1
|
Budde RJA, McMurray JS, Saya H, Gallick GE, Levin VA. Discovery, Development, and Testing of Substrates and Inhibitors of pp60C-SRC. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/13880209509067085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Raymond J. A. Budde
- Department of Neuro-Oncology, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, 77030, USA
| | - John S. McMurray
- Department of Neuro-Oncology, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, 77030, USA
| | - Hideyuki Saya
- Department of Neuro-Oncology, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, 77030, USA
| | - Gary E. Gallick
- Department of Tumor Biology, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, 77030, USA
| | - Victor A. Levin
- Department of Neuro-Oncology, The University of Texas, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, 77030, USA
| |
Collapse
|
2
|
Haemophilus ducreyi LspA proteins are tyrosine phosphorylated by macrophage-encoded protein tyrosine kinases. Infect Immun 2008; 76:4692-702. [PMID: 18678665 DOI: 10.1128/iai.00513-08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The LspA proteins (LspA1 and LspA2) of Haemophilus ducreyi are necessary for this pathogen to inhibit the phagocytic activity of macrophage cell lines, an event that can be correlated with a reduction in the level of active Src family protein tyrosine kinases (PTKs) in these eukaryotic cells. During studies investigating this inhibitory mechanism, it was discovered that the LspA proteins themselves were tyrosine phosphorylated after wild-type H. ducreyi cells were incubated with macrophages. LspA proteins in cell-free concentrated H. ducreyi culture supernatant fluid could also be tyrosine phosphorylated by macrophages. This ability to tyrosine phosphorylate the LspA proteins was not limited to immune cell lineages but could be accomplished by both HeLa and COS-7 cells. Kinase inhibitor studies with macrophages demonstrated that the Src family PTKs were required for this tyrosine phosphorylation activity. In silico methods and site-directed mutagenesis were used to identify EPIYG and EPVYA motifs in LspA1 that contained tyrosines that were targets for phosphorylation. A total of four tyrosines could be phosphorylated in LspA1, with LspA2 containing eight predicted tyrosine phosphorylation motifs. Purified LspA1 fusion proteins containing either the EPIYG or EPVYA motifs were shown to be phosphorylated by purified Src PTK in vitro. Macrophage lysates could also tyrosine phosphorylate the LspA proteins and an LspA1 fusion protein via a mechanism that was dependent on the presence of both divalent cations and ATP. Several motifs known to interact with or otherwise affect eukaryotic kinases were identified in the LspA proteins.
Collapse
|
3
|
Wang YH, Ayrapetov MK, Lin X, Sun G. A new strategy to produce active human Src from bacteria for biochemical study of its regulation. Biochem Biophys Res Commun 2006; 346:606-11. [PMID: 16765913 DOI: 10.1016/j.bbrc.2006.05.180] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 05/29/2006] [Indexed: 11/21/2022]
Abstract
Enzymological studies of Src protein tyrosine kinase have been hindered by the lack of a suitable bacterial expression system. Poor expression of active Src appears to be due to toxicity associated with its kinase activity. To overcome this problem, we fused Src to a protein tyrosine phosphatase with an affinity tag and an appropriate thrombin cleavage site. Upon affinity purification of the fusion protein, Src was released by thrombin digestion and further purified by FPLC. This strategy has been used to produce several Src mutants that display catalytic and regulatory properties similar to those from eukaryotic expression systems. Characterization of the Src mutants confirmed that inactivation of Src by Csk through tail tyrosine phosphorylation required the Src SH3 domain.
Collapse
Affiliation(s)
- Yue-Hao Wang
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, 02881, USA
| | | | | | | |
Collapse
|
4
|
Jeansonne DP, Bordes TJ, Bennett CA, Kothandaraman G, Bush JG, Vaccaro JA. A rapid ATP affinity-based purification for the human non-receptor tyrosine kinase c-Src. Protein Expr Purif 2005; 46:240-7. [PMID: 16325419 DOI: 10.1016/j.pep.2005.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 07/18/2005] [Accepted: 07/18/2005] [Indexed: 12/29/2022]
Abstract
The non-receptor tyrosine kinase c-Src plays a central role in a variety of cell signaling pathways that regulate cell growth, differentiation, apoptosis, and other important cellular processes. An 85-amino acid N-terminal deletion construct of c-Src (DeltaN85 c-Src) has been structurally characterized and used extensively in biochemical and biophysical studies. In this report, we have established a relatively rapid, simplified purification of DeltaN85 c-Src from recombinant baculovirus-infected insect cells. Q-Sepharose anion-exchange and aminophenyl-ATP affinity chromatography were used to isolate 5mg of >98% pure DeltaN85 c-Src from 900 mg of total soluble protein. The specific activity of DeltaN85 c-Src (20 U mg(-1)) was found to be >or = 5-fold greater than previously reported values. A lag in the autophosphorylation kinetics of DeltaN85 c-Src was observed, and the reaction occurred with observed first-order rate constants k1=0.20+/-0.01 min(-1) and k2=0.38+/-0.01 min(-1) under the experimental conditions used. Steady-state kinetic analysis of peptide phosphorylation by DeltaN85 c-Src gave Km values of 99+/-23 microM and 190+/-30 microM for the peptide and ATP substrates, respectively, and a value of k(cat)=17+/-2s(-1). Overall, we present a dramatically improved purification strategy that represents a simplified, relatively rapid protocol for the isolation of milligram quantities of DeltaN85 c-Src required for rigorous structure-function and inhibition studies that rely on a pre-steady-state kinetic approach.
Collapse
Affiliation(s)
- Duane P Jeansonne
- Department of Biochemistry, Tulane University Health Sciences Center, 1430 Tulane Avenue SL 43, New Orleans, LA 70112, USA
| | | | | | | | | | | |
Collapse
|
5
|
Sozio MS, Mathis MA, Young JA, Wälchli S, Pitcher LA, Wrage PC, Bartók B, Campbell A, Watts JD, Aebersold R, Hooft van Huijsduijnen R, van Oers NSC. PTPH1 is a predominant protein-tyrosine phosphatase capable of interacting with and dephosphorylating the T cell receptor zeta subunit. J Biol Chem 2003; 279:7760-9. [PMID: 14672952 DOI: 10.1074/jbc.m309994200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Protein-tyrosine phosphatases (PTPases) play key roles in regulating tyrosine phosphorylation levels in cells, yet the identity of their substrates remains limited. We report here on the identification of PTPases capable of dephosphorylating the phosphorylated immune tyrosine-based activation motifs present in the T cell receptor zeta subunit. To characterize these PTPases, we purified enzyme activities directed against the phosphorylated T cell receptor zeta subunit by a combination of anion and cation chromatography procedures. A novel ELISA-based PTPase assay was developed to rapidly screen protein fractions for enzyme activity following the various chromatography steps. We present data that SHP-1 and PTPH1 are present in highly enriched protein fractions that exhibit PTPase activities toward a tyrosine-phosphorylated TCR zeta substrate (specific activity ranging from 0.23 to 40 pmol/min/microg). We also used a protein-tyrosine phosphatase substrate-trapping library comprising the catalytic domains of 47 distinct protein-tyrosine phosphatases, representing almost all the tyrosine phosphatases identified in the human genome. PTPH1 was the predominant phosphatase capable of complexing phospho-zeta. Subsequent transfection assays indicated that SHP-1 and PTPH1 are the two principal PTPases capable of regulating the phosphorylation state of the TCR zeta ITAMs, with PTPH1 directly dephosphorylating zeta. This is the first reported demonstration that PTPH1 is a candidate PTPase capable of interacting with and dephosphorylating TCR zeta.
Collapse
Affiliation(s)
- Margaret S Sozio
- Center for Immunology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9093, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lacey KR, Jackson PK, Stearns T. Cyclin-dependent kinase control of centrosome duplication. Proc Natl Acad Sci U S A 1999; 96:2817-22. [PMID: 10077594 PMCID: PMC15852 DOI: 10.1073/pnas.96.6.2817] [Citation(s) in RCA: 328] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Centrosomes nucleate microtubules and duplicate once per cell cycle. This duplication and subsequent segregation in mitosis results in maintenance of the one centrosome/cell ratio. Centrosome duplication occurs during the G1/S transition in somatic cells and must be coupled to the events of the nuclear cell cycle; failure to coordinate duplication and mitosis results in abnormal numbers of centrosomes and aberrant mitoses. Using both in vivo and in vitro assays, we show that centrosome duplication in Xenopus laevis embryos requires cyclin/cdk2 kinase activity. Injection of the cdk (cyclin-dependent kinase) inhibitor p21 into one blastomere of a dividing embryo blocks centrosome duplication in that blastomere; the related cdk inhibitor p27 has a similar effect. An in vitro system using Xenopus extracts carries out separation of the paired centrioles within the centrosome. This centriole separation activity is dependent on cyclin/cdk2 activity; depletion of either cdk2 or of the two activating cyclins, cyclin A and cyclin E, eliminates centriole separation activity. In addition, centriole separation is inhibited by the mitotic state, suggesting a mechanism of linking the cell cycle to periodic duplication of the centrosome.
Collapse
Affiliation(s)
- K R Lacey
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA
| | | | | |
Collapse
|
7
|
Wilde A, Beattie EC, Lem L, Riethof DA, Liu SH, Mobley WC, Soriano P, Brodsky FM. EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake. Cell 1999; 96:677-87. [PMID: 10089883 DOI: 10.1016/s0092-8674(00)80578-4] [Citation(s) in RCA: 266] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Epidermal growth factor (EGF) binding to its receptor causes rapid phosphorylation of the clathrin heavy chain at tyrosine 1477, which lies in a domain controlling clathrin assembly. EGF-mediated clathrin phosphorylation is followed by clathrin redistribution to the cell periphery and is the product of downstream activation of SRC kinase by EGF receptor (EGFR) signaling. In cells lacking SRC kinase, or cells treated with a specific SRC family kinase inhibitor, EGF stimulation of clathrin phosphorylation and redistribution does not occur, and EGF endocytosis is delayed. These observations demonstrate a role for SRC kinase in modification and recruitment of clathrin during ligand-induced EGFR endocytosis and thereby define a novel effector mechanism for regulation of endocytosis by receptor signaling.
Collapse
Affiliation(s)
- A Wilde
- Department of Immunology and Microbiology, University of California, San Francisco 94143-0552, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Murphy SM, Urbani L, Stearns T. The mammalian gamma-tubulin complex contains homologues of the yeast spindle pole body components spc97p and spc98p. J Cell Biol 1998; 141:663-74. [PMID: 9566967 PMCID: PMC2132743 DOI: 10.1083/jcb.141.3.663] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/1998] [Revised: 03/23/1998] [Indexed: 02/07/2023] Open
Abstract
gamma-Tubulin is a universal component of microtubule organizing centers where it is believed to play an important role in the nucleation of microtubule polymerization. gamma-Tubulin also exists as part of a cytoplasmic complex whose size and complexity varies in different organisms. To investigate the composition of the cytoplasmic gamma-tubulin complex in mammalian cells, cell lines stably expressing epitope-tagged versions of human gamma-tubulin were made. The epitope-tagged gamma-tubulins expressed in these cells localize to the centrosome and are incorporated into the cytoplasmic gamma-tubulin complex. Immunoprecipitation of this complex identifies at least seven proteins, with calculated molecular weights of 48, 71, 76, 100, 101, 128, and 211 kD. We have identified the 100- and 101-kD components of the gamma-tubulin complex as homologues of the yeast spindle pole body proteins Spc97p and Spc98p, and named the corresponding human proteins hGCP2 and hGCP3. Sequence analysis revealed that these proteins are not only related to their respective homologues, but are also related to each other. GCP2 and GCP3 colocalize with gamma-tubulin at the centrosome, cosediment with gamma-tubulin in sucrose gradients, and coimmunoprecipitate with gamma-tubulin, indicating that they are part of the gamma-tubulin complex. The conservation of a complex involving gamma-tubulin, GCP2, and GCP3 from yeast to mammals suggests that structurally diverse microtubule organizing centers such as the yeast spindle pole body and the animal centrosome share a common molecular mechanism for microtubule nucleation.
Collapse
Affiliation(s)
- S M Murphy
- Department of Biological Sciences, Stanford University, Stanford, California
| | | | | |
Collapse
|
9
|
Affiliation(s)
- A M Fry
- Department of Molecular Biology, University of Geneva, Switzerland
| | | |
Collapse
|
10
|
Affiliation(s)
- L Meijer
- Centre National de la Recherche Scientifique, Station Biologique de Roscoff, France
| | | |
Collapse
|
11
|
Peterson JE, Kulik G, Jelinek T, Reuter CW, Shannon JA, Weber MJ. Src phosphorylates the insulin-like growth factor type I receptor on the autophosphorylation sites. Requirement for transformation by src. J Biol Chem 1996; 271:31562-71. [PMID: 8940173 DOI: 10.1074/jbc.271.49.31562] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The insulin-like growth factor type I (IGF-I) receptor can become tyrosine phosphorylated and enzymatically activated either in response to ligand or because of the activity of the Src tyrosine kinase (Peterson, J. E., Jelinek, T., Kaleko, M., Siddle, K., and Weber, M. J. (1994) J. Biol. Chem. 269, 27315-27321). The goal of the present study was to analyze the mechanistic basis and functional significance of the Src-induced phosphorylation and activation of the IGF-I receptor. 1) We mapped the sites of IGF-I receptor autophosphorylation to peptides representing three different receptor domains: tyrosines 943 and 950 in the juxtamembrane region; tyrosines 1131, 1135, and 1136 within the kinase domain; and tyrosine 1316 in the carboxyl-terminal domain. The juxtamembrane and kinase-domain peptides were phosphorylated both in vivo and in vitro. The carboxyl-terminal site, although phosphorylated in vitro and in src-transformed cells, was not a major site of ligand-induced phosphorylation in vivo. 2) We determined that the sites of Src-induced phosphorylation of the IGF-I receptor are the same as the ligand-induced autophosphorylation sites and that the Src kinase can catalyze these phosphorylations directly. 3) We showed that cells cultured from mice in which the IGF-I receptor has been knocked out by homologous recombination are defective for morphological transformation by src. Thus, the Src kinase can substitute for the receptor kinase in phosphorylating and activating the IGF-I receptor, and this receptor phosphorylation and activation are essential for transformation by src.
Collapse
Affiliation(s)
- J E Peterson
- Department of Microbiology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Weijland A, Neubauer G, Courtneidge SA, Mann M, Wierenga RK, Superti-Furga G. The purification and characterization of the catalytic domain of Src expressed in Schizosaccharomyces pombe. Comparison of unphosphorylated and tyrosine phosphorylated species. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:756-64. [PMID: 8856081 DOI: 10.1111/j.1432-1033.1996.0756h.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The catalytic domain of chicken Src including the C-terminal tail (Src-CD), has been expressed in Schizosaccharomyces pombe and purified to homogeneity. The expressed protein is a mixture of unphosphorylated (80%) and mono-phosphorylated (20%) species, that can be separated from each other by Mono Q chromatography. By a novel mass spectrometric method that utilizes parent ion scans of unseparated peptide mixtures, we found that the mono-phosphorylated form is phosphorylated either at Tyr416 or at Tyr436. The stability of Src-CD is comparable to the wild-type protein. Src-CD auto-phosphorylates and efficiently phosphorylates substrate peptides and proteins. Auto-phosphorylation occurs by an intermolecular mechanism and is completely inhibited by an excess of substrate peptide. Kinetic measurements for two exogenous substrates, the Src substrate peptide (AEEEIYGEFEAKKKK) and denatured enolase, showed that the overall activity (kcat) of the Src-CD molecule is about 10 times higher than that of wild-type Src. The kcat values for phosphorylation of the Src substrate peptide are similar for the unphosphorylated and monophosphorylated Src-CD (50 min-1), but the apparent K(m) values differ significantly (approximately 3 microM and 10 microM, respectively). Therefore, at low substrate concentrations in vitro the mono-phosphorylated form is more active, in agreement with the importance of Tyr416 for in vivo activity. The apparent K(m) values of the mono-phosphorylated Src-CD and wild-type Src for the Src substrate peptide and enolase are similar, indicating that, under these conditions, the kinase domain is mainly responsible for substrate binding.
Collapse
Affiliation(s)
- A Weijland
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Xu B, Bird VG, Miller WT. Substrate specificities of the insulin and insulin-like growth factor 1 receptor tyrosine kinase catalytic domains. J Biol Chem 1995; 270:29825-30. [PMID: 8530377 DOI: 10.1074/jbc.270.50.29825] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
To compare the substrate specificities of the insulin and insulin-like growth factor 1 (IGF-1) receptor tyrosine kinases, the catalytic domains of the enzymes have been expressed in Escherichia coli as fusion proteins. The purified proteins have kinase activity, demonstrating that the catalytic domain of IGF-1 receptor, like that of insulin receptor, is active independent of its ligand-binding and transmembrane domains. The specificities of the two enzymes for the divalent cations Mg2+ and Mn2+ are indistinguishable. A series of peptides has been prepared that reproduces the major phosphorylation sites of insulin receptor substrate-1, a common substrate for the two receptor tyrosine kinases in vivo. Insulin and IGF-1 receptors show distinct preferences for these peptides; whereas insulin receptor prefers peptides based on Tyr-987 or Tyr-727 of insulin receptor substrate-1, the IGF-1 receptor preferentially recognizes the Tyr-895 site. The latter site, when phosphorylated, is a binding site for the SH2 domain-containing adapter protein Grb2. The ability of the two receptor tyrosine kinases to be phosphorylated and activated by v-Src has also been examined. The catalytic activity of IGF-1 receptor is stimulated approximately 3.4-fold by treatment with purified v-Src, while insulin receptor shows very little effect of Src phosphorylation under these conditions. This observation is relevant to recent findings of IGF-1 receptor activation in Src-transformed cells, and may represent one method by which Src amplifies its mitogenic signal. Collectively the data suggest that the catalytic domains of the two receptor kinases possess inherently different substrate specificities and signaling potentials.
Collapse
Affiliation(s)
- B Xu
- Department of Physiology and Biophysics, School of Medicine, State University of New York, Stony Brook 11794, USA
| | | | | |
Collapse
|
14
|
Budde RJ, Obeyesekere NU, Ke S, McMurray JS. Use of synthetic peptides and copolymers to study the substrate specificity and inhibition of the protein tyrosine kinase pp60c-src. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1248:50-6. [PMID: 7536039 DOI: 10.1016/0167-4838(94)00232-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ability of synthetic peptides and polypeptides to act as substrates and/or inhibitors of pp60c-src was examined. The random copolymer, poly(K4Y) had a threefold lower specificity than poly(E4Y). Peptides containing lysine vs. glutamate were also found to have a lower substrate specificity (Vmax:Km ratio). In order to assess the substrate specificity of acidic peptides, an assay protocol using DEAE-membranes was developed. Peptides containing a (YXE)5YXD motif (X = G, A, V, P, or norvaline) were tested as inhibitors and substrates of pp60c-src. The glycine-containing peptide was the best substrate having a specificity 16,000-fold higher than 5Val-angiotensin II, the most commonly used peptide substrate. Most of the peptides, except for the proline containing peptide, had Ki values of 20-100 microM. In a series of (XGE)5XGD peptides, where X = Y or F, tyrosine at position 10 was found to be the preferred site for accepting a phosphate. Analogs in which the glycine was replaced with alanine indicated that loss of flexibility around position 10 was detrimental to substrate specificity. Results suggest that conformational requirements of the peptides tested was important and substrate specificity was a more sensitive parameter than binding as measured by Ki values.
Collapse
Affiliation(s)
- R J Budde
- Department of Neuro-Oncology, University of Texas, M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | |
Collapse
|
15
|
Koegl M, Kypta RM, Bergman M, Alitalo K, Courtneidge SA. Rapid and efficient purification of Src homology 2 domain-containing proteins: Fyn, Csk and phosphatidylinositol 3-kinase p85. Biochem J 1994; 302 ( Pt 3):737-44. [PMID: 7524477 PMCID: PMC1137293 DOI: 10.1042/bj3020737] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To analyse the regulation of Src family tyrosine kinases in vitro, we have purified Fyn and Csk, a kinase capable of regulating Fyn activity by phosphorylation, from baculovirus-infected insect cells. The proteins were purified by affinity purification over a phosphotyrosine column. Highly purified proteins were eluted from the resin by a salt gradient and further purified by ion-exchange chromatography. This purification scheme was successfully applied to a third, unrelated protein that also contains the Src homology 2 (SH2) domain, namely the 85 kDa subunit of phosphatidylinositol 3-kinase, indicating that this method is versatile and should prove applicable to any protein with an accessible SH2 domain. The binding of Csk to different phosphopeptides was tested, and specificity for the autophosphorylation site of Fyn was demonstrated. Pure Csk was used to phosphorylate Fyn and down-regulate its kinase activity, and the kinetic parameters of both the active and the repressed forms of Fyn were determined. Repression of Fyn activity by Csk reduced binding of Fyn to phosphopeptides to undetectable levels, supporting the model that predicts an intramolecular interaction of the Fyn SH2 domain with a C-terminal phosphotyrosine residue.
Collapse
Affiliation(s)
- M Koegl
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
16
|
Garcia P, Shoelson SE, George ST, Hinds DA, Goldberg AR, Miller WT. Phosphorylation of synthetic peptides containing Tyr-Met-X-Met motifs by nonreceptor tyrosine kinases in vitro. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74581-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Budde RJ, Ramdas L, Ke S. Recombinant pp60c-src from baculovirus-infected insect cells: purification and characterization. PREPARATIVE BIOCHEMISTRY 1993; 23:493-515. [PMID: 7504254 DOI: 10.1080/10826069308544572] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A simple and effective method has been developed to purify the recombinant protein tyrosine kinase pp60c-src from a baculovirus-insect cell expression system. The procedure includes affinity chromatography and HPLC. Milligram quantities of protein have been isolated with an activity of 3.9 mumol/min/mg protein using the substrate poly E4Y. This specific activity is many times higher than any published protocol. The enzyme is stable for months when stored in buffered 10% glycerol at -70 degrees C. This purification technique is compared to the immuno-affinity technique which is widely used for this enzyme. Enzyme kinetics were characterized with respect to substrate specificity, the effect of temperature, ionic strength, pH, and Mg+2 versus Mn+2 ions. Similar to the enzyme expressed in human cells, the recombinant enzyme demonstrated a higher Vmax and substrate specificity for poly E4Y over 5V-Agt-II. An activation energy of 14.2 kcal/mol was determined. Inhibition by increasing ionic strength is mostly due to an increase in Km for the poly E4Y substrate and hence was substrate dependent. The Km(ATP) was pH dependent while the Km(poly E4Y) was pH independent. For the phosphorylation of poly E4Y, free Mg+2 was stimulatory while Mn+2 was inhibitory. In contrast, Mn+2 stimulated the phosphorylation of 5V-Agt-II.
Collapse
Affiliation(s)
- R J Budde
- Department of Neuro-Oncology, University of Texas, M.D. Anderson Cancer Center, Houston 77030
| | | | | |
Collapse
|
18
|
Budde RJ. Evidence for kinetically distinct forms of pp60c-src with different Km values for their protein substrate. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74545-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Suppression of c-Src activity by C-terminal Src kinase involves the c-Src SH2 and SH3 domains: analysis with Saccharomyces cerevisiae. Mol Cell Biol 1993. [PMID: 7689149 DOI: 10.1128/mcb.13.9.5290] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The kinase activity of c-Src is normally repressed in vertebrate cells by extensive phosphorylation of Y-527. C-terminal Src kinase (CSK) is a candidate for the enzyme that catalyzes this phosphorylation. We have used budding yeast to study the regulation of c-Src activity by CSK in intact cells. Expression of c-Src in Saccharomyces cerevisiae, which lacks endogenous c-Src and Y-527 kinases, induces a kinase-dependent growth inhibition. Coexpression of CSK in these cells results in phosphorylation of c-Src on Y-527 and suppression of the c-Src phenotype. CSK does not fully suppress the activity of c-Src mutants lacking portions of the SH2 or SH3 domains, even though these mutant proteins are phosphorylated on Y-527 by CSK both in vivo and in vitro. These results suggest that both the SH2 and SH3 domains of c-Src are required for the suppression of c-Src activity by Y-527 phosphorylation.
Collapse
|
20
|
Murphy SM, Bergman M, Morgan DO. Suppression of c-Src activity by C-terminal Src kinase involves the c-Src SH2 and SH3 domains: analysis with Saccharomyces cerevisiae. Mol Cell Biol 1993; 13:5290-300. [PMID: 7689149 PMCID: PMC360223 DOI: 10.1128/mcb.13.9.5290-5300.1993] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The kinase activity of c-Src is normally repressed in vertebrate cells by extensive phosphorylation of Y-527. C-terminal Src kinase (CSK) is a candidate for the enzyme that catalyzes this phosphorylation. We have used budding yeast to study the regulation of c-Src activity by CSK in intact cells. Expression of c-Src in Saccharomyces cerevisiae, which lacks endogenous c-Src and Y-527 kinases, induces a kinase-dependent growth inhibition. Coexpression of CSK in these cells results in phosphorylation of c-Src on Y-527 and suppression of the c-Src phenotype. CSK does not fully suppress the activity of c-Src mutants lacking portions of the SH2 or SH3 domains, even though these mutant proteins are phosphorylated on Y-527 by CSK both in vivo and in vitro. These results suggest that both the SH2 and SH3 domains of c-Src are required for the suppression of c-Src activity by Y-527 phosphorylation.
Collapse
Affiliation(s)
- S M Murphy
- Department of Physiology, University of California, San Francisco 94143-0444
| | | | | |
Collapse
|
21
|
Saya H, Lee PS, Nishi T, Izawa I, Nakajima M, Gallick GE, Levin VA. Bacterial expression of an active tyrosine kinase from a protein A/truncated c-src fusion protein. FEBS Lett 1993; 327:224-30. [PMID: 7687570 DOI: 10.1016/0014-5793(93)80174-s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The carboxy-terminal half of the c-src protein fused to the protein A moiety was expressed in bacteria. The protein A/truncated c-src fusion protein, which does not have SH2 and SH3 domains, is found in the periplasmic space allowing for a simple one-step purification and demonstrated high efficiency in autophosphorylation and exogeneous substrate phosphorylation. The missense mutation at codon 294 (Ile-->Thr), which is located in the ATP-binding domain of the c-src, resulted in dramatic reduction of tyrosine kinase activity of the fusion protein. Using the fusion protein, we also revealed that staurosporin, a well-known kinase inhibitor, directly affects autophosphorylation of the C-terminal half of the c-src protein. This truncated c-src expression system provides a good source of enzyme for diverse experiments and is an ideal model for understanding the implication of structural alterations in the catalytic activity of the c-src kinase by site-directed mutagenesis experiments.
Collapse
Affiliation(s)
- H Saya
- Department of Neuro-Oncology, University of Texas M.D. Anderson Cancer Center, Houston 77030
| | | | | | | | | | | | | |
Collapse
|
22
|
Kaplan KB, Swedlow JR, Varmus HE, Morgan DO. Association of p60c-src with endosomal membranes in mammalian fibroblasts. J Cell Biol 1992; 118:321-33. [PMID: 1378446 PMCID: PMC2290043 DOI: 10.1083/jcb.118.2.321] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have examined the subcellular localization of p60c-src in mammalian fibroblasts. Analysis of indirect immunofluorescence by three-dimensional optical sectioning microscopy revealed a granular cytoplasmic staining that co-localized with the microtubule organizing center. Immunofluorescence experiments with antibodies against a number of membrane markers demonstrated a striking co-localization between p60c-src and the cation-dependent mannose-6-phosphate receptor (CI-MPR), a marker that identifies endosomes. Both p60c-src and the CI-MPR were found to cluster at the spindle poles throughout mitosis. In addition, treatment of interphase and mitotic cells with brefeldin A resulted in a clustering of p60c-src and CI-MPR at a peri-centriolar position. Biochemical fractionation of cellular membranes showed that a major proportion of p60c-src co-enriched with endocytic membranes. Treatment of membranes containing HRP to alter their apparent density also altered the density of p60c-src-containing membranes. Similar density shift experiments with total cellular membranes revealed that the majority of membrane-associated p60c-src in the cell is associated with endosomes, while very little is associated with plasma membranes. These results support a role for p60c-src in the regulation of endosomal membranes and protein trafficking.
Collapse
Affiliation(s)
- K B Kaplan
- Department of Microbiology, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
23
|
Park S, Marshall M, Gibbs J, Jove R. Reconstitution of interactions between the Src tyrosine kinases and Ras GTPase-activating protein using a baculovirus expression system. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49955-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
24
|
Abstract
We have analyzed the activation of human cyclin-dependent kinases in a cell-free system. Human CDC2, cyclin-dependent kinase 2 (CDK2), cyclin A, and cyclin B1 were produced in insect cells by infection with recombinant baculoviruses. CDC2 or CDK2 monomers in lysates of infected cells could be activated by the addition of lysates containing cyclin A or B1. CDC2 activation by cyclin B1, as well as CDK2 activation by cyclins A and B1, was accompanied by the formation of high molecular weight complexes. In contrast, CDC2 did not bind effectively to cyclin A. CDC2 activation by cyclin B1 was studied in detail and was found to be accompanied by phosphorylation of CDC2 on Threonine 161. The binding of CDC2 to cyclin B1 also occurred under conditions where CDC2 phosphorylation was prevented, resulting in an inactive complex that could then be phosphorylated and activated on addition of cell extract. Highly purified CDC2 and cyclin B1 also formed inactive complexes that could be activated in an ATP-dependent fashion by unidentified components in crude cell extracts. These data suggest that the CDC2 activation process begins with cyclin binding, after which CDC2 phosphorylation, catalyzed by a separate enzyme, leads to activation.
Collapse
Affiliation(s)
- D Desai
- Department of Physiology, University of California, San Francisco 94143-0444
| | | | | |
Collapse
|
25
|
Rosenblatt J, Gu Y, Morgan DO. Human cyclin-dependent kinase 2 is activated during the S and G2 phases of the cell cycle and associates with cyclin A. Proc Natl Acad Sci U S A 1992; 89:2824-8. [PMID: 1532660 PMCID: PMC48755 DOI: 10.1073/pnas.89.7.2824] [Citation(s) in RCA: 245] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have analyzed the cell cycle regulation of human cyclin-dependent kinase 2 (CDK2), a protein closely related to the cell cycle-regulatory protein kinase CDC2. We find that CDK2 activity, like that of CDC2, oscillates during the cell cycle in cultured mammalian fibroblasts. Unlike CDC2 activity (which peaks during mitosis), CDK2 activity rises in late G1 or early S phase and declines during mitosis. Active S-phase CDK2 migrates in multiple large complexes on gel filtration, and CDK2 in one of these complexes is associated with cyclin A. These findings suggest that CDK2 and CDC2, in association with distinct cyclins, regulate separate functions in the mammalian cell cycle.
Collapse
Affiliation(s)
- J Rosenblatt
- Department of Physiology, University of California, San Francisco 94143-0444
| | | | | |
Collapse
|
26
|
Abstract
Genetic and biochemical studies have indicated that the cdc25 protein controls the entry into mitosis by triggering tyrosine dephosphorylation of the cdc2 protein kinase. We show that the isolated cdc25 protein can catalyze dephosphorylation of several model phosphatase substrates, including p-nitrophenyl phosphate and two distinct tyrosine-phosphorylated peptides. The cdc25-dependent cleavage reaction closely resembles dephosphorylation by known tyrosine phosphatases: the reaction requires a reducing agent, shows high sensitivity to sodium vanadate, and proceeds efficiently in the presence of metal chelators. Moreover, the phosphatase activity of the cdc25 protein is eliminated by treatment with N-ethylmaleimide or by alteration of a single conserved cysteine residue by site-directed mutagenesis. These observations indicate that the cdc25 protein can function as a tyrosine phosphatase in the absence of any other protein.
Collapse
Affiliation(s)
- W G Dunphy
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|