic diseases is an emerging strategy with the potential to generate personalized treatment approaches for these patients. CRISPR/Cas-based systems are programmable and sequence-specific genome editing tools with the capacity to generate base pair resolution manipulations to DNA or RNA. The complexity of genomic insults resulting in heritable disease requires patient-specific genome editing strategies with consideration of DNA repair pathways, and CRISPR/Cas systems of different types, species, and those with additional enzymatic capacity and/or delivery methods. In this review we aim to discuss broad and multifaceted therapeutic applications of CRISPR/Cas gene editing systems including in harnessing of homology directed repair, non-homologous end joining, microhomology-mediated end joining, and base editing to permanently correct diverse monogenic diseases.
Collapse
Affiliation(s)
- Colin T Konishi
- Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Chengzu Long
- Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, New York, NY 10016, USA.,Helen and Martin Kimmel Center for Stem Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA.,Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA.,Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
15
|
Metabolic and Redox Signaling of the Nucleoredoxin-Like-1 Gene for the Treatment of Genetic Retinal Diseases. Int J Mol Sci 2020; 21:ijms21051625. [PMID: 32120883 PMCID: PMC7084304 DOI: 10.3390/ijms21051625] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
The loss of cone photoreceptor function in retinitis pigmentosa (RP) severely impacts the central and daily vision and quality of life of patients affected by this disease. The loss of cones follows the degeneration of rods, in a manner independent of the causing mutations in numerous genes associated with RP. We have explored this phenomenon and proposed that the loss of rods triggers a reduction in the expression of rod-derived cone viability factor (RdCVF) encoded by the nucleoredoxin-like 1 (NXNL1) gene which interrupts the metabolic and redox signaling between rods and cones. After providing scientific evidence supporting this mechanism, we propose a way to restore this lost signaling and prevent the cone vision loss in animal models of RP. We also explain how we could restore this signaling to prevent cone vision loss in animal models of the disease and how we plan to apply this therapeutic strategy by the administration of both products of NXNL1 encoding the trophic factor RdCVF and the thioredoxin enzyme RdCVFL using an adeno-associated viral vector. We describe in detail all the steps of this translational program, from the design of the drug, its production, biological validation, and analytical and preclinical qualification required for a future clinical trial that would, if successful, provide a treatment for this incurable disease.
Collapse
|
16
|
Markitantova Y, Simirskii V. Inherited Eye Diseases with Retinal Manifestations through the Eyes of Homeobox Genes. Int J Mol Sci 2020; 21:E1602. [PMID: 32111086 PMCID: PMC7084737 DOI: 10.3390/ijms21051602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Retinal development is under the coordinated control of overlapping networks of signaling pathways and transcription factors. The paper was conceived as a review of the data and ideas that have been formed to date on homeobox genes mutations that lead to the disruption of eye organogenesis and result in inherited eye/retinal diseases. Many of these diseases are part of the same clinical spectrum and have high genetic heterogeneity with already identified associated genes. We summarize the known key regulators of eye development, with a focus on the homeobox genes associated with monogenic eye diseases showing retinal manifestations. Recent advances in the field of genetics and high-throughput next-generation sequencing technologies, including single-cell transcriptome analysis have allowed for deepening of knowledge of the genetic basis of inherited retinal diseases (IRDs), as well as improve their diagnostics. We highlight some promising avenues of research involving molecular-genetic and cell-technology approaches that can be effective for IRDs therapy. The most promising neuroprotective strategies are aimed at mobilizing the endogenous cellular reserve of the retina.
Collapse
|
17
|
Maeder ML, Stefanidakis M, Wilson CJ, Baral R, Barrera LA, Bounoutas GS, Bumcrot D, Chao H, Ciulla DM, DaSilva JA, Dass A, Dhanapal V, Fennell TJ, Friedland AE, Giannoukos G, Gloskowski SW, Glucksmann A, Gotta GM, Jayaram H, Haskett SJ, Hopkins B, Horng JE, Joshi S, Marco E, Mepani R, Reyon D, Ta T, Tabbaa DG, Samuelsson SJ, Shen S, Skor MN, Stetkiewicz P, Wang T, Yudkoff C, Myer VE, Albright CF, Jiang H. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med 2019; 25:229-233. [DOI: 10.1038/s41591-018-0327-9] [Citation(s) in RCA: 338] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022]
|
18
|
Hardcastle AJ, Sieving PA, Sahel JA, Jacobson SG, Cideciyan AV, Flannery JG, Beltran WA, Aguirre GD. Translational Retinal Research and Therapies. Transl Vis Sci Technol 2018; 7:8. [PMID: 30225158 PMCID: PMC6138060 DOI: 10.1167/tvst.7.5.8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
The following review summarizes the state of the art in representative aspects of gene therapy/translational medicine and evolves from a symposium held at the School of Veterinary Medicine, University of Pennsylvania on November 16, 2017 honoring Dr. Gustavo Aguirre, recipient of ARVO's 2017 Proctor Medal. Focusing on the retina, speakers highlighted current work on moving therapies for inherited retinal degenerative diseases from the laboratory bench to the clinic.
Collapse
Affiliation(s)
| | - Paul A Sieving
- Director, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Director of the UPMC Eye Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA and Director, Institut de la Vision, Sorbonne Université-Inserm-CNRS, Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, France
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - John G Flannery
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - William A Beltran
- Department of Clinical Sciences and Advanced Medicine, Division of Experimental Retinal Therapies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gustavo D Aguirre
- Department of Clinical Sciences and Advanced Medicine, Division of Experimental Retinal Therapies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Adamus G. Are Anti-Retinal Autoantibodies a Cause or a Consequence of Retinal Degeneration in Autoimmune Retinopathies? Front Immunol 2018; 9:765. [PMID: 29713325 PMCID: PMC5911469 DOI: 10.3389/fimmu.2018.00765] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/27/2018] [Indexed: 12/12/2022] Open
Abstract
Autoantibodies (AAbs) against various retinal proteins have been associated with vision loss in paraneoplastic and non-paraneoplastic autoimmune retinopathies (AR). There are two major paraneoplastic syndromes associated anti-retinal AAbs, cancer-associated retinopathy (CAR), and melanoma-associated retinopathy. Some people without a cancer diagnosis may present symptoms of CAR and have anti-retinal AAbs. The etiology and pathogenesis of those entities are not fully understood. In this review, we provide evidence for the role of AAbs in retinal death and degeneration. Studies of epitope mapping for anti-recoverin, anti-enolase, and anti-carbonic anhydrase II revealed that although patients' AAbs may recognize the same retinal protein as normal individuals they bind to different molecular domains, which allows distinguishing between normal and diseased AAbs. Given the great diversity of anti-retinal AAbs, it is likely some antibodies have greater pathogenic potential than others. Pathogenic, but not normal antibodies penetrate the target cell, reach their specific antigen, induce apoptosis, and impact retinal pathophysiology. Photoreceptors, dying by apoptosis, induced by other than immunologic mechanisms produce substantial amounts of metabolic debris, which consequently leads to autoimmunization and enhanced permeability of the blood-retinal barrier. AAbs that were made as a part of anti-cancer response are likely to be the cause of retinal degeneration, whereas others, generated against released antigens from damaged retina, contribute to the progression of retinopathy. Altogether, AAbs may trigger retinal degeneration and may also exacerbate the degenerative process in response to the release of sequestered antigens and influence disease progression.
Collapse
Affiliation(s)
- Grazyna Adamus
- School of Medicine, Casey Eye Institute, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
20
|
Calzia D, Degan P, Caicci F, Bruschi M, Manni L, Ramenghi LA, Candiano G, Traverso CE, Panfoli I. Modulation of the rod outer segment aerobic metabolism diminishes the production of radicals due to light absorption. Free Radic Biol Med 2018; 117:110-118. [PMID: 29378336 DOI: 10.1016/j.freeradbiomed.2018.01.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 01/17/2018] [Accepted: 01/23/2018] [Indexed: 12/19/2022]
Abstract
Oxidative stress is a primary risk factor for both inflammatory and degenerative retinopathies. Our previous data on blue light-irradiated retinas demonstrated an oxidative stress higher in the rod outer segment (OS) than in the inner limb, leading to impairment of the rod OS extra-mitochondrial aerobic metabolism. Here the oxidative metabolism and Reactive Oxygen Intermediates (ROI) production was evaluated in purified bovine rod OS in function of exposure to different illumination conditions. A dose response was observed to varying light intensities and duration in terms of both ROI production and ATP synthesis. Pretreatment with resveratrol, inhibitor of F1Fo-ATP synthase, or metformin, inhibitor of the respiratory complex I, significantly diminished the ROI production. Metformin also diminished the rod OS Complex I activity and reduced the maximal OS response to light in ATP production. Data show for the first time the relationship existing in the rod OS between its -aerobic- metabolism, light absorption, and ROI production. A beneficial effect was exerted by metformin and resveratrol, in modulating the ROI production in the illuminated rod OS, suggestive of their beneficial action also in vivo. Data shed new light on preventative interventions for cone loss secondary to rod damage due to oxidative stress.
Collapse
Affiliation(s)
- Daniela Calzia
- Dipartimento di Farmacia-DIFAR,-Biochemistry Lab., University of Genoa, V.le Benedetto XV 3, 16132 Genova, Italy.
| | - Paolo Degan
- UOC Mutagenesi, IRCCS AOU San Martino - IST (Istituto Nazionale per la Ricerca sul Cancro), Genova, Italy
| | - Federico Caicci
- Department of Biology, Università di Padova, via U. Bassi 58/B, 35121 Padova, Italy
| | - Maurizio Bruschi
- Laboratory of Pathophysiology of Uremia, Istituto Giannina Gaslini, Genova, Italy
| | - Lucia Manni
- Department of Biology, Università di Padova, via U. Bassi 58/B, 35121 Padova, Italy
| | - Luca A Ramenghi
- Neonatal Intensive Care Unit, U.O.S. Malattie Metaboliche, V.le Benedetto XV 6, Genova, Italy
| | - Giovanni Candiano
- Neonatal Intensive Care Unit, U.O.S. Malattie Metaboliche, V.le Benedetto XV 6, Genova, Italy
| | - Carlo Enrico Traverso
- Clinica Oculistica, (DINOGMI) University of Genoa, V.le Benedetto XV 6, Genova, Italy
| | - Isabella Panfoli
- Dipartimento di Farmacia-DIFAR,-Biochemistry Lab., University of Genoa, V.le Benedetto XV 3, 16132 Genova, Italy
| |
Collapse
|
21
|
Cone degeneration is triggered by the absence of USH1 proteins but prevented by antioxidant treatments. Sci Rep 2018; 8:1968. [PMID: 29386551 PMCID: PMC5792440 DOI: 10.1038/s41598-018-20171-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/04/2018] [Indexed: 11/26/2022] Open
Abstract
Usher syndrome type 1 (USH1) is a major cause of inherited deafness and blindness in humans. The eye disorder is often referred to as retinitis pigmentosa, which is characterized by a secondary cone degeneration following the rod loss. The development of treatments to prevent retinal degeneration has been hampered by the lack of clear evidence for retinal degeneration in mutant mice deficient for the Ush1 genes, which instead faithfully mimic the hearing deficit. We show that, under normal housing conditions, Ush1g−/− and Ush1c−/− albino mice have dysfunctional cone photoreceptors whereas pigmented knockout animals have normal photoreceptors. The key involvement of oxidative stress in photoreceptor apoptosis and the ensued retinal gliosis were further confirmed by their prevention when the mutant mice are reared under darkness and/or supplemented with antioxidants. The primary degeneration of cone photoreceptors contrasts with the typical forms of retinitis pigmentosa. Altogether, we propose that oxidative stress probably accounts for the high clinical heterogeneity among USH1 siblings, which also unveils potential targets for blindness prevention.
Collapse
|
22
|
Maintaining Cone Function in Rod-Cone Dystrophies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:499-509. [PMID: 29721982 DOI: 10.1007/978-3-319-75402-4_62] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Retinal degenerative diseases are a major cause of untreatable blindness due to a loss of photoreceptors. Recent advances in genetics and gene therapy for inherited retinal dystrophies (IRDs) showed that therapeutic gene transfer holds a great promise for vision restoration in people with currently incurable blinding diseases. Due to the huge genetic heterogeneity of IRDs that represents a major obstacle for gene therapy development, alternative therapeutic approaches are needed. This review focuses on the rescue of cone function as a therapeutic option for maintaining central vision in rod-cone dystrophies. It highlights recent developments in better understanding the mechanisms of action of the trophic factor RdCVF and its potential as a sight-saving therapeutic strategy.
Collapse
|
23
|
Cell Signaling with Extracellular Thioredoxin and Thioredoxin-Like Proteins: Insight into Their Mechanisms of Action. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8475125. [PMID: 29138681 PMCID: PMC5613632 DOI: 10.1155/2017/8475125] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/06/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022]
Abstract
Thioredoxins are small thiol-oxidoreductase enzymes that control cellular redox homeostasis. Paradoxically, human thioredoxin (TXN1) was first identified as the adult T cell leukemia-derived factor (ADF), a secreted protein. ADF has been implicated in a wide variety of cell-to-cell communication systems acting as a cytokine or a chemokine. TRX80 is a truncated TXN1 protein with cytokine activity. The unconventional secretion mechanism of these extracellular thioredoxins is unknown. The thioredoxin system is relying on glucose metabolism through the pentose phosphate pathway that provides reducing power in the form of NADPH, the cofactor of thioredoxin reductase (TXNRD). While a complete extracellular TXN system is present in the blood in the form of circulating TXN1 and TXNDR1, the source of extracellular NADPH remains a mystery. In the absence of redox regenerating capacity, extracellular thioredoxins may rather be prooxidant agents. Rod-derived cone viability factor (RdCVF) is the product of intron retention of the nucleoredoxin-like 1 (NXNL1) gene, a secreted truncated thioredoxin-like protein. The other product encoded by the gene, RdCVFL, is an enzymatically active thioredoxin. This is a very singular example of positive feedback of a superthioredoxin system encoded by a single gene likely emerging during evolution from metabolic constraints on redox signaling.
Collapse
|
24
|
Kim JW, Yang HJ, Oel AP, Brooks MJ, Jia L, Plachetzki DC, Li W, Allison WT, Swaroop A. Recruitment of Rod Photoreceptors from Short-Wavelength-Sensitive Cones during the Evolution of Nocturnal Vision in Mammals. Dev Cell 2017; 37:520-32. [PMID: 27326930 DOI: 10.1016/j.devcel.2016.05.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/16/2016] [Accepted: 05/24/2016] [Indexed: 01/07/2023]
Abstract
Vertebrate ancestors had only cone-like photoreceptors. The duplex retina evolved in jawless vertebrates with the advent of highly photosensitive rod-like photoreceptors. Despite cones being the arbiters of high-resolution color vision, rods emerged as the dominant photoreceptor in mammals during a nocturnal phase early in their evolution. We investigated the evolutionary and developmental origins of rods in two divergent vertebrate retinas. In mice, we discovered genetic and epigenetic vestiges of short-wavelength cones in developing rods, and cell-lineage tracing validated the genesis of rods from S cones. Curiously, rods did not derive from S cones in zebrafish. Our study illuminates several questions regarding the evolution of duplex retina and supports the hypothesis that, in mammals, the S-cone lineage was recruited via the Maf-family transcription factor NRL to augment rod photoreceptors. We propose that this developmental mechanism allowed the adaptive exploitation of scotopic niches during the nocturnal bottleneck early in mammalian evolution.
Collapse
Affiliation(s)
- Jung-Woong Kim
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Hyun-Jin Yang
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam Phillip Oel
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Matthew John Brooks
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Jia
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Charles Plachetzki
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - William Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Metabolic and redox signaling in the retina. Cell Mol Life Sci 2016; 74:3649-3665. [PMID: 27543457 PMCID: PMC5597695 DOI: 10.1007/s00018-016-2318-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 01/04/2023]
Abstract
Visual perception by photoreceptors relies on the interaction of incident photons from light with a derivative of vitamin A that is covalently linked to an opsin molecule located in a special subcellular structure, the photoreceptor outer segment. The photochemical reaction produced by the photon is optimal when the opsin molecule, a seven-transmembrane protein, is embedded in a lipid bilayer of optimal fluidity. This is achieved in vertebrate photoreceptors by a high proportion of lipids made with polyunsaturated fatty acids, which have the detrimental property of being oxidized and damaged by light. Photoreceptors cannot divide, but regenerate their outer segments. This is an enormous energetic challenge that explains why photoreceptors metabolize glucose through aerobic glycolysis, as cancer cells do. Uptaken glucose produces metabolites to renew that outer segment as well as reducing power through the pentose phosphate pathway to protect photoreceptors against oxidative damage.
Collapse
|
26
|
Hereditary Diseases of the Retina. Neuroophthalmology 2016. [DOI: 10.1007/978-3-319-28956-4_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
27
|
Thompson DA, Ali RR, Banin E, Branham KE, Flannery JG, Gamm DM, Hauswirth WW, Heckenlively JR, Iannaccone A, Jayasundera KT, Khan NW, Molday RS, Pennesi ME, Reh TA, Weleber RG, Zacks DN. Advancing therapeutic strategies for inherited retinal degeneration: recommendations from the Monaciano Symposium. Invest Ophthalmol Vis Sci 2015; 56:918-31. [PMID: 25667399 DOI: 10.1167/iovs.14-16049] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although rare in the general population, retinal dystrophies occupy a central position in current efforts to develop innovative therapies for blinding diseases. This status derives, in part, from the unique biology, accessibility, and function of the retina, as well as from the synergy between molecular discoveries and transformative advances in functional assessment and retinal imaging. The combination of these factors has fueled remarkable progress in the field, while at the same time creating complex challenges for organizing collective efforts aimed at advancing translational research. The present position paper outlines recent progress in gene therapy and cell therapy for this group of disorders, and presents a set of recommendations for addressing the challenges remaining for the coming decade. It is hoped that the formulation of these recommendations will stimulate discussions among researchers, funding agencies, industry, and policy makers that will accelerate the development of safe and effective treatments for retinal dystrophies and related diseases.
Collapse
Affiliation(s)
- Debra A Thompson
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Robin R Ali
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States Division of Molecular Therapy, University College London Institute of Ophthalmology, London, England, United Kingdom
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Kari E Branham
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - John G Flannery
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California, United States
| | - David M Gamm
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - William W Hauswirth
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, Florida, United States
| | - John R Heckenlively
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Alessandro Iannaccone
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - K Thiran Jayasundera
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Naheed W Khan
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark E Pennesi
- Casey Eye Institute and the Department of Ophthalmology, Oregon Health and Science University, Portland, Oregon, United States
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, Washington, United States
| | - Richard G Weleber
- Casey Eye Institute and the Department of Ophthalmology, Oregon Health and Science University, Portland, Oregon, United States Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, United States
| | - David N Zacks
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | | |
Collapse
|
28
|
Abstract
In humans, experimental access to single sensory receptors is difficult to achieve, yet it is crucial for learning how the signals arising from each receptor are transformed into perception. By combining adaptive optics microstimulation with high-speed eye tracking, we show that retinal function can be probed at the level of the individual cone photoreceptor in living eyes. Classical psychometric functions were obtained from cone-sized microstimuli targeted to single photoreceptors. Revealed psychophysically, the cone mosaic also manifests a variable sensitivity to light across its surface that accords with a simple model of cone light capture. Because this microscopic grain of vision could be detected on the perceptual level, it suggests that photoreceptors can act individually to shape perception, if the normally suboptimal relay of light by the eye's optics is corrected. Thus the precise arrangement of cones and the exact placement of stimuli onto those cones create the initial retinal limits on signals mediating spatial vision.
Collapse
|
29
|
Therapeutic strategy for handling inherited retinal degenerations in a gene-independent manner using rod-derived cone viability factors. C R Biol 2014; 337:207-13. [DOI: 10.1016/j.crvi.2013.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/02/2013] [Indexed: 01/14/2023]
|
30
|
Kay DB, Land ME, Cooper RF, Dubis AM, Godara P, Dubra A, Carroll J, Stepien KE. Outer retinal structure in best vitelliform macular dystrophy. JAMA Ophthalmol 2013; 131:1207-15. [PMID: 23765342 DOI: 10.1001/jamaophthalmol.2013.387] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE Demonstrating the utility of adaptive optics scanning light ophthalmoscopy (AOSLO) to assess outer retinal structure in Best vitelliform macular dystrophy (BVMD). OBJECTIVE To characterize outer retinal structure in BVMD using spectral-domain optical coherence tomography (SD-OCT) and AOSLO. DESIGN, SETTING, AND PARTICIPANTS Prospective, observational case series. Four symptomatic members of a family with BVMD with known BEST1 mutation were recruited at the Advanced Ocular Imaging Program research lab at the Medical College of Wisconsin Eye Institute, Milwaukee. INTERVENTION Thickness of 2 outer retinal layers corresponding to photoreceptor inner and outer segments was measured using SD-OCT. Photoreceptor mosaic AOSLO images within and around visible lesions were obtained, and cone density was assessed in 2 subjects. MAIN OUTCOME AND MEASURE Photoreceptor structure. RESULTS Each subject was at a different stage of BVMD, with photoreceptor disruption evident by AOSLO at all stages. When comparing SD-OCT and AOSLO images from the same location, AOSLO images allowed for direct assessment of photoreceptor structure. A variable degree of retained photoreceptors was seen within all lesions. The photoreceptor mosaic immediately adjacent to visible lesions appeared contiguous and was of normal density. Fine hyperreflective structures were visualized by AOSLO, and their anatomical orientation and size were consistent with Henle fibers. CONCLUSIONS AND RELEVANCE: The AOSLO findings indicate that substantial photoreceptor structure persists within active lesions, accounting for good visual acuity in these patients. Despite previous reports of diffuse photoreceptor outer segment abnormalities in BVMD, our data reveal normal photoreceptor structure in areas adjacent to clinical lesions. This study demonstrates the utility of AOSLO for understanding the spectrum of cellular changes that occur in inherited degenerations such as BVMD. Photoreceptors are often significantly affected at various stages of inherited degenerations, and these changes may not be readily apparent with current clinical imaging instrumentation.
Collapse
Affiliation(s)
- David B Kay
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Functional rescue of cone photoreceptors in retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 2013; 251:1669-77. [PMID: 23575948 DOI: 10.1007/s00417-013-2314-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
32
|
Ratnam K, Carroll J, Porco TC, Duncan JL, Roorda A. Relationship between foveal cone structure and clinical measures of visual function in patients with inherited retinal degenerations. Invest Ophthalmol Vis Sci 2013; 54:5836-47. [PMID: 23908179 DOI: 10.1167/iovs.13-12557] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To study the relationship between cone spacing and density and clinical measures of visual function near the fovea. METHODS High-resolution images of the photoreceptor mosaic were obtained with adaptive optics scanning laser ophthalmoscopy from 26 patients with inherited retinal degenerations. Cone spacing measures were made close to or at the foveal center (mean [SD] eccentricity, 0.02 [0.03] degree; maximum eccentricity, 0.13 degree) and were converted to Z-scores, fraction of cones, and percentage-of-cones-below-average compared with normal values for each location (based on 37 age-similar visually normal eyes). Z-scores and percentage of cones below average were compared with best-corrected visual acuity (VA) and foveal sensitivity. RESULTS Visual acuity was significantly correlated with cone spacing (Spearman rank correlation ρ = -0.60, P = 0.003) and was preserved (≥ 80 letters), despite cone density measures that were 52% below normal. Foveal sensitivity showed significant correlation with cone spacing (ρ = -0.47, P = 0.017) and remained normal (≥ 35 decibels), despite density measures that were approximately 52% to 62% below normal. CONCLUSIONS Cone density was reduced by up to 62% below normal at or near the fovea in eyes with VA and sensitivity that remained within normal limits. Despite a significant correlation with foveal cone spacing, VA and sensitivity are insensitive indicators of the integrity of the foveal cone mosaic. Direct, objective measures of cone structure may be more sensitive indicators of disease severity than VA or foveal sensitivity in eyes with inherited retinal degenerations.
Collapse
Affiliation(s)
- Kavitha Ratnam
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| | | | | | | | | |
Collapse
|
33
|
Gullapalli VK, Khodair MA, Wang H, Sugino IK, Madreperla S, Zarbin MA. Transplantation Frontiers. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Falsini B, Bush RA, Sieving PA. Neuroprotection. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Abstract
PURPOSE To develop and test the application of an adaptive optics scanning laser ophthalmoscope (AOSLO) with eye tracking for high-resolution microperimetric testing. METHODS An AOSLO was used to conduct simultaneous high-resolution retinal imaging and visual function testing in six normal subjects. Visual sensitivity was measured at test locations between the fovea and 5.0° eccentricity via an increment threshold approach using a 40-trial, yes-no adaptive Bayesian staircase procedure (QUEST). A high-speed eye tracking algorithm enabled real-time video stabilization and the delivery of diffraction-limited Goldmann I-sized stimuli (diameter = 6.5 arc min = ∼32 μm; λ = 680 nm) to targeted retinal loci for 200 ms. Test locations were selected either manually by the examiner or automatically using Fourier-based image registration. Cone spacing was assessed at each test location and sensitivity was plotted against retinal eccentricity. Finally, a 4.2 arc min stimulus was used to probe the angioscotoma associated with a blood vessel located at 2.5° eccentricity. RESULTS Visual sensitivity decreases with eccentricity at a rate of -1.32 dB/deg (R = 0.60). The vertical and horizontal errors of the targeted stimulus delivery algorithm averaged 0.81 and 0.89 arc min (∼4 μm), respectively. Based on a predetermined exclusion criterion, the stimulus was successfully delivered to its targeted location in 90.1% of all trials. Automated recovery of test locations afforded the repeat testing of the same set of cones over a period of 3 months. Thresholds measured over a parafoveal blood vessel were 1.96 times higher (p < 0.05; one-tailed t-test) than those measured in directly adjacent retina. CONCLUSIONS AOSLO-based microperimetry has the potential to test visual sensitivity with fine retinotopic precision. Automated recovery of previously tested locations allows these measures to be tracked longitudinally. This approach can be implemented by researchers interested in establishing the functional correlates of photoreceptor mosaic structure in patients with retinal disease.
Collapse
|
36
|
Transplantation of photoreceptor and total neural retina preserves cone function in P23H rhodopsin transgenic rat. PLoS One 2010; 5:e13469. [PMID: 20976047 PMCID: PMC2957406 DOI: 10.1371/journal.pone.0013469] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 07/27/2010] [Indexed: 01/13/2023] Open
Abstract
Background Transplantation as a therapeutic strategy for inherited retinal degeneration has been historically viewed to restore vision as a method by replacing the lost retinal cells and attempting to reconstruct the neural circuitry with stem cells, progenitor cells and mature neural retinal cells. Methods and Findings We present evidence for an alternative strategy aimed at preventing the secondary loss of cones, the most crucial photoreceptors for vision, by transplanting normal photoreceptors cells into the eye of the P23H rat, a model of dominant retinitis pigmentosa. We carried out transplantation of photoreceptors or total neural retina in 3-month-old P23H rats and evaluated the function and cell counts 6 months after surgery. In both groups, cone loss was significantly reduced (10%) in the transplanted eyes where the cone outer segments were found to be considerably longer. This morphological effect correlated with maintenance of the visual function of cones as scored by photopic ERG recording, but more precisely with an increase in the photopic b-wave amplitudes by 100% and 78% for photoreceptor transplantation and whole retinal transplantation respectively. Conclusions We demonstrate here that the transplanted tissue prevents the loss of cone function, which is further translated into cone survival.
Collapse
|
37
|
Berger W, Kloeckener-Gruissem B, Neidhardt J. The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res 2010; 29:335-75. [PMID: 20362068 DOI: 10.1016/j.preteyeres.2010.03.004] [Citation(s) in RCA: 423] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During the last two to three decades, a large body of work has revealed the molecular basis of many human disorders, including retinal and vitreoretinal degenerations and dysfunctions. Although belonging to the group of orphan diseases, they affect probably more than two million people worldwide. Most excitingly, treatment of a particular form of congenital retinal degeneration is now possible. A major advantage for treatment is the unique structure and accessibility of the eye and its different components, including the vitreous and retina. Knowledge of the many different eye diseases affecting retinal structure and function (night and colour blindness, retinitis pigmentosa, cone and cone rod dystrophies, photoreceptor dysfunctions, as well as vitreoretinal traits) is critical for future therapeutic development. We have attempted to present a comprehensive picture of these disorders, including biological, clinical, genetic and molecular information. The structural organization of the review leads the reader through non-syndromic and syndromic forms of (i) rod dominated diseases, (ii) cone dominated diseases, (iii) generalized retinal degenerations and (iv) vitreoretinal disorders, caused by mutations in more than 165 genes. Clinical variability and genetic heterogeneity have an important impact on genetic testing and counselling of affected families. As phenotypes do not always correlate with the respective genotypes, it is of utmost importance that clinicians, geneticists, counsellors, diagnostic laboratories and basic researchers understand the relationships between phenotypic manifestations and specific genes, as well as mutations and pathophysiologic mechanisms. We discuss future perspectives.
Collapse
Affiliation(s)
- Wolfgang Berger
- Division of Medical Molecular Genetics and Gene Diagnostics, Institute of Medical Genetics, University of Zurich, Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland.
| | | | | |
Collapse
|
38
|
Wright AF, Chakarova CF, Abd El-Aziz MM, Bhattacharya SS. Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet 2010; 11:273-84. [PMID: 20212494 DOI: 10.1038/nrg2717] [Citation(s) in RCA: 454] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
39
|
Cone photoreceptor mosaic disruption associated with Cys203Arg mutation in the M-cone opsin. Proc Natl Acad Sci U S A 2009; 106:20948-53. [PMID: 19934058 DOI: 10.1073/pnas.0910128106] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Missense mutations in the cone opsins have been identified as a relatively common cause of red/green color vision defects, with the most frequent mutation being the substitution of arginine for cysteine at position 203 (C203R). When the corresponding cysteine is mutated in rhodopsin, it disrupts proper folding of the pigment, causing severe, early onset retinitis pigmentosa. While the C203R mutation has been associated with loss of cone function in color vision deficiency, it is not known what happens to cones expressing this mutant opsin. Here, we used high-resolution retinal imaging to examine the cone mosaic in two individuals with genes encoding a middle-wavelength sensitive (M) pigment with the C203R mutation. We found a significant reduction in cone density compared to normal and color-deficient controls, accompanying disruption in the cone mosaic in both individuals, and thinning of the outer nuclear layer. The C203R mosaics were different from that produced by another mutation (LIAVA) previously shown to disrupt the cone mosaic. Comparison of these mosaics provides insight into the timing and degree of cone disruption and has implications for the prospects for restoration of vision loss associated with various cone opsin mutations.
Collapse
|
40
|
Yang Y, Mohand-Said S, Danan A, Simonutti M, Fontaine V, Clerin E, Picaud S, Léveillard T, Sahel JA. Functional cone rescue by RdCVF protein in a dominant model of retinitis pigmentosa. Mol Ther 2009; 17:787-95. [PMID: 19277021 DOI: 10.1038/mt.2009.28] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In retinitis pigmentosa (RP), a majority of causative mutations affect genes solely expressed in rods; however, cone degeneration inevitably follows rod cell loss. Following transplantation and in vitro studies, we demonstrated the role of photoreceptor cell paracrine interactions and identified a Rod-derived Cone Viability Factor (RdCVF), which increases cone survival. In order to establish the clinical relevance of such mechanism, we assessed the functional benefit afforded by the injection of this factor in a frequent type of rhodopsin mutation, the P23H rat. In this model of autosomal dominant RP, RdCVF expression decreases in parallel with primary rod degeneration, which is followed by cone loss. RdCVF protein injections induced an increase in cone cell number and, more important, a further increase in the corresponding electroretinogram (ERG). These results indicate that RdCVF can not only rescue cones but also preserve significantly their function. Interestingly, the higher amplitude of the functional versus the survival effect of RdCVF on cones indicates that RdCVF is acting more directly on cone function. The demonstration at the functional level of the therapeutic potential of RdCVF in the most frequent of dominant RP mutations paves the way toward the use of RdCVF for preserving central vision in many RP patients.
Collapse
Affiliation(s)
- Ying Yang
- Université Pierre et Marie Curie-Paris6, UMR-S 592, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Koenekoop RK, Lopez I, Allikmets R, Cremers FPM, den Hollander AI. Genetics, phenotypes, mechanisms and treatments for Leber congenital amaurosis: a paradigm shift. EXPERT REVIEW OF OPHTHALMOLOGY 2008. [DOI: 10.1586/17469899.3.4.397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Abstract
Hereditary degenerations of the human retina are genetically heterogeneous, with well over 100 genes implicated so far. This Seminar focuses on the subset of diseases called retinitis pigmentosa, in which patients typically lose night vision in adolescence, side vision in young adulthood, and central vision in later life because of progressive loss of rod and cone photoreceptor cells. Measures of retinal function, such as the electroretinogram, show that photoreceptor function is diminished generally many years before symptomic night blindness, visual-field scotomas, or decreased visual acuity arise. More than 45 genes for retinitis pigmentosa have been identified. These genes account for only about 60% of all patients; the remainder have defects in as yet unidentified genes. Findings of controlled trials indicate that nutritional interventions, including vitamin A palmitate and omega-3-rich fish, slow progression of disease in many patients. Imminent treatments for retinitis pigmentosa are greatly anticipated, especially for genetically defined subsets of patients, because of newly identified genes, growing knowledge of affected biochemical pathways, and development of animal models.
Collapse
Affiliation(s)
- Dyonne T Hartong
- Ocular Molecular Genetics Institute, Harvard Medical School, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
43
|
Haire SE, Pang J, Boye SL, Sokal I, Craft CM, Palczewski K, Hauswirth WW, Semple-Rowland SL. Light-driven cone arrestin translocation in cones of postnatal guanylate cyclase-1 knockout mouse retina treated with AAV-GC1. Invest Ophthalmol Vis Sci 2006; 47:3745-53. [PMID: 16936082 PMCID: PMC1761699 DOI: 10.1167/iovs.06-0086] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Cone function and survival are compromised in the guanylate cyclase-1 (GC1) knockout mouse. Disruption of the light-driven translocation of cone arrestin is one of the phenotypes of cone cells in this retina: the cone arrestin in these cells is localized to the outer segments and synaptic terminals, regardless of the state of light adaptation. The purpose of this study was to determine whether the expression of GC1 restores cone arrestin translocation in the cone cells of postnatal GC1 knockout mouse retina. METHODS Subretinal injections of AAV-GC1 were performed on 3-week-old GC1 KO mice. Electroretinographic and immunohistochemical analyses of treated retinas were carried out 5 weeks after injection. GC1 and cone arrestin antibodies were used to identify photoreceptors transduced by the AAV vector and to localize cone arrestin within cone cells, respectively. RESULTS Treatment of GC1 knockout retinas with AAV-GC1 restored the light-driven translocation of cone arrestin in transduced cone cells. Staining patterns for cone arrestin in transduced and wild-type cone cells were indistinguishable after dark and light adaptation. In dark-adapted retinas, cone arrestin was distributed throughout the subcellular compartments of the cone cells. In light-adapted retinas, cone arrestin was concentrated in the cone outer segments. Successful restoration of cone arrestin translocation did not translate to a restoration of cone ERG responses, which remained undetectable in the treated retinas. CONCLUSIONS AAV-mediated expression of GC1 in a subpopulation of cone cells in postnatal GC1 knockout retina restores light-driven translocation of cone arrestin in these cells. These findings, which show that fully developed cone cells that have developed in the absence of GC1 can respond to viral-mediated expression of this enzyme, support further analysis of this animal model of Leber congenital amaurosis type 1 (LCA1), a disease that results from null mutations in the gene encoding this enzyme.
Collapse
Affiliation(s)
- Shannon E. Haire
- From the Department of Neuroscience, McKnight Brain Institute, and the
| | - Jijing Pang
- Department of Ophthalmology, University of Florida, Gainesville, Florida; the
| | - Sanford L. Boye
- Department of Ophthalmology, University of Florida, Gainesville, Florida; the
| | - Izabel Sokal
- Department of Ophthalmology and Pharmacology, University of Washington, Seattle, Washington; the
| | - Cheryl M. Craft
- Mary D. Allen Laboratory for Vision Research, Doheny Eye Institute, Department of Ophthalmology and Cell and Neurobiology, Keck Medical School of Medicine of the University of Southern California, Los Angeles, California; and the
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | | | - Susan L. Semple-Rowland
- From the Department of Neuroscience, McKnight Brain Institute, and the
- Corresponding author: Susan L. Semple-Rowland, Department of Neuroscience, McKnight Brain Institute, University of Florida, 100 Newell Drive, Building 59, Room L1-100, Box 100244, Gainesville, FL 32610-0244;
| |
Collapse
|
44
|
Williams ML, Coleman JE, Haire SE, Aleman TS, Cideciyan AV, Sokal I, Palczewski K, Jacobson SG, Semple-Rowland SL. Lentiviral expression of retinal guanylate cyclase-1 (RetGC1) restores vision in an avian model of childhood blindness. PLoS Med 2006; 3:e201. [PMID: 16700630 PMCID: PMC1463903 DOI: 10.1371/journal.pmed.0030201] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 02/23/2006] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Leber congenital amaurosis (LCA) is a genetically heterogeneous group of retinal diseases that cause congenital blindness in infants and children. Mutations in the GUCY2D gene that encodes retinal guanylate cyclase-1 (retGC1) were the first to be linked to this disease group (LCA type 1 [LCA1]) and account for 10%-20% of LCA cases. These mutations disrupt synthesis of cGMP in photoreceptor cells, a key second messenger required for function of these cells. The GUCY1*B chicken, which carries a null mutation in the retGC1 gene, is blind at hatching and serves as an animal model for the study of LCA1 pathology and potential treatments in humans. METHODS AND FINDINGS A lentivirus-based gene transfer vector carrying the GUCY2D gene was developed and injected into early-stage GUCY1*B embryos to determine if photoreceptor function and sight could be restored to these animals. Like human LCA1, the avian disease shows early-onset blindness, but there is a window of opportunity for intervention. In both diseases there is a period of photoreceptor cell dysfunction that precedes retinal degeneration. Of seven treated animals, six exhibited sight as evidenced by robust optokinetic and volitional visual behaviors. Electroretinographic responses, absent in untreated animals, were partially restored in treated animals. Morphological analyses indicated there was slowing of the retinal degeneration. CONCLUSIONS Blindness associated with loss of function of retGC1 in the GUCY1*B avian model of LCA1 can be reversed using viral vector-mediated gene transfer. Furthermore, this reversal can be achieved by restoring function to a relatively low percentage of retinal photoreceptors. These results represent a first step toward development of gene therapies for one of the more common forms of childhood blindness.
Collapse
Affiliation(s)
- Melissa L Williams
- 1Department of Neuroscience, University of Florida McKnight Brain Institute, Gainesville, Florida, United States of America
| | - Jason E Coleman
- 1Department of Neuroscience, University of Florida McKnight Brain Institute, Gainesville, Florida, United States of America
- 2Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Shannon E Haire
- 1Department of Neuroscience, University of Florida McKnight Brain Institute, Gainesville, Florida, United States of America
| | - Tomas S Aleman
- 3Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Artur V Cideciyan
- 3Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Izabel Sokal
- 4Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Krzysztof Palczewski
- 5Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Samuel G Jacobson
- 3Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Susan L Semple-Rowland
- 1Department of Neuroscience, University of Florida McKnight Brain Institute, Gainesville, Florida, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Williams GA, Daigle KA, Jacobs GH. Rod and cone function in coneless mice. Vis Neurosci 2006; 22:807-16. [PMID: 16469189 DOI: 10.1017/s095252380522610x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 07/07/2005] [Indexed: 11/07/2022]
Abstract
Transgenic coneless mice were initially developed to study retinal function in the absence of cones. In coneless mice created by expressing an attenuated diphtheria toxin under the control of flanking sequences from the human L-cone opsin gene, a small number of cones (3-5% of the normal complement) survive in a retina that otherwise appears structurally quite normal. These cones predominantly ( approximately 87% of the total) contain UV-sensitive photopigment. ERG recordings, photoreceptor labeling, and behavioral measurements were conducted on coneless and wild-type mice to better understand how the nature of this alteration in receptor complement impacts vision. Signals from the small residual population of UV cones are readily detected in the flicker ERG where they yield signal amplitudes at saturation that are roughly proportional to the number of surviving cones. Behavioral measurements show that rod-based vision in coneless mice does not differ significantly from that of wild-type mice, nor does their rod system show any evidence of age-related deterioration. Coneless mice are able to make accurate rod-based visual discriminations at light levels well in excess of those required to reach cone threshold in wild-type mice.
Collapse
Affiliation(s)
- Gary A Williams
- Neuroscience Research Institute and Department of Psychology, University of California, Santa Barbara, 93106, USA
| | | | | |
Collapse
|
46
|
Sieving PA, Caruso RC, Tao W, Coleman HR, Thompson DJS, Fullmer KR, Bush RA. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci U S A 2006; 103:3896-901. [PMID: 16505355 PMCID: PMC1383495 DOI: 10.1073/pnas.0600236103] [Citation(s) in RCA: 406] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurotrophic factors are agents with a promising ability to retard progression of neurodegenerative diseases and are effective in slowing photoreceptor degeneration in animal models of retinitis pigmentosa. Here we report a human clinical trial of a neurotrophic factor for retinal neurodegeneration. In this Phase I safety trial, human ciliary neurotrophic factor (CNTF) was delivered by cells transfected with the human CNTF gene and sequestered within capsules that were surgically implanted into the vitreous of the eye. The outer membrane of the encapsulated cell implant is semipermeable to allow CNTF to reach the retina. Ten participants received CNTF implants in one eye. When the implants were removed after 6 months, they contained viable cells with minimal cell loss and gave CNTF output at levels previously shown to be therapeutic for retinal degeneration in rcd1 dogs. Although the trial was not powered to form a judgment as to clinical efficacy, of seven eyes for which visual acuity could be tracked by conventional reading charts, three eyes reached and maintained improved acuities of 10-15 letters, equivalent to two- to three-line improvement on standard Snellen acuity charts. A surgically related choroidal detachment in one eye resulted in a transient acuity decrease that resolved with conservative management. This Phase I trial indicated that CNTF is safe for the human retina even with severely compromised photoreceptors. The approach to delivering therapeutic proteins to degenerating retinas using encapsulated cell implants may have application beyond disease caused by genetic mutations.
Collapse
Affiliation(s)
- Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Retinal Pigment Epithelium and Photoreceptor Transplantation Frontiers. Retina 2006. [DOI: 10.1016/b978-0-323-02598-0.50159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
48
|
Abstract
PURPOSE To describe rapid loss of cone vision in an adult due to putative auto-immune rejection. METHODS Clinical and electrophysiological examination, including full-field and multi-focal electroretinograms (ERGs), were used to assess retinal function. Serum was analyzed for antibodies to retinal antigens. RESULTS The patient lost cone vision in the course of several months while rod vision remained unaffected. Initially short wavelength (S) cone function appeared more resistant to the degeneration. Cancer associated retinal antibodies were present in the sera of the patient but no cancer has been found. CONCLUSION Rapid loss of cone function can occur in an adult without a concomitant neoplasm although serum antibodies to retinal antigens suggest an autoimmune cause.
Collapse
Affiliation(s)
- János Hargitai
- Department of Ophthalmology, Columbia University, New York, USA
| | | | | | | | | | | |
Collapse
|
49
|
Carroll J, Neitz M, Hofer H, Neitz J, Williams DR. Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness. Proc Natl Acad Sci U S A 2004; 101:8461-6. [PMID: 15148406 PMCID: PMC420416 DOI: 10.1073/pnas.0401440101] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 03/16/2004] [Indexed: 11/18/2022] Open
Abstract
There is enormous variation in the X-linked L/M (long/middle wavelength sensitive) gene array underlying "normal" color vision in humans. This variability has been shown to underlie individual variation in color matching behavior. Recently, red-green color blindness has also been shown to be associated with distinctly different genotypes. This has opened the possibility that there may be important phenotypic differences within classically defined groups of color blind individuals. Here, adaptive optics retinal imaging has revealed a mechanism for producing dichromatic color vision in which the expression of a mutant cone photopigment gene leads to the loss of the entire corresponding class of cone photoreceptor cells. Previously, the theory that common forms of inherited color blindness could be caused by the loss of photoreceptor cells had been discounted. We confirm that remarkably, this loss of one-third of the cones does not impair any aspect of vision other than color.
Collapse
Affiliation(s)
- Joseph Carroll
- Center for Visual Science, University of Rochester, Rochester, NY 14627-0270, USA.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Fundus reflection densitometry or retinal densitometry is a non-invasive technique to examine the visual photopigment kinetics in living eyes. The technique is based on the comparison of the reflected light from the fundus in a fully light adapted eye (when all visual photopigment has been bleached) with the reflected light following complete dark adaptation (when the retina contains its maximum amount of visual photopigment). The technique provides a measure of the density of visual photopigment, its time constant of regeneration, its distribution and spectral characteristics if measured at a series of wavelengths. Fundus reflection densitometry in the human eye was introduced 40 years ago. Presently, it is the only available technique from which direct and objective insight can be obtained into visual photopigment. This knowledge is particularly relevant in eyes where abnormalities of photoreceptor function are suspected. This paper summarizes the current knowledge of fundus reflection densitometry in the diseased and in the aging human retina, gathered over the last 30 years. Considerable improvements of the instrument for clinical purposes have been obtained, and are also discussed.
Collapse
Affiliation(s)
- A T Liem
- F.C. Donders Institute of Ophthalmology, Academic Hospital, Utrecht, Netherlands
| | | | | |
Collapse
|