1
|
Wang J, Fourriere L, Gleeson PA. Advances in the cell biology of the trafficking and processing of amyloid precursor protein: impact of familial Alzheimer's disease mutations. Biochem J 2024; 481:1297-1325. [PMID: 39302110 PMCID: PMC11555708 DOI: 10.1042/bcj20240056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
The production of neurotoxic amyloid-β peptides (Aβ) is central to the initiation and progression of Alzheimer's disease (AD) and involves sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. APP and the secretases are transmembrane proteins and their co-localisation in the same membrane-bound sub-compartment is necessary for APP cleavage. The intracellular trafficking of APP and the β-secretase, BACE1, is critical in regulating APP processing and Aβ production and has been studied in several cellular systems. Here, we summarise the intracellular distribution and transport of APP and its secretases, and the intracellular location for APP cleavage in non-polarised cells and neuronal models. In addition, we review recent advances on the potential impact of familial AD mutations on APP trafficking and processing. This is critical information in understanding the molecular mechanisms of AD progression and in supporting the development of novel strategies for clinical treatment.
Collapse
Affiliation(s)
- Jingqi Wang
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Lou Fourriere
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul A. Gleeson
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
2
|
Alfano C, Fichou Y, Huber K, Weiss M, Spruijt E, Ebbinghaus S, De Luca G, Morando MA, Vetri V, Temussi PA, Pastore A. Molecular Crowding: The History and Development of a Scientific Paradigm. Chem Rev 2024; 124:3186-3219. [PMID: 38466779 PMCID: PMC10979406 DOI: 10.1021/acs.chemrev.3c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
It is now generally accepted that macromolecules do not act in isolation but "live" in a crowded environment, that is, an environment populated by numerous different molecules. The field of molecular crowding has its origins in the far 80s but became accepted only by the end of the 90s. In the present issue, we discuss various aspects that are influenced by crowding and need to consider its effects. This Review is meant as an introduction to the theme and an analysis of the evolution of the crowding concept through time from colloidal and polymer physics to a more biological perspective. We introduce themes that will be more thoroughly treated in other Reviews of the present issue. In our intentions, each Review may stand by itself, but the complete collection has the aspiration to provide different but complementary perspectives to propose a more holistic view of molecular crowding.
Collapse
Affiliation(s)
- Caterina Alfano
- Structural
Biology and Biophysics Unit, Fondazione
Ri.MED, 90100 Palermo, Italy
| | - Yann Fichou
- CNRS,
Bordeaux INP, CBMN UMR 5248, IECB, University
of Bordeaux, F-33600 Pessac, France
| | - Klaus Huber
- Department
of Chemistry, University of Paderborn, 33098 Paderborn, Germany
| | - Matthias Weiss
- Experimental
Physics I, Physics of Living Matter, University
of Bayreuth, 95440 Bayreuth, Germany
| | - Evan Spruijt
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Simon Ebbinghaus
- Lehrstuhl
für Biophysikalische Chemie and Research Center Chemical Sciences
and Sustainability, Research Alliance Ruhr, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Giuseppe De Luca
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | - Valeria Vetri
- Dipartimento
di Fisica e Chimica − Emilio Segrè, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | - Annalisa Pastore
- King’s
College London, Denmark
Hill Campus, SE5 9RT London, United Kingdom
| |
Collapse
|
3
|
Berning L, Lenz T, Bergmann AK, Poschmann G, Brass HUC, Schlütermann D, Friedrich A, Mendiburo MJ, David C, Akgün S, Pietruszka J, Stühler K, Stork B. The Golgi stacking protein GRASP55 is targeted by the natural compound prodigiosin. Cell Commun Signal 2023; 21:275. [PMID: 37798768 PMCID: PMC10552397 DOI: 10.1186/s12964-023-01275-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2023] [Accepted: 08/13/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND The bacterial secondary metabolite prodigiosin has been shown to exert anticancer, antimalarial, antibacterial and immunomodulatory properties. With regard to cancer, it has been reported to affect cancer cells but not non-malignant cells, rendering prodigiosin a promising lead compound for anticancer drug discovery. However, a direct protein target has not yet been experimentally identified. METHODS We used mass spectrometry-based thermal proteome profiling in order to identify target proteins of prodigiosin. For target validation, we employed a genetic knockout approach and electron microscopy. RESULTS We identified the Golgi stacking protein GRASP55 as target protein of prodigiosin. We show that prodigiosin treatment severely affects Golgi morphology and functionality, and that prodigiosin-dependent cytotoxicity is partially reduced in GRASP55 knockout cells. We also found that prodigiosin treatment results in decreased cathepsin activity and overall blocks autophagic flux, whereas co-localization of the autophagosomal marker LC3 and the lysosomal marker LAMP1 is clearly promoted. Finally, we observed that autophagosomes accumulate at GRASP55-positive structures, pointing towards an involvement of an altered Golgi function in the autophagy-inhibitory effect of this natural compound. CONCLUSION Taken together, we propose that prodigiosin affects autophagy and Golgi apparatus integrity in an interlinked mode of action involving the regulation of organelle alkalization and the Golgi stacking protein GRASP55. Video Abstract.
Collapse
Affiliation(s)
- Lena Berning
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Thomas Lenz
- Molecular Proteomics Laboratory, Biological Medical Research Centre, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Ann Kathrin Bergmann
- Core Facility for Electron Microscopy, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine I, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Hannah U C Brass
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich and Bioeconomy Science Center (BioSC), 52426, Jülich, Germany
| | - David Schlütermann
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Annabelle Friedrich
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - María José Mendiburo
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Céline David
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Seda Akgün
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich and Bioeconomy Science Center (BioSC), 52426, Jülich, Germany
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biological Medical Research Centre, Heinrich Heine University, 40225, Düsseldorf, Germany
- Institute of Molecular Medicine I, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany.
| |
Collapse
|
4
|
Li RS, Wen C, Huang CZ, Li N. Functional molecules and nano-materials for the Golgi apparatus-targeted imaging and therapy. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
|
5
|
Bona A, Seifert M, Thünauer R, Zodel K, Frew IJ, Römer W, Walz G, Yakulov TA. MARVEL domain containing CMTM4 affects CXCR4 trafficking. Mol Biol Cell 2022; 33:ar116. [PMID: 36044337 PMCID: PMC9634968 DOI: 10.1091/mbc.e22-05-0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/18/2023] Open
Abstract
The MARVEL proteins CMTM4 and CMTM6 control PD-L1, thereby influencing tumor immunity. We found that defective zebrafish cmtm4 slowed the development of the posterior lateral line (pLL) by altering the Cxcr4b gradient across the pLL primordium (pLLP). Analysis in mammalian cells uncovered that CMTM4 interacted with CXCR4, altering its glycosylation pattern, but did not affect internalization or degradation of CXCR4 in the absence of its ligand CXCL12. Synchronized release of CXCR4 from the endoplasmic reticulum revealed that CMTM4 slowed CXCR4 trafficking from the endoplasmic reticulum to the plasma membrane without affecting overall cell surface expression. Altered CXCR4 trafficking reduced ligand-induced CXCR4 degradation and affected AKT but not ERK1/2 activation. CMTM4 expression, in contrast to that of CXCR4, correlated with the survival of patients with renal cell cancer in the TCGA cohort. Furthermore, we observed that cmtm4 depletion promotes the separation of cells from the pLLP cell cluster in zebrafish embryos. Collectively, our findings indicate that CMTM4 exerts general roles in the biosynthetic pathway of cell surface molecules and seems to affect CXCR4-dependent cell migration.
Collapse
Affiliation(s)
- Alexandra Bona
- Renal Division and,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany,*Address correspondence to: Alexandra Bona (); Toma A. Yakulov ()
| | | | - Roland Thünauer
- Technology Platform Light Microscopy and Image Analysis (TP MIA), Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany,Advanced Light and Fluorescence Microscopy (ALFM) Facility, Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
| | - Kyra Zodel
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Ian J. Frew
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany,German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany,Signalling Research Centres BIOSS and CIBSS
| | - Winfried Römer
- Signalling Research Centres BIOSS and CIBSS,Freiburg Institute for Advanced Studies (FRIAS), and,Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Gerd Walz
- Renal Division and,Signalling Research Centres BIOSS and CIBSS
| | - Toma A. Yakulov
- Renal Division and,*Address correspondence to: Alexandra Bona (); Toma A. Yakulov ()
| |
Collapse
|
6
|
Albacete-Albacete L, Sánchez-Álvarez M, Del Pozo MA. Extracellular Vesicles: An Emerging Mechanism Governing the Secretion and Biological Roles of Tenascin-C. Front Immunol 2021; 12:671485. [PMID: 33981316 PMCID: PMC8107694 DOI: 10.3389/fimmu.2021.671485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
ECM composition and architecture are tightly regulated for tissue homeostasis. Different disorders have been associated to alterations in the levels of proteins such as collagens, fibronectin (FN) or tenascin-C (TnC). TnC emerges as a key regulator of multiple inflammatory processes, both during physiological tissue repair as well as pathological conditions ranging from tumor progression to cardiovascular disease. Importantly, our current understanding as to how TnC and other non-collagen ECM components are secreted has remained elusive. Extracellular vesicles (EVs) are small membrane-bound particles released to the extracellular space by most cell types, playing a key role in cell-cell communication. A broad range of cellular components can be transported by EVs (e.g. nucleic acids, lipids, signalling molecules and proteins). These cargoes can be transferred to target cells, potentially modulating their function. Recently, several extracellular matrix (ECM) proteins have been characterized as bona fide EV cargoes, exosomal secretion being particularly critical for TnC. EV-dependent ECM secretion might underpin diseases where ECM integrity is altered, establishing novel concepts in the field such as ECM nucleation over long distances, and highlighting novel opportunities for diagnostics and therapeutic intervention. Here, we review recent findings and standing questions on the molecular mechanisms governing EV–dependent ECM secretion and its potential relevance for disease, with a focus on TnC.
Collapse
Affiliation(s)
- Lucas Albacete-Albacete
- Mechanoadaptation and Caveolae Biology Lab, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation and Caveolae Biology Lab, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Angel Del Pozo
- Mechanoadaptation and Caveolae Biology Lab, Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
7
|
Fujita-Yoshigaki J, Yokoyama M, Katsumata-Kato O. Switching of cargo sorting from the constitutive to regulated secretory pathway by the addition of cystatin D sequence in salivary acinar cells. Am J Physiol Gastrointest Liver Physiol 2020; 319:G74-G86. [PMID: 32538138 DOI: 10.1152/ajpgi.00103.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
Abstract
The mechanism for segregation of cargo proteins into the regulated and constitutive secretory pathways in exocrine cells remains to be elucidated. We examined the transport of HaloTag proteins fused with full-length cystatin D (fCst5-Halo) or only its signal peptide (ssCst5-Halo) in parotid acinar cells. Although both fusion proteins were observed to be colocalized with amylase in the secretory granules, the coefficients for overlapping and correlation of fCst5-Halo with amylase were higher than those of ssCst5-Halo. The secretion of both the proteins was enhanced by the addition of the β-adrenergic receptor agonist isoproterenol as well as endogenous amylase. In contrast, unstimulated secretion of ssCst5-Halo without isoproterenol was significantly higher than that of fCst5-Halo and amylase. Simulation analysis using a mathematical model revealed that a large proportion of ssCst5-Halo was secreted through the constitutive pathway, whereas fCst5-Halo was transported into the secretory granules more efficiently. Precipitation of fCst5-Halo from cell lysates was increased at a low pH, which may mimic the milieu of the trans-Golgi networks. These data suggest that the addition of a full-length sequence of cystatin D facilitates efficient selective transport into the regulated pathway by aggregation at low pH in the trans-Golgi network.NEW & NOTEWORTHY The mechanism underlying the segregation of cargo proteins to the regulated and constitutive secretory pathways in exocrine cells remains to be solved. We analyzed unstimulated secretion in salivary acinar cells by performing double-labeling experiments using HaloTag technology and computer simulation. It revealed that the majority of HaloTag with only signal peptide sequence was secreted through the constitutive pathway and that the addition of a full-length cystatin D sequence changed its sorting to the regulated pathway.
Collapse
Affiliation(s)
- Junko Fujita-Yoshigaki
- Department of Physiology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Megumi Yokoyama
- Department of Physiology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Osamu Katsumata-Kato
- Department of Physiology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan.,Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| |
Collapse
|
8
|
Abe M, Saito M, Tsukahara A, Shiokawa S, Ueno K, Shimamura H, Nagano M, Toshima JY, Toshima J. Functional complementation reveals that 9 of the 13 human V-ATPase subunits can functionally substitute for their yeast orthologs. J Biol Chem 2019; 294:8273-8285. [PMID: 30952699 DOI: 10.1074/jbc.ra118.006192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2018] [Revised: 03/27/2019] [Indexed: 11/06/2022] Open
Abstract
Vacuolar-type H+-ATPase (V-ATPase) is a highly conserved proton pump responsible for acidification of intracellular organelles and potential drug target. It is a multisubunit complex comprising a cytoplasmic V1 domain responsible for ATP hydrolysis and a membrane-embedded Vo domain that contributes to proton translocation across the membrane. Saccharomyces cerevisiae V-ATPase is composed of 14 subunits, deletion of any one of which results in well-defined growth defects. As the structure of V-ATPase and the function of each subunit have been well-characterized in yeast, this organism has been recognized as a preferred model for studies of V-ATPases. In this study, to assess the functional relatedness of the yeast and human V-ATPase subunits, we investigated whether human V-ATPase subunits can complement calcium- or pH-sensitive growth, acidification of the vacuolar lumen, assembly of the V-ATPase complex, and protein sorting in yeast mutants lacking the equivalent yeast genes. These assessments revealed that 9 of the 13 human V-ATPase subunits can partially or fully complement the function of the corresponding yeast subunits. Importantly, sequence similarity was not necessarily correlated with functional complementation. We also found that besides all Vo domain subunits, the V1 F subunit is required for proper assembly of the Vo domain at the endoplasmic reticulum. Furthermore, the human H subunit fully restored the level of vacuolar acidification, but only partially rescued calcium-sensitive growth, suggesting a specific role of the H subunit in V-ATPase activity. These findings provide important insights into functional homologies between yeast and human V-ATPases.
Collapse
Affiliation(s)
- Michiko Abe
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585
| | - Mayu Saito
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585
| | - Ayana Tsukahara
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585
| | - Shuka Shiokawa
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585
| | - Kazuma Ueno
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585
| | - Hiroki Shimamura
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585
| | - Makoto Nagano
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585
| | - Junko Y Toshima
- School of Health Science, Tokyo University of Technology, Ota-ku, Tokyo 144-8535, Japan.
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585.
| |
Collapse
|
9
|
Vanneste M, Huang Q, Li M, Moose D, Zhao L, Stamnes MA, Schultz M, Wu M, Henry MD. High content screening identifies monensin as an EMT-selective cytotoxic compound. Sci Rep 2019; 9:1200. [PMID: 30718715 PMCID: PMC6361972 DOI: 10.1038/s41598-018-38019-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2018] [Accepted: 10/11/2018] [Indexed: 01/03/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is implicated in cancer metastasis and drug resistance. Specifically targeting cancer cells in an EMT-like state may have therapeutic value. In this study, we developed a cell imaging-based high-content screening protocol to identify EMT-selective cytotoxic compounds. Among the 2,640 compounds tested, salinomycin and monensin, both monovalent cation ionophores, displayed a potent and selective cytotoxic effect against EMT-like cells. The mechanism of action of monensin was further evaluated. Monensin (10 nM) induced apoptosis, cell cycle arrest, and an increase in reactive oxygen species (ROS) production in TEM 4-18 cells. In addition, monensin rapidly induced swelling of Golgi apparatus and perturbed mitochondrial function. These are previously known effects of monensin, albeit occurring at much higher concentrations in the micromolar range. The cytotoxic effect of monensin was not blocked by inhibitors of ferroptosis. To explore the generality of our findings, we evaluated the toxicity of monensin in 24 human cancer cell lines and classified them as resistant or sensitive based on IC50 cutoff of 100 nM. Gene Set Enrichment Analysis identified EMT as the top enriched gene set in the sensitive group. Importantly, increased monensin sensitivity in EMT-like cells is associated with elevated uptake of 3H-monensin compared to resistant cells.
Collapse
Affiliation(s)
- Marion Vanneste
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Qin Huang
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Mengshi Li
- Human Toxicology, University of Iowa, Iowa City, IA, 52242, USA
| | - Devon Moose
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Mark A Stamnes
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael Schultz
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA.,Human Toxicology, University of Iowa, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Meng Wu
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA.,University of Iowa High Throughput Screening Facility (UIHTS), University of Iowa, Iowa City, IA, 52242, USA.,Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael D Henry
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA. .,Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA. .,Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA. .,Department of Urology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA. .,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
10
|
Hummer BH, de Leeuw NF, Burns C, Chen L, Joens MS, Hosford B, Fitzpatrick JAJ, Asensio CS. HID-1 controls formation of large dense core vesicles by influencing cargo sorting and trans-Golgi network acidification. Mol Biol Cell 2017; 28:3870-3880. [PMID: 29074564 PMCID: PMC5739301 DOI: 10.1091/mbc.e17-08-0491] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2017] [Revised: 10/05/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
The peripheral membrane protein HID-1 localizes to the trans-Golgi network, where it contributes to the formation of large dense core vesicles of neuroendocrine cells by influencing cargo sorting and trans-Golgi network acidification. Large dense core vesicles (LDCVs) mediate the regulated release of neuropeptides and peptide hormones. They form at the trans-Golgi network (TGN), where their soluble content aggregates to form a dense core, but the mechanisms controlling biogenesis are still not completely understood. Recent studies have implicated the peripheral membrane protein HID-1 in neuropeptide sorting and insulin secretion. Using CRISPR/Cas9, we generated HID-1 KO rat neuroendocrine cells, and we show that the absence of HID-1 results in specific defects in peptide hormone and monoamine storage and regulated secretion. Loss of HID-1 causes a reduction in the number of LDCVs and affects their morphology and biochemical properties, due to impaired cargo sorting and dense core formation. HID-1 KO cells also exhibit defects in TGN acidification together with mislocalization of the Golgi-enriched vacuolar H+-ATPase subunit isoform a2. We propose that HID-1 influences early steps in LDCV formation by controlling dense core formation at the TGN.
Collapse
Affiliation(s)
- Blake H Hummer
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Noah F de Leeuw
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Christian Burns
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Lan Chen
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - Matthew S Joens
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110
| | - Bethany Hosford
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, CO 80210
| |
Collapse
|
11
|
Ji L, Wu HT, Qin XY, Lan R. Dissecting carboxypeptidase E: properties, functions and pathophysiological roles in disease. Endocr Connect 2017; 6:R18-R38. [PMID: 28348001 PMCID: PMC5434747 DOI: 10.1530/ec-17-0020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 01/02/2023]
Abstract
Since discovery in 1982, carboxypeptidase E (CPE) has been shown to be involved in the biosynthesis of a wide range of neuropeptides and peptide hormones in endocrine tissues, and in the nervous system. This protein is produced from pro-CPE and exists in soluble and membrane forms. Membrane CPE mediates the targeting of prohormones to the regulated secretory pathway, while soluble CPE acts as an exopeptidase and cleaves C-terminal basic residues from peptide intermediates to generate bioactive peptides. CPE also participates in protein internalization, vesicle transport and regulation of signaling pathways. Therefore, in two types of CPE mutant mice, Cpefat/Cpefat and Cpe knockout, loss of normal CPE leads to a lot of disorders, including diabetes, hyperproinsulinemia, low bone mineral density and deficits in learning and memory. In addition, the potential roles of CPE and ΔN-CPE, an N-terminal truncated form, in tumorigenesis and diagnosis were also addressed. Herein, we focus on dissecting the pathophysiological roles of CPE in the endocrine and nervous systems, and related diseases.
Collapse
Affiliation(s)
- Lin Ji
- Department of Cell Biology & Medical GeneticsSchool of Medicine, Shenzhen University, Shenzhen, China
| | - Huan-Tong Wu
- Beijing Engineering Research Center of Food Environment and HealthCollege of Life & Environmental Sciences, Minzu University of China, Beijing, China
| | - Xiao-Yan Qin
- Beijing Engineering Research Center of Food Environment and HealthCollege of Life & Environmental Sciences, Minzu University of China, Beijing, China
| | - Rongfeng Lan
- Department of Cell Biology & Medical GeneticsSchool of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
12
|
Abstract
Acinar cells of exocrine glands are highly specialized for producing, storing, and discharging secretory proteins for use on surfaces that represent interfaces between the organism and the surrounding environment. These functions are achieved through the secretory pathway that includes a series of functionally distinct intracellular compartments — the endoplasmic reticulum, subcompartments of the Golgi complex, and the secretion granule in which exportable macromolecules are stored at high concentrations. Most secretion occurs by granule exocytosis in response to external hormonal or neural stimuli. Although these processes have been traced in a variety of morphological and biochemical studies, very Utile is known about the mechanisms involved in facilitating and maintaining secretory storage, orchestrating discharge at the apical cell surface, and in ensuring conservation and re-internalization of the granule membrane. Recent studies initiated on cell fractions obtained from the rat parotid gland have provided significant insight into the protein storage conditions that prevail in the granule interior and the components of the granule membrane that are likely to be involved in general secretory function such as exocytosis.
Collapse
Affiliation(s)
- J. D. Castle
- Department of Cell Biology, Yale University Medical School, New Haven, Connecticut 06510
| | - P. Arvan
- Department of Cell Biology, Yale University Medical School, New Haven, Connecticut 06510
| | - R. Cameron
- Department of Cell Biology, Yale University Medical School, New Haven, Connecticut 06510
| |
Collapse
|
13
|
Anoop A, Ranganathan S, Das Dhaked B, Jha NN, Pratihar S, Ghosh S, Sahay S, Kumar S, Das S, Kombrabail M, Agarwal K, Jacob RS, Singru P, Bhaumik P, Padinhateeri R, Kumar A, Maji SK. Elucidating the role of disulfide bond on amyloid formation and fibril reversibility of somatostatin-14: relevance to its storage and secretion. J Biol Chem 2014; 289:16884-903. [PMID: 24782311 DOI: 10.1074/jbc.m114.548354] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022] Open
Abstract
The storage of protein/peptide hormones within subcellular compartments and subsequent release are crucial for their native function, and hence these processes are intricately regulated in mammalian systems. Several peptide hormones were recently suggested to be stored as amyloids within endocrine secretory granules. This leads to an apparent paradox where storage requires formation of aggregates, and their function requires a supply of non-aggregated peptides on demand. The precise mechanism behind amyloid formation by these hormones and their subsequent release remain an open question. To address this, we examined aggregation and fibril reversibility of a cyclic peptide hormone somatostatin (SST)-14 using various techniques. After proving that SST gets stored as amyloid in vivo, we investigated the role of native structure in modulating its conformational dynamics and self-association by disrupting the disulfide bridge (Cys(3)-Cys(14)) in SST. Using two-dimensional NMR, we resolved the initial structure of somatostatin-14 leading to aggregation and further probed its conformational dynamics in silico. The perturbation in native structure (S-S cleavage) led to a significant increase in conformational flexibility and resulted in rapid amyloid formation. The fibrils formed by disulfide-reduced noncyclic SST possess greater resistance to denaturing conditions with decreased monomer releasing potency. MD simulations reveal marked differences in the intermolecular interactions in SST and noncyclic SST providing plausible explanation for differential aggregation and fibril reversibility observed experimentally in these structural variants. Our findings thus emphasize that subtle changes in the native structure of peptide hormone(s) could alter its conformational dynamics and amyloid formation, which might have significant implications on their reversible storage and secretion.
Collapse
Affiliation(s)
- Arunagiri Anoop
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076
| | - Srivastav Ranganathan
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076
| | - Bhagwan Das Dhaked
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076
| | - Narendra Nath Jha
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076
| | - Supriya Pratihar
- the Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400 005
| | - Saikat Ghosh
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076
| | - Shruti Sahay
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076
| | - Santosh Kumar
- the School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 751 005, and
| | - Subhadeep Das
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076, the IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Mamata Kombrabail
- the Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400 005
| | - Kumud Agarwal
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076
| | - Reeba S Jacob
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076
| | - Praful Singru
- the School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar 751 005, and
| | - Prasenjit Bhaumik
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076
| | - Ranjith Padinhateeri
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076
| | - Ashutosh Kumar
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076,
| | - Samir K Maji
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400 076,
| |
Collapse
|
14
|
Robinson DG, Hoppenrath M, Oberbeck K, Luykx P, Ratajczak R. Localization of Pyrophosphatase and V-ATPase inChlamydomonas reinhardtii. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1998.tb00685.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
|
15
|
Jha NN, Anoop A, Ranganathan S, Mohite GM, Padinhateeri R, Maji SK. Characterization of Amyloid Formation by Glucagon-Like Peptides: Role of Basic Residues in Heparin-Mediated Aggregation. Biochemistry 2013; 52:8800-10. [DOI: 10.1021/bi401398k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023]
Affiliation(s)
- Narendra Nath Jha
- Department
of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - A. Anoop
- Department
of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | | | - Ganesh M. Mohite
- Department
of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | | | - Samir K. Maji
- Department
of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| |
Collapse
|
16
|
Andersen DC, Goochee CF. The effect of ammonia on the O-linked glycosylation of granulocyte colony-stimulating factor produced by chinese hamster ovary cells. Biotechnol Bioeng 2012; 47:96-105. [PMID: 18623371 DOI: 10.1002/bit.260470112] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022]
Abstract
Ammonium ion concentrations ranging from 0 to 10 mM are shown to significantly reduce the sialylation of granuiocyte colony-stimulating factor (G-CSF) produced by recombinant Chinese hamster ovary cells. Specifically, the degree of completion of the final reaction in the O-linked glycosylation pathway, the addition of sialic acid in an alpha(2,6) linkage to N-acetylgalactosamine, is reduced by NH(4) (+) concentrations of as low as 2 mM. The effect of ammonia on sialylation is rapid, sustained, and does not affect the secretion rate of G-CSF. Additionally, the effect can be mimicked using the weak base chloroquine, suggesting that the effect is related to the weak base characteristics of ammonia. In support of this hypothesis, experiments using brefeldin A suggest that the addition of sialic acid in an alpha(2,6) linkage to N-acetylgalactosamine occurs in the trans-Golgi compartment prior to the trans-Golgi network, which would be expected under normal conditions to have a slightly acidic pH in the range from 6.5 to 6.75. Ammonium ion concentrations of 10 mM would be expected to reduce significantly the differences in pH between acidic intracellular compartments and the cytoplasm. The pH-activity profile for the CHO O-linked alpha(2,6) sialytransferase using monosialylated G-CSF as a substrate reveals a twofold decrease in enzymatic activity across the pH range from 6.75 to 7.0.Mathematical modeling of this sialylation reaction supports the hypothesis that this twofold decrease in sialyltransferase activity resulting from an ammoniainduced increase in trans-Golgi pH could produce the observed decrease in G-CSF sialylation. (c) 1995 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- D C Andersen
- Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025
| | | |
Collapse
|
17
|
Abstract
The large conductance calcium- and voltage-activated potassium channel (BK(Ca)) is widely expressed at the plasma membrane. This channel is involved in a variety of fundamental cellular functions including excitability, smooth muscle contractility, and Ca(2+) homeostasis, as well as in pathological situations like proinflammatory responses in rheumatoid arthritis, and cancer cell proliferation. Immunochemical, biochemical and pharmacological studies from over a decade have intermittently shown the presence of BK(Ca) in intracellular organelles. To date, intracellular BK(Ca) (iBK(Ca)) has been localized in the mitochondria, endoplasmic reticulum, nucleus and Golgi apparatus but its functional role remains largely unknown except for the mitochondrial BK(Ca) whose opening is thought to play a role in protecting the heart from ischaemic injury. In the nucleus, pharmacology suggests a role in regulating nuclear Ca(2+), membrane potential and eNOS expression. Establishing the molecular correlates of iBK(Ca), the mechanisms defining iBK(Ca) organelle-specific targeting, and their modulation are challenging questions. This review summarizes iBK(Ca) channels, their possible functions, and efforts to identify their molecular correlates.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Anesthesiology, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
18
|
Abstract
Amyloids are stable, β-sheet-rich protein/peptides aggregates with 2–15 nm diameter and few micrometers long. It is originally associated with many human diseases such as Alzheimer's, Parkinson's and prion diseases. Amyloids are resistant to enzyme degradation, temperature changes and wide ranges of pH. Although, amyloids are hard and their stiffness is comparable to steel, a constant recycling of monomer occur inside the amyloid fibrils. It grows in a nucleation dependent polymerization manner by recruiting native soluble protein and by converting them to amyloid. These extraordinary physical properties make amyloids attractive for nanotechnological applications. Some amyloid fibrils have also evolved to perform native biological functions (functional amyloid) of the host organism. Functional amyloids are present in mammals such as amyloids of pMel17 and pituitary hormones, where they help in skin pigmentation and hormone storage, respectively. Here, the progress of utilizing amyloid fibrils for nanobiotechnological applications with particular emphasis on the recent studies that amyloid could be utilized for the formulation of peptide/protein drugs depot and how secretory cells uses amyloid for hormone storage will be reviewed.
Collapse
Affiliation(s)
- SAMIR K. MAJI
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
19
|
Kojima A, Toshima JY, Kanno C, Kawata C, Toshima J. Localization and functional requirement of yeast Na+/H+ exchanger, Nhx1p, in the endocytic and protein recycling pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:534-43. [PMID: 22210050 DOI: 10.1016/j.bbamcr.2011.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/19/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 12/25/2022]
Abstract
Acidification of the lumen of intracellular organelles is important for post-transcriptional processing, endosomal maturation, receptor recycling, and vesicle trafficking, being regulated by an intricate balance between H+ influx through vacuolar-type H+-ATPase and efflux through ion channels and transporters, such as the Na+/H+ exchanger (NHE). The eukaryotic NHE family comprises two major subgroups, one residing in the plasma membrane and the other in intracellular organelles. While mammalian intracellular NHE isoforms are localized to various organelles, including the mid-trans-Golgi compartments, early and late endosomes, and recycling endosomes, Nhx1p, the sole NHE in yeast, has been reported to be localized predominantly to the late endosomal/prevacuolar compartment. Here, using live cell imaging, we demonstrated that Nhx1p is localized to the trans-Golgi network compartments, late endosomes, and recycling endosomes, similar to mammalian intracellular NHE isoforms. Loss of Nhx1p led to accumulation of components of the retromer and endosomal sorting complex required for transport complexes, but not trans-Golgi compartments, in aberrant prevacuolar compartments. Importantly, Nhx1p was also required for recycling of the plasma membrane vesicle SNAP receptor Snc1p. These observations suggest that Nhx1p plays an important role in regulation of the luminal pH of various intracellular organelles, and that this regulation is critical for the protein recycling pathway as well as the endocytic pathway.
Collapse
Affiliation(s)
- Ai Kojima
- Department of Biological Science and Technology, Tokyo University of Science, 2641Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | |
Collapse
|
20
|
Modi S, Krishnan Y. A method to map spatiotemporal pH changes inside living cells using a pH-triggered DNA nanoswitch. Methods Mol Biol 2011; 749:61-77. [PMID: 21674365 DOI: 10.1007/978-1-61779-142-0_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/30/2023]
Abstract
A few cellular compartments maintain acidic environments in their interiors that are crucial for their proper function. Alteration in steady state organelle pH is closely linked to several diseases. Although a few probes exist to measure pH of cell compartments, each has several associated limitations. We present a high-performance pH sensor, a DNA nanoswitch, a convenient method to map spatiotemporal pH changes in endocytic pathways. DNA has been used to make a variety of nanoswitches in vitro . However, the present DNA nanoswitch functions as a pH sensing device equally efficiently intracellularly as it does in vitro. This DNA nanoswitch functions as a FRET-based pH sensor in the pH regime of 5.5-7, with high dynamic range between pH 5.8 and 7. It is efficiently engulfed by Drosophila hemocytes through endocytosis and can be used to measure the acidity of the endocytic vesicles that it marks during their maturation till their lysosomal stage.
Collapse
Affiliation(s)
- Souvik Modi
- Biochemistry, Biophysics and Bioinformatics, National Centre for Biological Sciences, Bangalore, India
| | | |
Collapse
|
21
|
|
22
|
Lawrence SP, Bright NA, Luzio JP, Bowers K. The sodium/proton exchanger NHE8 regulates late endosomal morphology and function. Mol Biol Cell 2010; 21:3540-51. [PMID: 20719963 PMCID: PMC2954119 DOI: 10.1091/mbc.e09-12-1053] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Abstract
The pH and lumenal environment of intracellular organelles is considered essential for protein sorting and trafficking through the cell. We provide the first evidence that a mammalian sodium (potassium)/proton exchanger, NHE8, plays a key role in the control of protein trafficking and endosome morphology. The pH and lumenal environment of intracellular organelles is considered essential for protein sorting and trafficking through the cell. We provide the first evidence that a mammalian NHE sodium (potassium)/proton exchanger, NHE8, plays a key role in the control of protein trafficking and endosome morphology. At steady state, the majority of epitope-tagged NHE8 was found in the trans-Golgi network of HeLa M-cells, but a proportion was also localized to multivesicular bodies (MVBs). Depletion of NHE8 in HeLa M-cells with siRNA resulted in the perturbation of MVB protein sorting, as shown by an increase in epidermal growth factor degradation. Additionally, NHE8-depleted cells displayed striking perinuclear clustering of endosomes and lysosomes, and there was a ninefold increase in the cellular volume taken up by LAMP1/LBPA-positive, dense MVBs. Our data points to a role for the ion exchange activity of NHE8 being required to maintain endosome morphology, as overexpression of a nonfunctional point mutant protein (NHE8 E225Q) resulted in phenotypes similar to those seen after siRNA depletion of endogenous NHE8. Interestingly, we found that depletion of NHE8, despite its function as a sodium (potassium)/proton antiporter, did not affect the overall pH inside dense MVBs.
Collapse
Affiliation(s)
- Scott P Lawrence
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
23
|
Hur YS, Kim KD, Paek SH, Yoo SH. Evidence for the existence of secretory granule (dense-core vesicle)-based inositol 1,4,5-trisphosphate-dependent Ca2+ signaling system in astrocytes. PLoS One 2010; 5:e11973. [PMID: 20700485 PMCID: PMC2916839 DOI: 10.1371/journal.pone.0011973] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/26/2010] [Accepted: 07/08/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The gliotransmitters released from astrocytes are deemed to play key roles in the glial cell-neuron communication for normal function of the brain. The gliotransmitters, such as glutamate, ATP, D-serine, neuropeptide Y, are stored in vesicles of astrocytes and secreted following the inositol 1,4,5-trisphosphate (IP3)-induced intracellular Ca2+ releases. Yet studies on the identity of the IP3-dependent intracellular Ca2+ stores remain virtually unexplored. PRINCIPAL FINDINGS We have therefore studied the potential existence of the IP3-sensitive intracellular Ca2+ stores in the cytoplasm of astrocytes using human brain tissue samples in contrast to cultured astrocytes that had primarily been used in the past. It was thus found that secretory granule marker proteins chromogranins and secretogranin II localize in the large dense core vesicles of astrocytes, thereby confirming the large dense core vesicles as bona fide secretory granules. Moreover, consistent with the major IP3-dependent intracellular Ca2+ store role of secretory granules in secretory cells, secretory granules of astrocytes also contained all three (types 1, 2, and 3) IP3R isoforms. SIGNIFICANCE Given that the secretory granule marker proteins chromogranins and secretogranin II are high-capacity, low-affinity Ca2+ storage proteins and chromogranins interact with the IP3Rs to activate the IP3R/Ca2+ channels, i.e., increase both the mean open time and the open probability of the channels, these results imply that secretory granules of astrocytes function as the IP3-sensitive intracellular Ca2+ store.
Collapse
Affiliation(s)
- Yong Suk Hur
- Department of Biochemistry, Inha University School of Medicine, Jung Gu, Incheon, Korea
| | - Ki Deok Kim
- Department of Biochemistry, Inha University School of Medicine, Jung Gu, Incheon, Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Jongno Gu, Seoul, Korea
| | - Seung Hyun Yoo
- Department of Biochemistry, Inha University School of Medicine, Jung Gu, Incheon, Korea
| |
Collapse
|
24
|
Yoo SH. Secretory granules in inositol 1,4,5-trisphosphate-dependent Ca2+ signaling in the cytoplasm of neuroendocrine cells. FASEB J 2009; 24:653-64. [PMID: 19837865 DOI: 10.1096/fj.09-132456] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
Of all the intracellular organelles, secretory granules contain by far the highest calcium concentration; secretory granules of typical neuroendocrine chromaffin cells contain approximately 40 mM Ca(2+) and occupy approximately 20% cell volume, accounting for >60% of total cellular calcium. They also contain the majority of cellular inositol 1,4,5-trisphosphate receptors (IP(3)Rs) in addition to the presence of >2 mM of chromogranins A and B that function as high-capacity, low-affinity Ca(2+) storage proteins. Chromogranins A and B also interact with the IP(3)Rs and activate the IP(3)R/Ca(2+) channels. In experiments with both neuroendocrine PC12 and nonneuroendocrine NIH3T3 cells, in which the number of secretory granules present was changed by either suppression or induction of secretory granule formation, secretory granules were demonstrated to account for >70% of the IP(3)-induced Ca(2+) releases in the cytoplasm. Moreover, the IP(3) sensitivity of secretory granule IP(3)R/Ca(2+) channels is at least approximately 6- to 7-fold more sensitive than those of the endoplasmic reticulum, thus enabling secretory granules to release Ca(2+) ahead of the endoplasmic reticulum. Further, there is a direct correlation between the number of secretory granules and the IP(3) sensitivity of cytoplasmic IP(3)R/Ca(2+) channels and the increased ratio of IP(3)-induced cytoplasmic Ca(2+) release, highlighting the importance of secretory granules in the IP(3)-dependent Ca(2+) signaling. Given that secretory granules are present in all secretory cells, these results presage critical roles of secretory granules in the control of cytoplasmic Ca(2+) concentrations in other secretory cells.-Yoo, S. H. Secretory granules in inositol 1,4,5-trisphosphate-dependent Ca(2+) signaling in the cytoplasm of neuroendocrine cells.
Collapse
Affiliation(s)
- Seung Hyun Yoo
- Department of Biochemistry, Inha University School of Medicine, Jung Gu, Incheon 400-712, Korea.
| |
Collapse
|
25
|
Expression of sulfotransferases involved in the biosynthesis of chondroitin sulfate E in the bone marrow derived mast cells. Biochim Biophys Acta Gen Subj 2008; 1780:687-95. [DOI: 10.1016/j.bbagen.2008.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2007] [Revised: 12/10/2007] [Accepted: 01/07/2008] [Indexed: 11/21/2022]
|
26
|
Morvan J, Tooze SA. Discovery and progress in our understanding of the regulated secretory pathway in neuroendocrine cells. Histochem Cell Biol 2008; 129:243-52. [PMID: 18197413 PMCID: PMC2248607 DOI: 10.1007/s00418-008-0377-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 01/04/2008] [Indexed: 01/24/2023]
Abstract
In this review we start with a historical perspective beginning with the early morphological work done almost 50 years ago. The importance of these pioneering studies is underscored by our brief summary of the key questions addressed by subsequent research into the mechanism of secretion. We then highlight important advances in our understanding of the formation and maturation of neuroendocrine secretory granules, first using in vitro reconstitution systems, then most recently biochemical approaches, and finally genetic manipulations in vitro and in vivo.
Collapse
Affiliation(s)
- Joëlle Morvan
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, UK
| | | |
Collapse
|
27
|
Bierings R, van den Biggelaar M, Kragt A, Mertens K, Voorberg J, van Mourik JA. Efficiency of von Willebrand factor-mediated targeting of interleukin-8 into Weibel-Palade bodies. J Thromb Haemost 2007; 5:2512-9. [PMID: 17883593 DOI: 10.1111/j.1538-7836.2007.02768.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND After de novo synthesis in endothelial cells, the chemokine interleukin-8 (IL-8) is targeted to endothelial cell-specific storage vesicles, the Weibel-Palade bodies (WPBs), where it colocalizes with von Willebrand factor (VWF). OBJECTIVE In this study we investigated a putative regulator function for VWF in the recruitment of IL-8 to WPBs. METHODS We performed a quantitative analysis of the entry of IL-8 into the storage system of the endothelium using pulse-chase analysis and subcellular fractionation studies. RESULTS Using pulse-chase analysis of IL-1beta-stimulated human umbilical vein endothelial cells, we found that a small part of de novo synthesized IL-8 was retained in endothelial cells after 4 h. In density gradients of endothelial cell homogenates nearly equimolar amounts of VWF and IL-8 were present in subcellular fractions that contained WPBs. Furthermore, we found that IL-8 binds to immobilized VWF under the slightly acidic conditions thought to prevail in the lumen of the late secretory pathway. CONCLUSIONS These observations indicate that the sorting efficiency of IL-8 into the regulated secretory pathway of the endothelium is tightly controlled by the entry of VWF into WPBs.
Collapse
Affiliation(s)
- R Bierings
- Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory AMC, University of Amsterdam, Plesmanlaan 125, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
van Grondelle W, Iglesias CL, Coll E, Artzner F, Paternostre M, Lacombe F, Cardus M, Martinez G, Montes M, Cherif-Cheikh R, Valéry C. Spontaneous fibrillation of the native neuropeptide hormone Somatostatin-14. J Struct Biol 2007; 160:211-23. [PMID: 17911027 DOI: 10.1016/j.jsb.2007.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2007] [Revised: 08/06/2007] [Accepted: 08/13/2007] [Indexed: 12/18/2022]
Abstract
Natural Somatostatin-14 is a small cyclic neuropeptide hormone with broad inhibitory effects on endocrine secretions. Here we show that natural Somatostatin-14 spontaneously self-assembles in water and in 150 mM NaCl into liquid crystalline nanofibrils, which follow characteristic structural features of amyloid fibrils. These non-covalent highly stable structures are based on the Somatostatin native backbone conformation and are formed under non-denaturing conditions. Our results support the hypothesis that self-assembly into amyloid fibrils is a generic property of the polypeptide chain under appropriate conditions. Given recent advances on the mechanisms of biological storage and sorting modes of peptide/protein hormones into secretory granules, we propose that Somatostatin-14 fibrillation could be relevant to the regulated secretion pathway of this neuropeptide hormone. Such a hypothesis is consistent with the emerging concept of the existence of non-disease related but functional amyloids.
Collapse
Affiliation(s)
- Wilmar van Grondelle
- Ipsen Pharma, Carrer Laureà Miró 395, Sant Feliu de Llobregat, 08980 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Starr T, Forsten-Williams K, Storrie B. Both post-Golgi and intra-Golgi cycling affect the distribution of the Golgi phosphoprotein GPP130. Traffic 2007; 8:1265-79. [PMID: 17605763 DOI: 10.1111/j.1600-0854.2007.00607.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
Abstract
Golgi phosphoprotein, GPP130, a cis Golgi protein, is representative of proteins cycling between the Golgi apparatus and endosomes in a pH-sensitive manner. The present qualitative data are insufficient to distinguish the relative contributions of Golgi and endosomal processes in regulating the cycling of such proteins. We have taken a quantitative approach to analyze GPP130 distribution in response to pH perturbation. We have used Shiga-like toxin B fragment, a protein that traffics from the cell surface and Golgi apparatus by the late endosomal bypass pathway, as a probe to highlight one aspect of GPP130 cycling and similarly the trafficking of tsO45-green fluorescent protein (GFP) between the Golgi apparatus and the plasma membrane to treat that aspect of GPP130 cycling in isolation. Overall, we conclude from quantitative analysis and simulations that treatment of HeLa cells with the pH perturbant, monensin, affects GPP130 cycling at several stages with effects on (i) intra-Golgi cycling, (ii) trans Golgi to endosome transport and (iii) endosome to Golgi transport. Our analysis indicates that the effect is greatest at the trans Golgi, the most acidic portion of the Golgi apparatus. In sum, multiple, regulated steps affect the trafficking of GPP130.
Collapse
Affiliation(s)
- Tregei Starr
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
30
|
Tiwari N, Garbi N, Reinheckel T, Moldenhauer G, Hämmerling GJ, Momburg F. A transporter associated with antigen-processing independent vacuolar pathway for the MHC class I-mediated presentation of endogenous transmembrane proteins. THE JOURNAL OF IMMUNOLOGY 2007; 178:7932-42. [PMID: 17548631 DOI: 10.4049/jimmunol.178.12.7932] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
Abstract
MHC class I molecules present peptides derived from the ectodomains of endogenous transmembrane proteins; however, the processing of these Ags is incompletely understood. As model transmembrane Ags we investigated the processing of MHC-I-derived fusion proteins containing the N-terminally extended K(b)-restricted OVA epitope SIINFEKL in the extracytoplasmic domain. In TAP-deficient, nonprofessional APCs, the epitope was cleaved out of various sequence contexts and presented to T cells. Ag presentation was inhibited by acidophilic amines and inhibitors of the vacuolar proton pump, indicating processing in endosomes. Endosomal aspartic-type cathepsins, and to some extent also the trans-Golgi network protease furin, were involved in processing. Clathrin-dependent and independent internalization from the cell surface targeted MHC-I fusion proteins to early and late endosomes, where SIINFEKL/K(b) complexes were detected by immunofluorescence microscopy. Targeting of MHC-I fusion proteins to processing compartments was independent of sequence motifs in the cytoplasmic tail. Not only TAP-deficient cells, but also TAP-competent APCs used the vacuolar pathway for processing of MHC-I fusion proteins. Thus, endosomal processing of internalized endogenous transmembrane proteins represents a novel alternate pathway for the generation of MHC-I-binding peptides.
Collapse
Affiliation(s)
- Neeraj Tiwari
- Department of Molecular Immunology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Newman SL, Gootee L, Hilty J, Morris RE. Human macrophages do not require phagosome acidification to mediate fungistatic/fungicidal activity against Histoplasma capsulatum. THE JOURNAL OF IMMUNOLOGY 2006; 176:1806-13. [PMID: 16424211 DOI: 10.4049/jimmunol.176.3.1806] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
Abstract
Histoplasma capsulatum (Hc) is a facultative intracellular fungus that modulates the intraphagosomal environment to survive within macrophages (Mphi). In the present study, we sought to quantify the intraphagosomal pH under conditions in which Hc yeasts replicated or were killed. Human Mphi that had ingested both viable and heat-killed or fixed yeasts maintained an intraphagosomal pH of approximately 6.4-6.5 over a period of several hours. These results were obtained using a fluorescent ratio technique and by electron microscopy using the 3-(2,4-dinitroanilo)-3'-amino-N-methyldipropylamine reagent. Mphi that had ingested Saccharomyces cerevisae, a nonpathogenic yeast that is rapidly killed and degraded by Mphi, also maintained an intraphagosomal pH of approximately 6.5 over a period of several hours. Stimulation of human Mphi fungicidal activity by coculture with chloroquine or by adherence to type 1 collagen matrices was not reversed by bafilomycin, an inhibitor of the vacuolar ATPase. Human Mphi cultured in the presence of bafilomycin also completely degraded heat-killed Hc yeasts, whereas mouse peritoneal Mphi digestion of yeasts was completely reversed in the presence of bafilomycin. However, bafilomycin did not inhibit mouse Mphi fungistatic activity induced by IFN-gamma. Thus, human Mphi do not require phagosomal acidification to kill and degrade Hc yeasts, whereas mouse Mphi do require acidification for fungicidal but not fungistatic activity.
Collapse
Affiliation(s)
- Simon L Newman
- Department of Medicine, Division of Infectious Diseases, University of Cincinnati College of Medicine, OH 45267, USA.
| | | | | | | |
Collapse
|
32
|
Thompson RJ, Akana HCSR, Finnigan C, Howell KE, Caldwell JH. Anion channels transport ATP into the Golgi lumen. Am J Physiol Cell Physiol 2006; 290:C499-514. [PMID: 16403948 DOI: 10.1152/ajpcell.00585.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Anion channels provide a pathway for Cl(-) influx into the lumen of the Golgi cisternae. This influx permits luminal acidification by the organelle's H(+)-ATPase. Three different experimental approaches, electrophysiological, biochemical, and proteomic, demonstrated that two Golgi anion channels, GOLAC-1 and GOLAC-2, also mediate ATP anion transport into the Golgi lumen. First, GOLAC-1 and -2 were incorporated into planar lipid bilayers, and single-channel recordings were obtained. Low ionic activities of K(2)ATP added to the cis-chamber directly inhibited the Cl(-) subconductance levels of both channels, with K(m) values ranging from 16 to 115 microM. Substitution of either K(2)ATP or MgATP for Cl(-) on the cis, trans, or both sides indicated that ATP is conducted by the channels with a relative permeability sequence of Cl(-) > ATP(4-) > MgATP(2-). Single-channel currents were observed at physiological concentrations of Cl(-) and ATP, providing evidence for their importance in vivo. Second, transport of [alpha-(32)P]ATP into sealed Golgi vesicles that maintain in situ orientation was consistent with movement through the GOLACs because it exhibited little temperature dependence and was saturated with an apparent K(m) = 25 microM. Finally, after transport of [gamma-(32)P]ATP, a protease-protection assay demonstrated that proteins are phosphorylated within the Golgi lumen, and after SDS-PAGE, the proteins in the phosphorylated bands were identified by mass spectrometry. GOLAC conductances, [alpha-(32)P]ATP transport, and protein phosphorylation have identical pharmacological profiles. We conclude that the GOLACs play dual roles in the Golgi complex, providing pathways for Cl(-) and ATP influx into the Golgi lumen.
Collapse
Affiliation(s)
- Roger J Thompson
- Dept. of Cell and Developmental Biology, Univ. of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
33
|
Huynh MH, Harper JM, Carruthers VB. Preparing for an invasion: charting the pathway of adhesion proteins to Toxoplasma micronemes. Parasitol Res 2005; 98:389-95. [PMID: 16385407 DOI: 10.1007/s00436-005-0062-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/04/2005] [Accepted: 10/06/2005] [Indexed: 11/26/2022]
Abstract
Toxoplasma gondii is an apicomplexan parasite capable of infecting a broad host range including humans. The tachyzoite lytic cycle begins with active invasion of host cells involving the release of adhesive proteins from apical secretory organelles called micronemes. A protein complex consisting of the transmembrane adhesin MIC2 and a tightly associated partner, M2AP, is abundantly released from the micronemes. Similar to many proteins in a regulated secretory pathway, T. gondii proteins destined for micronemes and rhoptries (another secretory organelle associated with invasion) undergo proteolytic maturation. M2AP contains a propeptide that is removed in a post-Golgi compartment. By expressing an M2AP propeptide deletion mutant in the M2AP knockout background, we show that the propeptide is required for the MIC2-M2AP complex to exit from the early endosome. Although a cleavage-resistant M2AP mutant was able to efficiently reach the micronemes, it was unable to rapidly mobilize from the micronemes to the parasite surface. Strikingly, both mutants were unable to support normal parasite invasion and were partially attenuated in virulence to a degree that is indistinguishable from M2AP knockout parasites. Conditional expression of MIC2 showed that it is also required for correct M2AP sorting to the micronemes. These parasites were severely impaired in invasion efficiency. They switched almost exclusively to a non-productive circular gliding motility and were incapable of establishing an infection in mice when inoculated at a normally lethal dose. These findings underscore the importance of correct trafficking of invasion-related proteins. Our results also serve as a basis for future studies aimed at defining the branch points of protein sorting in T. gondii and at a deeper understanding of the precise roles of M2AP propeptide and MIC2 targeting motifs in MIC protein trafficking.
Collapse
Affiliation(s)
- My-Hang Huynh
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
34
|
Abston LR, Miller WM. Effects of NHE1 expression level on CHO cell responses to environmental stress. Biotechnol Prog 2005; 21:562-7. [PMID: 15801799 DOI: 10.1021/bp049680q] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
Ammonia, lactate and CO(2) inhibit animal cell growth. Accumulation of these metabolic byproducts also causes a decrease in intracellular pH (pH(i)). Transport systems regulate pH(i) in eukaryotic cells. Ion transporters have been cloned and overexpressed in cells but have not been examined for protection against the buildup of ammonia, lactate or CO(2). The Na(+)/H(+) exchangers (NHE) transport H(+) ions from cells during acidification to increase pH(i). We examined whether overexpression of NHE1 would provide CHO cells with greater protection from elevated ammonia, lactate or CO(2). NHE1 CHO cells were compared to MT2-1-8 ("normal" levels of NHE) and AP-1 (devoid of any NHE activity) CHO cell lines. Expression of at least "normal" levels of NHE1 is necessary for CHO cell survival during exposure to 30 mM lactic acid without pH adjustment or to 20 mM NH(4)Cl with pH adjustment. Resistance to an acute acid-load increased when NHE1 was overexpressed in CHO cells. Surprisingly, the inhibitory effect on cell growth at 195 mmHg pCO(2)/435 mOsm/kg (normal levels are 40 mmHg pCO(2)/ 320 mOsm/kg) was not affected by the NHE1 level. Also, there was no further decrease in CHO cell growth in the absence of NHE1 expression during elevated osmolality alone (up to 575 mOsm/kg).
Collapse
Affiliation(s)
- Lisa R Abston
- Interdepartmental Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
35
|
Paroutis P, Touret N, Grinstein S. The pH of the secretory pathway: measurement, determinants, and regulation. Physiology (Bethesda) 2004; 19:207-15. [PMID: 15304635 DOI: 10.1152/physiol.00005.2004] [Citation(s) in RCA: 324] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
The luminal pH of the secretory pathway plays a critical role in the posttranslational modification and sorting of proteins and lipids. The pH of each one of the organelles that constitute the pathway is unique, becoming more acidic as the biosynthetic cargo approaches its destination. The methods used for measurement of pH in the secretory pathway, its determinants, and its regulation are the subjects of this review.
Collapse
Affiliation(s)
- Paul Paroutis
- Cell Biology Program, Hospital for Sick Children, Toronto M5G 1X8 Ontario, Canada
| | | | | |
Collapse
|
36
|
Dannies P. Manipulating the reversible aggregation of protein hormones in secretory granules: potential impact on biopharmaceutical development. BioDrugs 2004; 17:315-24. [PMID: 14498762 DOI: 10.2165/00063030-200317050-00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/02/2022]
Abstract
Neuroendocrine cells and other secretory cell types are able to store secretory proteins in a concentrated form for extended periods until the release of large quantities of protein is triggered. The proteins are stored in dense core secretory granules. The dense cores of these granules are made up of large, insoluble aggregates that form by self-association. These aggregates solubilise rapidly into monomeric proteins in their native conformations when released from the cells by exocytosis of secretory granules. Formation of aggregates is an early event in secretory granule formation in at least some cell types. The function of secretory granules containing protein aggregates varies, depending upon the contents. This may occur because recognition of an aspect, such as a surface motif, of the aggregate facilitates correct assembly of the membrane proteins necessary for transport and exocytosis of the granules. Understanding the principles necessary for aggregation of protein hormones may help in the formulation of proteins for clinical use. Formation of aggregates of human prolactin has been investigated both in cells and in solution. In cells, the aggregation of human prolactin requires a mildly acidic pH, and is slowed in the presence of a membrane-permeable chelator of zinc. In solution, the aggregation of human prolactin at mildly acidic pH and physiological concentrations of Zn(2+) resembles that which occurs in cells if the reaction is performed with macromolecular crowding, which will mimic the conditions in cells. The factors causing protein aggregation and the extent to which aggregation plays a role in secretory granule formation are likely to vary with the protein and cell type. Further understanding of the principles involved in forming these aggregates that readily disassociate may enhance the ability to formulate protein preparations. Knowledge of the exact residues involved in the protein : protein interfaces in the aggregates of secretory granule proteins may lead to the ability to use small molecules to interfere with self-association and to regulate the storage of secretory granule proteins.
Collapse
Affiliation(s)
- Priscilla Dannies
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA.
| |
Collapse
|
37
|
Abstract
Acidification of some organelles, including the Golgi complex, lysosomes, secretory granules, and synaptic vesicles, is important for many of their biochemical functions. In addition, acidic pH in some compartments is also required for the efficient sorting and trafficking of proteins and lipids along the biosynthetic and endocytic pathways. Despite considerable study, however, our understanding of how pH modulates membrane traffic remains limited. In large part, this is due to the diversity of methods to perturb and monitor pH, as well as to the difficulties in isolating individual transport steps within the complex pathways of membrane traffic. This review summarizes old and recent evidence for the role of acidification at various steps of biosynthetic and endocytic transport in mammalian cells. We describe the mechanisms by which organelle pH is regulated and maintained, as well as how organelle pH is monitored and quantitated. General principles that emerge from these studies as well as future directions of interest are discussed.
Collapse
Affiliation(s)
- Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
38
|
Abstract
Formation of secretion granules in regulated secretory cells involves packaging a subject of proteins undergoing intracellular transport into specific vesicular carriers that function in stimulus-dependent exocytosis. Recent findings suggest that immature granules are a site of passive sorting, involving condensation of regulated secretory proteins. Proteins that are not condensed are stored to a lesser degree and are enriched in unstimulated, constitutive-like secretion. While these observations have helped to distinguish possible mechanisms of secretory protein sorting, there are only recent hints about the sorting processes that may be required to create the regulated secretory carrier membranes.
Collapse
Affiliation(s)
- P Arvan
- Division of Endocrinology, Beth Israel Hospital, Boston, MA 02215, USA
| | | |
Collapse
|
39
|
Huh YH, Jeon SH, Yoo SH. Chromogranin B-induced secretory granule biogenesis: comparison with the similar role of chromogranin A. J Biol Chem 2003; 278:40581-9. [PMID: 12902350 DOI: 10.1074/jbc.m304942200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The two major proteins of secretory granules of secretory cells, chromogranins A (CGA) and B (CGB), have previously been proposed to play key roles in secretory granule biogenesis. Recently, CGA was reported to play an on/off switch role for secretory granule biogenesis. In the present study we found CGB being more effective than CGA in inducing secretory granule formation in non-neuroendocrine NIH3T3 and COS-7 cells. The mean number of dense core granules formed/cell of CGA-transfected NIH3T3 cells was 2.51, whereas that of CGB-transfected cells was 4.02, indicating the formation of 60% more granules in the CGB-transfected cells. Similarly, there were 55% more dense core granules formed in the CGB-transfected COS-7 cells than in the CGA-transfected cells. Moreover, transfection of CGA- and CGB-short interfering RNA (siRNA) into neuroendocrine PC12 cells not only decreased the amount of CGA and CGB expressed but also reduced the number of secretory granules by 41 and 78%, respectively, further suggesting the importance of CGB expression in secretory granule formation.
Collapse
Affiliation(s)
- Yang Hoon Huh
- Department of Biochemistry, Inha University College of Medicine, Jung Gu, Incheon 400-712, Korea
| | | | | |
Collapse
|
40
|
Dagher G, Donne N, Klein C, Ferre P, Dugail I. HDL-mediated cholesterol uptake and targeting to lipid droplets in adipocytes. J Lipid Res 2003; 44:1811-20. [PMID: 12867544 DOI: 10.1194/jlr.m300267-jlr200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Adipocytes express high levels of the HDL scavenger receptor class B type I in a differentiation-dependent manner. We thus have analyzed the routes of HDL cholesterol trafficking at different phases of adipocyte differentiation in the 3T3-L1 cell line. One novel and salient feature of this paper is the observation of a widespread distribution in the cell cytoplasm of Golgi markers, caveolin-2, and a fluorescent cholesterol analog NBD-cholesterol (NBD-chol), observed in the early phases of adipocyte formation, clearly distinct from that observed in mature fat cells (i.e., with fully formed lipid vesicles). Thus, in cells without visible lipid droplets, Golgi markers (Golgi 58K, Golgin 97, trans-Golgi network 38, Rab 6, and BODIPY-ceramide), caveolin-2, and NBD-chol all colocalize in a widespread distribution in the cell. In contrast, when lipid droplets are fully formed at latter stages, these markers clearly are distributed to distinct cell compartments: a compact juxtanuclear structure for the Golgi markers and caveolin-2, while NDB-chol concentrates in lipid droplets. In addition, disorganization of the Golgi using three different agents (Brefeldin, monensin, and N-ethyl-maleimide) drastically reduces NBD-chol uptake at different phases of adipocyte formation, strongly suggesting that the Golgi apparatus plays a critical role in HDL-mediated NBD uptake and routing to lipid droplets.
Collapse
Affiliation(s)
- Georges Dagher
- INSERM Unité 465, Centre de Recherche Biomédicales des Cordeliers (Université Paris 6), 15 rue de l'Ecole de Médecine, 75270 Paris Cedex 06, France.
| | | | | | | | | |
Collapse
|
41
|
Sugii S, Reid PC, Ohgami N, Du H, Chang TY. Distinct endosomal compartments in early trafficking of low density lipoprotein-derived cholesterol. J Biol Chem 2003; 278:27180-9. [PMID: 12721287 DOI: 10.1074/jbc.m300542200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023] Open
Abstract
We previously studied the early trafficking of low density lipoprotein (LDL)-derived cholesterol in mutant Chinese hamster ovary cells defective in Niemann-Pick type C1 (NPC1) using cyclodextrin (CD) to monitor the arrival of cholesterol from the cell interior to the plasma membrane (PM) (Cruz, J. C., Sugii, S., Yu, C., and Chang, T.-Y. (2000) J. Biol. Chem. 275, 4013-4021). We found that newly hydrolyzed cholesterol derived from LDL first appears in certain CD-accessible pool(s), which we assumed to be the PM, before accumulating in the late endosome/lysosome, where NPC1 resides. To determine the identity of the early CD-accessible pool(s), in this study, we performed additional experiments, including the use of revised CD incubation protocols. We found that prolonged incubation with CD (>30 min) caused cholesterol in internal membrane compartment(s) to redistribute to the PM, where it became accessible to CD. In contrast, a short incubation with CD (5-10 min) did not cause such an effect. We also show that one of the early compartments contains acid lipase (AL), the enzyme required for liberating cholesterol from cholesteryl ester in LDL. Biochemical and microscopic evidence indicates that most of the AL is present in endocytic compartment(s) distinct from the late endosome/lysosome. Our results suggest that cholesterol is liberated from LDL cholesteryl ester in the hydrolytic compartment containing AL and then moves to the NPC1-containing late endosome/lysosome before reaching the PM or the endoplasmic reticulum.
Collapse
Affiliation(s)
- Shigeki Sugii
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | |
Collapse
|
42
|
Kalinec GM, Webster P, Lim DJ, Kalinec F. A cochlear cell line as an in vitro system for drug ototoxicity screening. Audiol Neurootol 2003; 8:177-89. [PMID: 12811000 DOI: 10.1159/000071059] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2002] [Accepted: 01/10/2003] [Indexed: 11/19/2022] Open
Abstract
Aminoglycoside antibiotics, loop diuretics, antineoplastic agents and other commonly used pharmacological drugs are ototoxic. Understanding of the cellular and molecular mechanisms underlying drug ototoxicity, however, has been hampered by the limited availability of inner ear tissues and drug side effects on laboratory animals. Immortalized cell lines derived from the auditory sensory organ, sensitive to ototoxic drugs and growing in environments that can be systematically manipulated, would facilitate the research directed at elucidating these mechanisms. Such immortalized cell lines could also be used to discover novel therapeutic agents for preventing drug-induced sensorineural hearing loss. Here, we report a conditionally immortalized organ of Corti-derived epithelial cell line, which shows evidence of activation of apoptosis when exposed to known ototoxic drugs. This cell line may be an excellent in vitro system to investigate the cellular and molecular mechanisms involved in ototoxicity and for screening of the potential ototoxicity or otoprotective properties of new pharmacological drugs.
Collapse
Affiliation(s)
- Gilda M Kalinec
- Section on Cell Structure and Function, Department of Cell and Molecular Biology, House Ear Institute, Los Angeles, California 90057, USA
| | | | | | | |
Collapse
|
43
|
Marchetti B, Ashrafi GH, Tsirimonaki E, O'Brien PM, Campo MS. The bovine papillomavirus oncoprotein E5 retains MHC class I molecules in the Golgi apparatus and prevents their transport to the cell surface. Oncogene 2002; 21:7808-16. [PMID: 12420217 DOI: 10.1038/sj.onc.1205885] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2002] [Revised: 07/16/2002] [Accepted: 07/18/2002] [Indexed: 11/08/2022]
Abstract
During papillomavirus infection, the E5 protein localizes in the cell Golgi apparatus and other endomembrane compartments. Cells transformed by E5 do not express major histocompatibility class I complex (MHC I) on the cell surface, while cells transformed by the other transforming proteins E6 and E7 do. In addition, the total amount of both MHC I protein and mRNA is reduced in E5-transformed cells. Here we show that expression of bovine papillomavirus E5 causes the retention of MHC I in the Golgi apparatus, thus preventing its transport to the cell surface. We ascribe this effect to a failure of acidification of the Golgi apparatus, as similar effects are observed in control cells treated with the ionophore monensin. Treatment of E5-transformed cells with either beta- or gamma-interferon increases the synthesis of MHC I, showing that inhibition of MHC I expression by E5 is not irreversible. However, even after interferon treatment, MHC I, although increased in quantity, is not transported to the cell surface. E5 therefore affects MHC I at several levels, but prevention of MHC I transport to the cell surface appears to be the dominant effect. Lack of surface MHC I would have profound consequences for presentation of viral peptides to the immune system.
Collapse
Affiliation(s)
- Barbara Marchetti
- Institute of Comparative Medicine, Glasgow University Veterinary School, Garscube Estate, Glasgow G61 1QH, UK
| | | | | | | | | |
Collapse
|
44
|
Pothos EN, Mosharov E, Liu KP, Setlik W, Haburcak M, Baldini G, Gershon MD, Tamir H, Sulzer D. Stimulation-dependent regulation of the pH, volume and quantal size of bovine and rodent secretory vesicles. J Physiol 2002; 542:453-76. [PMID: 12122145 PMCID: PMC2316149 DOI: 10.1113/jphysiol.2002.018630] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022] Open
Abstract
Trapping of weak bases was utilized to evaluate stimulus-induced changes in the internal pH of the secretory vesicles of chromaffin cells and enteric neurons. The internal acidity of chromaffin vesicles was increased by the nicotinic agonist 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP; in vivo and in vitro) and by high K+ (in vitro); and in enteric nerve terminals by exposure to veratridine or a plasmalemmal [Ca2+]o receptor agonist (Gd3+). Stimulation-induced acidification of chromaffin vesicles was [Ca2+]o-dependent and blocked by agents that inhibit the vacuolar proton pump (vH+-ATPase) or flux through Cl- channels. Stimulation also increased the average volume of chromaffin vesicles and the proportion that displayed a clear halo around their dense cores (called active vesicles). Stimulation-induced increases in internal acidity and size were greatest in active vesicles. Stimulation of chromaffin cells in the presence of a plasma membrane marker revealed that membrane was internalized in endosomes but not in chromaffin vesicles. The stable expression of botulinum toxin E to prevent exocytosis did not affect the stimulation-induced acidification of the secretory vesicles of mouse neuroblastoma Neuro2A cells. Stimulation-induced acidification thus occurs independently of exocytosis. The quantal size of secreted catecholamines, measured by amperometry in cultured chromaffin cells, was found to be increased either by prior exposure to L-DOPA or stimulation by high K+, and decreased by inhibition of vH+-ATPase or flux through Cl- channels. These observations are consistent with the hypothesis that the content of releasable small molecules in secretory vesicles is increased when the driving force for their uptake is enhanced, either by increasing the transmembrane concentration or pH gradients.
Collapse
Affiliation(s)
- Emmanuel N Pothos
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 0211, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
An acidic lumenal pH is vital for the proper posttranslational modifications and sorting of proteins and lipids from the Golgi complex. We characterized ion channels present in Golgi fractions that have been cleared of transiting proteins. A large conductance anion channel was observed in approximately 30% of successful channel incorporations into the planar lipid bilayer. The channel, GOLAC-2, has six levels (one closed and five open). The open states are each approximately 20% increments of the maximal, 325 pS conductance. The channel was approximately 6 times more selective for Cl(-) over K(+). Binomial analysis of percent occupancy for each conducting level supports the hypothesis of five independent conducting pathways. The conducting levels can coordinately gate because full openings and closings were often observed. Addition of 3 to 5 mM reduced glutathione to the cis chamber caused dose-dependent increases in single channel conductance, indicating that the channel may be regulated by the oxidation-reduction state of the cell. We propose that GOLAC-2 is a co-channel complex consisting of five identical pores that have a coordinated gating mechanism. GOALC-2 may function as a source of counter anions for the H(+)-ATPase and may be involved in regulating charge balance and membrane potential of the Golgi complex.
Collapse
Affiliation(s)
- Roger J Thompson
- Department of Cellular and Structural Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
46
|
Abstract
There are three steps in the formation of secretory granules: aggregation of proteins to form the dense cores of granules, accumulation of appropriate membrane proteins necessary for function of the granules, and removal of extraneous membrane and inappropriate proteins by small vesicles. Formation of protein aggregates may be the initial step in this process, which is not well understood. Assays of aggregation of human prolactin and growth hormone in neuroendocrine cells indicate that acidic intracellular compartments are necessary, and Zn2+ and Cu2+ may facilitate aggregation through low affinity binding sites. There is more than one way to make proteins aggregate in solution; precipitates of human prolactin formed in "crowded" conditions most closely resemble what is likely to occur in cells. Understanding the properties of aggregates formed in cells may be important, as there are several examples of granules with different contents that function differently; human R183H-growth hormone, a mutant that causes autosomal dominant isolated growth hormone deficiency, also appears to be an example. Recognition of surface motifs on aggregates of proteins may be important to localize correctly membrane proteins necessary for function, an explanation for the means by which granule content may influence function.
Collapse
Affiliation(s)
- Priscilla S Dannies
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA.
| |
Collapse
|
47
|
Garver WS, Krishnan K, Gallagos JR, Michikawa M, Francis GA, Heidenreich RA. Niemann-Pick C1 protein regulates cholesterol transport to the trans-Golgi network and plasma membrane caveolae. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)31487-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022] Open
|
48
|
Sankoorikal BJ, Zhu YL, Hodsdon ME, Lolis E, Dannies PS. Aggregation of human wild-type and H27A-prolactin in cells and in solution: roles of Zn(2+), Cu(2+), and pH. Endocrinology 2002; 143:1302-9. [PMID: 11897686 DOI: 10.1210/endo.143.4.8732] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
Abstract
Aggregation of hormones is an important step in the formation of secretory granules that results in concentration of hormones. In transfected AtT20 cells, but not COS cells, Lubrol-insoluble aggregates of human prolactin (PRL) accumulated within 30 min after synthesis. Aggregation in AtT20 cells was reduced by incubation with 30 microM chloroquine, which neutralizes intracellular compartments, and was slowed by incubation with diethyldithiocarbamate, which chelates Cu(2+) and Zn(2+). H27A-PRL aggregated in AtT20 cells as well as wild-type PRL, indicating that a high affinity Zn(2+)-binding site is not necessary. In solution, purified recombinant human PRL was precipitated by 20 microM Cu(2+) or Zn(2+). In solution without polyethylene glycol there was no precipitation with acidic pH alone, precipitation with Zn(2+) was most effective at neutral pH, and the ratio of Zn(2+) to PRL was greater than 1 in the precipitate. In solution with polyethylene glycol, precipitation occurred with acidic pH, precipitation with Zn(2+) occurred effectively at acidic pH, and the ratio of Zn(2+) to PRL was less than 1. The aggregates obtained in polyethylene glycol are therefore better models for aggregates in cells. Unlike human PRL, aggregation of rat PRL has been shown to occur at neutral pH in cells and in solution, and therefore these two similar proteins form aggregates that are the cores of secretory granules in ways that are not completely identical.
Collapse
Affiliation(s)
- Binu-John Sankoorikal
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
49
|
Wu MM, Grabe M, Adams S, Tsien RY, Moore HP, Machen TE. Mechanisms of pH regulation in the regulated secretory pathway. J Biol Chem 2001; 276:33027-35. [PMID: 11402049 DOI: 10.1074/jbc.m103917200] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
A precise pH gradient between organelles of the regulated secretory pathway is required for sorting and processing of prohormones. We studied pH regulation in live endocrine cells by targeting biotin-based pH indicators to cellular organelles expressing avidin-chimera proteins. In AtT-20 cells, we found that steady-state pH decreased from the endoplasmic reticulum (ER) (pH(ER) = 7.4 +/- 0.2, mean +/- S.D.) to Golgi (pH(G) = 6.2 +/- 0.4) to mature secretory granules (MSGs) (pH(MSG) = 5.5 +/- 0.4). Golgi and MSGs required active H(+) v-ATPases for acidification. ER, Golgi, and MSG steady-state pH values were also dependent upon the different H(+) leak rates across each membrane. However, neither steady-state pH(MSG) nor rates of passive H(+) leak were affected by Cl(-)-free solutions or valinomycin, indicating that MSG membrane potential was small and not a determinant of pH(MSG). Therefore, our data do not support earlier suggestions that organelle acidification is primarily regulated by Cl(-) conductances. Measurements of H(+) leak rates, buffer capacities, and estimates of surface areas and volumes of these organelles were applied to a mathematical model to determine the H(+) permeability (P(H+)) of each organelle membrane. We found that P(H+) decreased progressively from ER to Golgi to MSGs, and proper acidification of Golgi and MSGs required gradual decreases in P(H+) and successive increases in the active H(+) pump density.
Collapse
Affiliation(s)
- M M Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA
| | | | | | | | | | | |
Collapse
|
50
|
Numata M, Orlowski J. Molecular cloning and characterization of a novel (Na+,K+)/H+ exchanger localized to the trans-Golgi network. J Biol Chem 2001; 276:17387-94. [PMID: 11279194 DOI: 10.1074/jbc.m101319200] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The luminal pH of organelles along the secretory and endocytic pathways of mammalian cells is acidic and tightly regulated, with the [H+] varying up to 100-fold between compartments. Steady-state organellar pH is thought to reflect a balance between the rates of H+ pumping by the vacuolar-type H+-ATPase and H+ efflux through ill-defined pathways. Here, we describe the cloning of a novel gene (NHE7) in humans that is homologous to Na+/H+ exchangers, is ubiquitously expressed, and localizes predominantly to the trans-Golgi network. Significantly, NHE7 mediates the influx of Na+ or K+ in exchange for H+. The activity of NHE7 was also found to be relatively insensitive to inhibition by amiloride but could be antagonized by the analogue benzamil and the unrelated compound quinine. Thus, NHE7 displays unique functional and pharmacological properties and may play an important role in maintaining cation homeostasis of this important organelle.
Collapse
Affiliation(s)
- M Numata
- Department of Physiology, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | |
Collapse
|