1
|
Harmer CJ, Hall RM. IS 26 and the IS 26 family: versatile resistance gene movers and genome reorganizers. Microbiol Mol Biol Rev 2024; 88:e0011922. [PMID: 38436262 PMCID: PMC11332343 DOI: 10.1128/mmbr.00119-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/05/2024] Open
Abstract
SUMMARYIn Gram-negative bacteria, the insertion sequence IS26 is highly active in disseminating antibiotic resistance genes. IS26 can recruit a gene or group of genes into the mobile gene pool and support their continued dissemination to new locations by creating pseudo-compound transposons (PCTs) that can be further mobilized by the insertion sequence (IS). IS26 can also enhance expression of adjacent potential resistance genes. IS26 encodes a DDE transposase but has unique properties. It forms cointegrates between two separate DNA molecules using two mechanisms. The well-known copy-in (replicative) route generates an additional IS copy and duplicates the target site. The recently discovered and more efficient and targeted conservative mechanism requires an IS in both participating molecules and does not generate any new sequence. The unit of movement for PCTs, known as a translocatable unit or TU, includes only one IS26. TU formed by homologous recombination between the bounding IS26s can be reincorporated via either cointegration route. However, the targeted conservative reaction is key to generation of arrays of overlapping PCTs seen in resistant pathogens. Using the copy-in route, IS26 can also act on a site in the same DNA molecule, either inverting adjacent DNA or generating an adjacent deletion plus a circular molecule carrying the DNA segment lost and an IS copy. If reincorporated, these circular molecules create a new PCT. IS26 is the best characterized IS in the IS26 family, which includes IS257/IS431, ISSau10, IS1216, IS1006, and IS1008 that are also implicated in spreading resistance genes in Gram-positive and Gram-negative pathogens.
Collapse
Affiliation(s)
- Christopher J. Harmer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Ruth M. Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Subramani P, Menichincheri G, Pirolo M, Arcari G, Kudirkiene E, Polani R, Carattoli A, Damborg P, Guardabassi L. Genetic background of neomycin resistance in clinical Escherichia coli isolated from Danish pig farms. Appl Environ Microbiol 2023; 89:e0055923. [PMID: 37787538 PMCID: PMC10617424 DOI: 10.1128/aem.00559-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2023] [Accepted: 07/28/2023] [Indexed: 10/04/2023] Open
Abstract
Neomycin is the first-choice antibiotic for the treatment of porcine enteritis caused by enterotoxigenic Escherichia coli. Resistance to this aminoglycoside is on the rise after the increased use of neomycin due to the ban on zinc oxide. We identified the neomycin resistance determinants and plasmid contents in a historical collection of 128 neomycin-resistant clinical E. coli isolates from Danish pig farms. All isolates were characterized by whole-genome sequencing and antimicrobial susceptibility testing, followed by conjugation experiments and long-read sequencing of eight selected representative strains. We detected 35 sequence types (STs) with ST100 being the most prevalent lineage (38.3%). Neomycin resistance was associated with two resistance genes, namely aph(3')-Ia and aph(3')-Ib, which were identified in 93% and 7% of the isolates, respectively. The aph(3')-Ia was found on different large conjugative plasmids belonging to IncI1α, which was present in 67.2% of the strains, on IncHI1, IncHI2, and IncN, as well as on a multicopy ColRNAI plasmid. All these plasmids except ColRNAI carried genes encoding resistance to other antimicrobials or heavy metals, highlighting the risk of co-selection. The aph(3')-Ib gene occurred on a 19 kb chimeric, mobilizable plasmid that contained elements tracing back its origin to distantly related genera. While aph(3')-Ia was flanked by either Tn903 or Tn4352 derivatives, no clear association was observed between aph(3')-Ib and mobile genetic elements. In conclusion, the spread of neomycin resistance in porcine clinical E. coli is driven by two resistance determinants located on distinct plasmid scaffolds circulating within a highly diverse population dominated by ST100. IMPORTANCE Neomycin is the first-choice antibiotic for the management of Escherichia coli enteritis in pigs. This work shows that aph(3')-Ia and to a lesser extent aph(3')-Ib are responsible for the spread of neomycin resistance that has been recently observed among pig clinical isolates and elucidates the mechanisms of dissemination of these two resistance determinants. The aph(3')-Ia gene is located on different conjugative plasmid scaffolds and is associated with two distinct transposable elements (Tn903 and Tn4352) that contributed to its spread. The diffusion of aph(3')-Ib is mediated by a small non-conjugative, mobilizable chimeric plasmid that likely derived from distantly related members of the Pseudomonadota phylum and was not associated with any detectable mobile genetic element. Although the spread of neomycin resistance is largely attributable to horizontal transfer, both resistance determinants have been acquired by a predominant lineage (ST100) associated with enterotoxigenic E. coli, which accounted for approximately one-third of the strains.
Collapse
Affiliation(s)
- Prabha Subramani
- Department of Veterinary and Animal Sciences, Section for Veterinary Clinical Microbiology, University of Copenhagen, Frederiksberg C, Denmark
- Department of Molecular Medicine Sapienza, University of Rome, Rome, Italy
| | - Gaia Menichincheri
- Department of Molecular Medicine Sapienza, University of Rome, Rome, Italy
| | - Mattia Pirolo
- Department of Veterinary and Animal Sciences, Section for Veterinary Clinical Microbiology, University of Copenhagen, Frederiksberg C, Denmark
| | - Gabriele Arcari
- Department of Molecular Medicine Sapienza, University of Rome, Rome, Italy
| | - Egle Kudirkiene
- Department of Veterinary and Animal Sciences, Section for Veterinary Clinical Microbiology, University of Copenhagen, Frederiksberg C, Denmark
| | - Riccardo Polani
- Department of Molecular Medicine Sapienza, University of Rome, Rome, Italy
| | | | - Peter Damborg
- Department of Veterinary and Animal Sciences, Section for Veterinary Clinical Microbiology, University of Copenhagen, Frederiksberg C, Denmark
| | - Luca Guardabassi
- Department of Veterinary and Animal Sciences, Section for Veterinary Clinical Microbiology, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
3
|
Luo X, Yin Z, Yu L, Zhang J, Hu D, Xu M, Wang P, Wang F, Feng J. Genomic analysis of chromosomal cointegrated bla NDM-1-carrying ICE and bla RSA-1-carrying IME from clinical multidrug resistant Aeromonas caviae. Front Cell Infect Microbiol 2023; 13:1131059. [PMID: 37033477 PMCID: PMC10076717 DOI: 10.3389/fcimb.2023.1131059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/24/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction The objective of this study is to thoroughly analyze the detailed genomic characteristics of clinical strain 211703 of Aeromonas caviae, which co-carrying bla RSA-1 and bla NDM-1 genes. 211703 was isolated from the patient's cerebrospinal fluid drainage sample in a Chinese tertiary hospital. Methods Carbapenemase NDM was detected by the immunocolloidal gold technique. The MIC values were determined by VITEK2. The whole genome sequence of 211703 was analyzed using phylogenetics, genomic comparison, and extensive dissection. Results This study revealed that 211703 only contained a single 4.78 Mb chromosome (61.8% GC content), and no plasmids were discovered in 211703. 15 different types of resistant genes were detected in the genome of 211703, including bla RSA-1 harbored on integrative and mobilizable element (IME) Tn7413a, and bla NDM-1 harbored on integrative and conjugative element (ICE). The ICE and IME were all carried on the chromosome of 211703 (c211703). Detailed comparison of related IMEs/ICEs showed that they shared similar conserved backbone regions, respectively. Comprehensive annotation revealed that bla RSA-1 was carried by the gene cassette of a novel integron In2148 on Tn7413a, and bla NDM-1 was captured by an insertion sequence ISCR14-like on the ICE of 211703. We speculated that mobile genetic elements (MGEs) such as ICE and IME facilitated the spread of resistance genes such as bla RSA-1 and bla NDM-1. Discussion In conclusion, this study provides an overall understanding of the genomic characterization of clinically isolated A. caviae 211703, and an in-depth discussion of multiple acquisition methods of drug resistance genes in Aeromonas. To the best of our knowledge, this is the first report of A. caviae carrying bla RSA-1 even both bla RSA-1 and bla NDM-1, and this is the first bacterium carrying bla RSA-1 isolated from the clinical setting.
Collapse
Affiliation(s)
- Xinhua Luo
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lianhua Yu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Jin Zhang
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Dakang Hu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Mengqiao Xu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, China
| | - Peng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Fengling Wang
- Nanxiang Branch of Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Jiao Feng, ; Fengling Wang,
| | - Jiao Feng
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- *Correspondence: Jiao Feng, ; Fengling Wang,
| |
Collapse
|
4
|
Pong CH, Peace JE, Harmer CJ, Hall RM. IS26-mediated loss of the translocatable unit from Tn4352B requires the presence of the recA1 allele. Plasmid 2023; 125:102668. [PMID: 36481310 DOI: 10.1016/j.plasmid.2022.102668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
The pseudo-compound transposon Tn4352B is unusual in that the translocatable unit (TU) consisting of one of the bounding IS26 copies and the central portion containing the aphA1a gene has been found to be readily lost in the Escherichia coli strains used as host. Rapid loss required the presence of an additional 2 G residues adjacent to the internal end of one of the IS26 that flank the central portion and an active Tnp26 transposase. However, Tn4352B was found to be stable in wild-type Klebsiella pneumoniae strains. Though it was concluded that the difference may be due to the species background, the E. coli strains used were recombination-deficient. Here, we have further investigated the requirements for TU loss in E. coli and found that Tn4352B was stable in recombination-proficient strains. Among several recombination-deficient strains examined, rapid loss occurred only in strains that carry the recA1 allele but not in strains carrying different recA alleles, recA13 and a novel recA allele identified here, that also render the strain deficient in homologous recombination. Hence, it appears that a specific property of the RecA1 protein underlies the observed TU loss from Tn4352B.
Collapse
Affiliation(s)
- Carol H Pong
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Jade E Peace
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Christopher J Harmer
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
Guan J, Bao C, Wang P, Jing Y, Wang L, Li X, Mu X, Li B, Zhou D, Guo X, Yin Z. Genetic Characterization of Four Groups of Chromosome-Borne Accessory Genetic Elements Carrying Drug Resistance Genes in Providencia. Infect Drug Resist 2022; 15:2253-2270. [PMID: 35510160 PMCID: PMC9058013 DOI: 10.2147/idr.s354934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of this study was to gain a deeper genomics and bioinformatics understanding of diversification of accessory genetic elements (AGEs) in Providencia. Methods Herein, the complete genome sequences of five Providencia isolates from China were determined, and seven AGEs were identified from the chromosomes. Detailed genetic dissection and sequence comparison were applied to these seven AGEs, together with additional 10 chromosomal ones from GenBank (nine of them came from Providencia). Results These 17 AGEs were divided into four groups: Tn6512 and its six derivatives, Tn6872 and its two derivatives, Tn6875 and its one derivative, and Tn7 and its four derivatives. These AGEs display high-level diversification in modular structures that had complex mosaic natures, and particularly different multidrug resistance (MDR) regions were presented in these AGEs. At least 52 drug resistance genes, involved in resistance to 15 different categories of antimicrobials and heavy metal, were found in 15 of these 17 AGEs. Conclusion Integration of these AGEs into the Providencia chromosomes would contribute to the accumulation and distribution of drug resistance genes and enhance the ability of Providencia isolates to survive under drug selection pressure.
Collapse
Affiliation(s)
- Jiayao Guan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130122, People’s Republic of China
| | - Chunmei Bao
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People’s Republic of China
| | - Peng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Ying Jing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Lingling Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Xinyue Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Xiaofei Mu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Boan Li
- Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People’s Republic of China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Xuejun Guo
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130122, People’s Republic of China
- Xuejun Guo, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130122, People’s Republic of China, Tel +86-431-86985931, Email
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
- Correspondence: Zhe Yin, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China, Tel +86-10-66948557, Email
| |
Collapse
|
6
|
Xu Y, Jing Y, Hu L, Cheng Q, Gao H, Zhang Z, Yang H, Zhao Y, Zhou D, Yin Z, Dai E. IncFIB-4.1 and IncFIB-4.2 Single-Replicon Plasmids: Small Backbones with Large Accessory Regions. Infect Drug Resist 2022; 15:1191-1203. [PMID: 35345473 PMCID: PMC8957301 DOI: 10.2147/idr.s332949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2021] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To establish a typing scheme for IncFIB replicon and to dissect genomic features of IncFIB-4.1/4.2 single-replicon plasmids. Methods A total of 146 representative fully sequenced IncFIB-replicon-containing plasmids were selected to construct a phylogenetic tree of repBIncFIB sequences. A collection of nine IncFIB-4.1/4.2 single-replicon plasmids from China were fully sequenced here and compared with the first sequenced IncFIB-4.1/4.2 single-replicon plasmids from GenBank to dissect their genomic diversity. Results In this study, a repB sequence-based scheme was proposed for grouping IncFIB replicon into seven primary types and further into 70 subtypes. A collection of nine IncFIB-4.1/4.2 single-replicon plasmids were fully sequenced here and compared with the first sequenced IncFIB-4.1/4.2 single-replicon plasmids from GenBank. These 11 plasmids had small backbones and shared only three key backbone markers repB together with its iterons, parABC, and stbD. Each plasmid contained one large accessory region (LAR) inserted into the backbone, and these 11 LARs had significantly distinct profiles of mobile genetic elements (MGEs) and resistance/metabolism gene loci. Antibiotic resistance regions (ARRs; the antibiotic resistance gene-containing genetic elements) were found in seven of these 11 LARs. Besides resistance genes, ARRs carried unit or composite transposons, integrons, and putative resistance units. IncFIB-4.1/4.2 single-replicon plasmids were important vectors of drug resistance genes. This was the first report of three novel MGEs: In1776, Tn6755, and Tn6857. Conclusion Data presented here provided a deeper insight into diversity and evolution of IncFIB replicon and IncFIB-4.1/4.2 single-replicon plasmids.
Collapse
Affiliation(s)
- Yanan Xu
- Department of Clinical Laboratory Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050011, People’s Republic of China
| | - Ying Jing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Qiaoxiang Cheng
- Department of Clinical Laboratory Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050011, People’s Republic of China
| | - Huixia Gao
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, 050021, People’s Republic of China
| | - Zhi Zhang
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, 050021, People’s Republic of China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Yuee Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, People’s Republic of China
| | - Erhei Dai
- Department of Clinical Laboratory Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050011, People’s Republic of China
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, Hebei, 050021, People’s Republic of China
- Correspondence: Erhei Dai; Zhe Yin, Tel +86-311-85814612; +86-10-66948557, Email ;
| |
Collapse
|
7
|
Jing Y, Yin Z, Wang P, Guan J, Chen F, Wang L, Li X, Mu X, Zhou D. A Genomic and Bioinformatics View of the Classification and Evolution of Morganella Species and Their Chromosomal Accessory Genetic Elements Harboring Antimicrobial Resistance Genes. Microbiol Spectr 2022; 10:e0265021. [PMID: 35196820 PMCID: PMC8865565 DOI: 10.1128/spectrum.02650-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2021] [Accepted: 02/01/2022] [Indexed: 11/20/2022] Open
Abstract
In this study, draft-genome sequencing was conducted for 60 Chinese Morganella isolates, and furthermore, 12 of them were fully sequenced. Then, a total of 166 global sequenced Morganella isolates, including the above 60, were collected to perform average nucleotide identity-based genomic classification and core single nucleotide polymorphism-based phylogenomic analysis. A genome sequence-based species classification scheme for Morganella was established, and accordingly, the two conventional Morganella species were redefined as two complexes and further divided into four and two genospecies, respectively. At least 88 acquired antimicrobial resistance genes (ARGs) were disseminated in these 166 isolates and were prevalent mostly in the isolates from hospital settings. IS26/IS15DI, IS10 and IS1R, and Tn3-, Tn21-, and Tn7-subfamily unit transposons were frequently presented in these 166 isolates. Furthermore, a detailed sequence comparison was applied to 18 Morganella chromosomal accessory genetic elements (AGEs) from the fully sequenced 12 isolates, together with 5 prototype AGEs from GenBank. These 23 AGEs were divided into eight different groups belonging to composite/unit transposons, transposable prophages, integrative and mobilizable elements, and integrative and conjugative elements, and they harbored at least 52 ARGs involved in resistance to 15 categories of antimicrobials. Eleven of these 23 AGEs acquired large accessory modules, which exhibited complex mosaic structures and contained many antimicrobial resistance loci and associated ARGs. Integration of ARG-containing AGEs into Morganella chromosomes would contribute to the accumulation and dissemination of ARGs in Morganella and enhance the adaption and survival of Morganella under complex and diverse antimicrobial selection pressures. IMPORTANCE This study presents a comprehensive genomic epidemiology analysis on global sequenced Morganella isolates. First, a genome sequence-based species classification scheme for Morganella is established with a higher resolution and accuracy than those of the conventional scheme. Second, the prevalence of accessory genetic elements (AGEs) and associated antimicrobial resistance genes (ARGs) among Morganella isolates is disclosed based on genome sequences. Finally, a detailed sequence comparison of eight groups of 23 AGEs (including 19 Morganella chromosomal AGEs) reveals that Morganella chromosomes have evolved to acquire diverse AGEs harboring different profiles of ARGs and that some of these AGEs harbor large accessory modules that exhibit complex mosaic structures and contain a large number of ARGs. Data presented here provide a deeper understanding of the classification and evolution of Morganella species and also those of ARG-containing AGEs in Morganella at the genomic scale.
Collapse
Affiliation(s)
- Ying Jing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Peng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jiayao Guan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Fangzhou Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lingling Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xinyue Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaofei Mu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
8
|
Chen K, Xie M, Chan EWC, Chen S. Delineation of ISEcp1 and IS26-Mediated Plasmid Fusion Processes by MinION Single-Molecule Long-Read Sequencing. Front Microbiol 2022; 12:796715. [PMID: 35197941 PMCID: PMC8859459 DOI: 10.3389/fmicb.2021.796715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022] Open
Abstract
We recently reported the recovery of a novel IncI1 type conjugative helper plasmid which could target mobile genetic elements (MGE) located in non-conjugative plasmid and form a fusion conjugative plasmid to mediate the horizontal transfer of the non-conjugative plasmid. In this study, interactions between the helper plasmid pSa42-91k and two common MGEs, ISEcp1 and IS15DI, which were cloned into a pBackZero-T vector, were monitored during the conjugation process to depict the molecular mechanisms underlying the plasmid fusion process mediated by insertion sequence (IS) elements. The MinION single-molecule long-read sequencing technology can dynamically reveal the plasmid recombination events and produce valuable information on genetic polymorphism and plasmid heterogeneity in different multidrug resistance (MDR) encoding bacteria. Such data would facilitate the development of new strategies to control evolution and dissemination of MDR plasmids.
Collapse
Affiliation(s)
- Kaichao Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Miaomiao Xie
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Edward Wai-Chi Chan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- *Correspondence: Sheng Chen,
| |
Collapse
|
9
|
Luo X, Yin Z, Zeng L, Hu L, Jiang X, Jing Y, Chen F, Wang D, Song Y, Yang H, Zhou D. Chromosomal Integration of Huge and Complex bla NDM-Carrying Genetic Elements in Enterobacteriaceae. Front Cell Infect Microbiol 2021; 11:690799. [PMID: 34211858 PMCID: PMC8239412 DOI: 10.3389/fcimb.2021.690799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, a detailed genetic dissection of the huge and complex blaNDM-carrying genetic elements and their related mobile genetic elements was performed in Enterobacteriaceae. An extensive comparison was applied to 12 chromosomal genetic elements, including six sequenced in this study and the other six from GenBank. These 12 genetic elements were divided into five groups: a novel IME Tn6588; two related IMEs Tn6523 (SGI1) and Tn6589; four related ICEs Tn6512 (R391), Tn6575 (ICEPvuChnBC22), Tn6576, and Tn6577; Tn7 and its derivatives Tn6726 and 40.7-kb Tn7-related element; and two related IMEs Tn6591 (GIsul2) and Tn6590. At least 51 resistance genes, involved in resistance to 18 different categories of antibiotics and heavy metals, were found in these 12 genetic elements. Notably, Tn6576 carried another ICE Tn6582. In particular, the six blaNDM-carrying genetic elements Tn6588, Tn6589, Tn6575, Tn6576, Tn6726, and 40.7-kb Tn7-related element contained large accessory multidrug resistance (MDR) regions, each of which had a very complex mosaic structure that comprised intact or residual mobile genetic elements including insertion sequences, unit or composite transposons, integrons, and putative resistance units. Core blaNDM genetic environments manifested as four different Tn125 derivatives and, notably, two or more copies of relevant Tn125 derivatives were found in each of Tn6576, Tn6588, Tn6589, and 40.7-kb Tn7-related element. The huge and complex blaNDM-carrying genetic elements were assembled from complex transposition and homolog recombination. Firstly identified were eight novel mobile elements, including three ICEs Tn6576, Tn6577, and Tn6582, two IMEs, Tn6588 and Tn6589, two composite transposons Tn6580a and Tn6580b, and one integron In1718.
Collapse
Affiliation(s)
- Xinhua Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lijun Zeng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,The Fifth Medical Center, Chinese Peoples Liberation Army General Hospital, Beijing, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoyuan Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ying Jing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Fangzhou Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongguo Wang
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital Affiliated With Taizhou University, Taizhou, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
10
|
Varani A, He S, Siguier P, Ross K, Chandler M. The IS6 family, a clinically important group of insertion sequences including IS26. Mob DNA 2021; 12:11. [PMID: 33757578 PMCID: PMC7986276 DOI: 10.1186/s13100-021-00239-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
The IS6 family of bacterial and archaeal insertion sequences, first identified in the early 1980s, has proved to be instrumental in the rearrangement and spread of multiple antibiotic resistance. Two IS, IS26 (found in many enterobacterial clinical isolates as components of both chromosome and plasmids) and IS257 (identified in the plasmids and chromosomes of gram-positive bacteria), have received particular attention for their clinical impact. Although few biochemical data are available concerning the transposition mechanism of these elements, genetic studies have provided some interesting observations suggesting that members of the family might transpose using an unexpected mechanism. In this review, we present an overview of the family, the distribution and phylogenetic relationships of its members, their impact on their host genomes and analyse available data concerning the particular transposition pathways they may use. We also provide a mechanistic model that explains the recent observations on one of the IS6 family transposition pathways: targeted cointegrate formation between replicons.
Collapse
Affiliation(s)
- Alessandro Varani
- School of Agricultural and Veterinary Sciences, Universidade Estadual Paulista, Jaboticabal, Sao Paulo, Brazil
| | - Susu He
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Patricia Siguier
- Centre de Biologie Intégrative-Université Paul SABATIER, CNRS - Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100 - bât. CNRS-IBCG, Toulouse, France
| | - Karen Ross
- Protein Information Resource, Department of Biochem., Mol. and Cell. Biol, Georgetown University Medical Center, Washington, DC, USA
| | - Michael Chandler
- Department of Biochem., Mol. and Cell. Biol, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
11
|
Evolution of IS26-bounded pseudo-compound transposons carrying the tet(C) tetracycline resistance determinant. Plasmid 2020; 112:102541. [DOI: 10.1016/j.plasmid.2020.102541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/06/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
|
12
|
Harmer CJ, Pong CH, Hall RM. Structures bounded by directly-oriented members of the IS26 family are pseudo-compound transposons. Plasmid 2020; 111:102530. [DOI: 10.1016/j.plasmid.2020.102530] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2020] [Revised: 07/23/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
|
13
|
Harmer CJ, Hall RM. The Complete Nucleotide Sequence of pZM3, a 1970 FIA:FIB:FII Plasmid Carrying Antibiotic Resistance and Virulence Determinants. Microb Drug Resist 2019; 26:438-446. [PMID: 31718432 DOI: 10.1089/mdr.2019.0248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022] Open
Abstract
The multiresistance plasmid, pZM3, from a 1970 Salmonella enterica serovar Wien isolate from Algeria represents the multiresistance FIme-type plasmids conferring resistance to ampicillin, chloramphenicol, kanamycin, neomycin, sulfonamides, streptomycin, spectinomycin, tetracycline, and mercuric ions circulating in the Middle East in the 1970s. pZM3 was sequenced to determine the relationship between IS1936, the IS26-like insertion sequence it carries, and IS26. IS1936 is identical to IS26. pZM3 is a 166.8-kb plasmid with three replicons typed as FIA-1, FIB-1, and FII-1, consistent with other FIme plasmids. However, Tn3, containing the blaTEM-1a ampicillin resistance gene, disrupts the FII repA gene. pZM3 also contains an IS1-flanked virulence region, including the sit and aerobactin operons, shared with many other FIB-1 virulence plasmids. The remaining resistance genes are located in a 44.7-kb complex resistance island that includes the Tn21-like transposon, Tn1935, identified previously. Relative to Tn21, Tn1935 includes an additional gene cassette, oxa1, and Tn4352 in tniA. Tn1935 is in the same Tn2670 context as Tn21 in NR1, and identity to NR1 extends beyond the IS1 flanking the catA1 gene. On the other side, IS1-mediated events have brought in a Tn10 remnant and inverted part of it, highlighting the role of IS1 in resistance region evolution. The backbone of pZM3 was found to be almost identical to that of pRSB225, recovered in Germany in 2013, and their resistance islands are in the same position. The pRSB225 resistance island has evolved in situ from the pZM3 configuration through an insertion, a replacement, and an inversion.
Collapse
Affiliation(s)
- Christopher J Harmer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
14
|
Dong D, Li M, Liu Z, Feng J, Jia N, Zhao H, Zhao B, Zhou T, Zhang X, Tong Y, Zhu Y. Characterization of a NDM-1- Encoding Plasmid pHFK418-NDM From a Clinical Proteus mirabilis Isolate Harboring Two Novel Transposons, Tn 6624 and Tn 6625. Front Microbiol 2019; 10:2030. [PMID: 31551967 PMCID: PMC6737455 DOI: 10.3389/fmicb.2019.02030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2018] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
Acquisition of the blaNDM–1 gene by Proteus mirabilis is a concern because it already has intrinsic resistance to polymyxin E and tigecycline antibiotics. Here, we describe a P. mirabilis isolate that carries a pPrY2001-like plasmid (pHFK418-NDM) containing a blaNDM–1 gene. The pPrY2001-like plasmid, pHFK418-NDM, was first reported in China. The pHFK418-NDM plasmid was sequenced using a hybrid approach based on Illumina and MinION platforms. The sequence of pHFK418-NDM was compared with those of the six other pPrY2001-like plasmids deposited in GenBank. We found that the multidrug-resistance encoding region of pHFK418-NDM contains ΔTn10 and a novel transposon Tn6625. Tn6625 consists of ΔTn1696, Tn6260, In251, ΔTn125 (carrying blaNDM–1), ΔTn2670, and a novel mph(E)-harboring transposon Tn6624. In251 was first identified in a clinical isolate, suggesting that it has been transferred efficiently from environmental organisms to clinical isolates. Genomic comparisons of all these pPrY2001-like plasmids showed that their relatively conserved backbones could integrate the numerous and various accessory modules carrying multifarious antibiotic resistance genes. Our results provide a greater depth of insight into the horizontal transfer of resistance genes and add interpretive value to the genomic diversity and evolution of pPrY2001-like plasmids.
Collapse
Affiliation(s)
- Dandan Dong
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Laboratory Diagnostics, The Medical Faculty of Qingdao University, Qingdao, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Manli Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Zhenzhen Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Laboratory Diagnostics, The Medical Faculty of Qingdao University, Qingdao, China
| | - Jiantao Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Laboratory Diagnostics, The Medical Faculty of Qingdao University, Qingdao, China
| | - Nan Jia
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Zhao
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Tingting Zhou
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yuanqi Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Laboratory Diagnostics, The Medical Faculty of Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Hamidian M, Hall RM. Genetic structure of four plasmids found in Acinetobacter baumannii isolate D36 belonging to lineage 2 of global clone 1. PLoS One 2018; 13:e0204357. [PMID: 30260997 PMCID: PMC6160057 DOI: 10.1371/journal.pone.0204357] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2018] [Accepted: 09/06/2018] [Indexed: 11/24/2022] Open
Abstract
Four plasmids ranging in size from 4.7 to 44.7 kb found in the extensively antibiotic resistant Acinetobacter baumannii isolate D36 that belongs to lineage 2 of global clone 1 were examined. D36 includes two cryptic plasmids and two carrying antibiotic resistance genes. The smallest plasmid pD36-1 (4.7 kb) carries no resistance genes but includes mobA and mobC mobilisation genes related to those found in pRAY* (pD36-2, 6,078 bp) that also carries the aadB gentamicin, kanamycin and tobramycin resistance gene cassette. These two plasmids do not encode a Rep protein. Plasmid pRAY* was found to be mobilised at high frequency by the large conjugative plasmid pA297-3 but a pRAY* derivative lacking the mobA and mobC genes was not. The two larger plasmids, pD36-3 and pD36-4, encode Rep_3 family proteins (Pfam1051). The cryptic plasmid pD36-3 (6.2 kb) has RepAci1 and pD36-4 (44.7 kb) encodes two novel Rep_3 family proteins suggesting a co-integrate. Plasmid pD36-4 includes the sul2 sulfonamide resistance gene, the aphA1a kanamycin/neomycin resistance gene in Tn4352::ISAba1 and a mer module in a hybrid Tn501/Tn1696 transposon conferring resistance to mercuric ions. New examples of dif modules flanked by pdif sites (XerC-XerD binding sites) that are part of many A. baumannii plasmids were also identified in pD36-3 and pD36-4 which carry three and two dif modules, respectively. Homologs of three dif modules, the sup sulphate permease module in pD36-3, and of the abkAB toxin-antitoxin module and the orf module in pD36-4, were found in different contexts in diverse Acinetobacter plasmids, consistent with module mobility. A novel insertion sequence named ISAba32 found next to the pdif site in the abkAB dif module is related to members of the ISAjo2 group which also are associated with the pdif sites of dif modules. Plasmids found in D36 were also found in some other members of GC1 lineage 2.
Collapse
Affiliation(s)
- Mohammad Hamidian
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales, Australia
- * E-mail:
| | - Ruth M. Hall
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Harmer CJ, Hall RM. Targeted conservative formation of cointegrates between two DNA molecules containing IS26occurs via strand exchange at either IS end. Mol Microbiol 2017; 106:409-418. [DOI: 10.1111/mmi.13774] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 08/16/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Christopher J. Harmer
- School of Life and Environmental Sciences; The University of Sydney; Sydney New South Wales Australia
| | - Ruth M. Hall
- School of Life and Environmental Sciences; The University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
17
|
Abstract
We recently showed that, in the absence of RecA-dependent homologous recombination, the Tnp26 transposase catalyzes cointegrate formation via a conservative reaction between two preexisting IS26, and this is strongly preferred over replicative transposition to a new site. Here, the reverse reaction was investigated by assaying for precise excision of the central region together with a single IS26 from a compound transposon bounded by IS26. In a recA mutant strain, Tn4352, a kanamycin resistance transposon carrying the aphA1a gene, was stable. However, loss of kanamycin resistance due to precise excision of the translocatable unit (TU) from the closely related Tn4352B, leaving behind the second IS26, occurred at high frequency. Excision occurred when Tn4352B was in either a high- or low-copy-number plasmid. The excised circular segment, known as a TU, was detected by PCR. Excision required the IS26 transposase Tnp26. However, the Tnp26 of only one IS26 in Tn4352B was required, specifically the IS26 downstream of the aphA1a gene, and the excised TU included the active IS26. The frequency of Tn4352B TU loss was influenced by the context of the transposon, but the critical determinant of high-frequency excision was the presence of three G residues in Tn4352B replacing a single G in Tn4352. These G residues are located immediately adjacent to the two G residues at the left end of the IS26 that is upstream of the aphA1a gene. Transcription of tnp26 was not affected by the additional G residues, which appear to enhance Tnp26 cleavage at this end. Resistance to antibiotics limits treatment options. In Gram-negative bacteria, IS26 plays a major role in the acquisition and dissemination of antibiotic resistance. IS257 (IS431) and IS1216, which belong to the same insertion sequence (IS) family, mobilize resistance genes in staphylococci and enterococci, respectively. Many different resistance genes are found in compound transposons bounded by IS26, and multiply and extensively antibiotic-resistant Gram-negative bacteria often include regions containing several antibiotic resistance genes and multiple copies of IS26. We recently showed that in addition to replicative transposition, IS26 can use a conservative movement mechanism in which an incoming IS26 targets a preexisting one, and this reaction can create these regions. This mechanism differs from that of all the ISs examined in detail thus far. Here, we have continued to extend understanding of the reactions carried out by IS26 by examining whether the reverse precise excision reaction is also catalyzed by the IS26 transposase.
Collapse
|
18
|
Tn6026 and Tn6029 are found in complex resistance regions mobilised by diverse plasmids and chromosomal islands in multiple antibiotic resistant Enterobacteriaceae. Plasmid 2015; 80:127-37. [PMID: 25917547 DOI: 10.1016/j.plasmid.2015.04.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2015] [Revised: 04/07/2015] [Accepted: 04/13/2015] [Indexed: 11/24/2022]
Abstract
Transposons flanked by direct copies of IS26 are important contributors to the evolution of multiple antibiotic resistance. Tn6029 and Tn6026 are examples of composite transposons that have become widely disseminated on small and large plasmids with different incompatibility markers in pathogenic and commensal Escherichia coli and various serovars of Salmonella enterica. Some of the plasmids that harbour these transposons also carry combinations of virulence genes. Recently, Tn6029 and Tn6026 and derivatives thereof have been found on chromosomal islands in both established and recently emerged pathogens. While Tn6029 and Tn6026 carry genes encoding resistance to older generation antibiotics, they also provide a scaffold for the introduction of genes encoding resistance to a wide variety of clinically relevant antibiotics that are mobilised by IS26. As a consequence, Tn6029 and Tn6026 or variants are likely to increasingly feature in complex resistance regions in multiple antibiotic resistant Enterobacteriaceae that threaten the health of humans and food production animals.
Collapse
|
19
|
Movement of IS26-associated antibiotic resistance genes occurs via a translocatable unit that includes a single IS26 and preferentially inserts adjacent to another IS26. mBio 2014; 5:e01801-14. [PMID: 25293759 PMCID: PMC4196232 DOI: 10.1128/mbio.01801-14] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
The insertion sequence IS26 plays a key role in disseminating antibiotic resistance genes in Gram-negative bacteria, forming regions containing more than one antibiotic resistance gene that are flanked by and interspersed with copies of IS26. A model presented for a second mode of IS26 movement that explains the structure of these regions involves a translocatable unit consisting of a unique DNA segment carrying an antibiotic resistance (or other) gene and a single IS copy. Structures resembling class I transposons are generated via RecA-independent incorporation of a translocatable unit next to a second IS26 such that the ISs are in direct orientation. Repeating this process would lead to arrays of resistance genes with directly oriented copies of IS26 at each end and between each unique segment. This model requires that IS26 recognizes another IS26 as a target, and in transposition experiments, the frequency of cointegrate formation was 60-fold higher when the target plasmid contained IS26. This reaction was conservative, with no additional IS26 or target site duplication generated, and orientation specific as the IS26s in the cointegrates were always in the same orientation. Consequently, the cointegrates were identical to those formed via the known mode of IS26 movement when a target IS26 was not present. Intact transposase genes in both IS26s were required for high-frequency cointegrate formation as inactivation of either one reduced the frequency 30-fold. However, the IS26 target specificity was retained. Conversion of each residue in the DDE motif of the Tnp26 transposase also reduced the cointegration frequency. Resistance to antibiotics belonging to several of the different classes used to treat infections is a critical problem. Multiply antibiotic-resistant bacteria usually carry large regions containing several antibiotic resistance genes, and in Gram-negative bacteria, IS26 is often seen in these clusters. A model to explain the unusual structure of regions containing multiple IS26 copies, each associated with a resistance gene, was not available, and the mechanism of their formation was unexplored. IS26-flanked structures deceptively resemble class I transposons, but this work reveals that the features of IS26 movement do not resemble those of the IS and class I transposons studied to date. IS26 uses a novel movement mechanism that defines a new family of mobile genetic elements that we have called “translocatable units.” The IS26 mechanism also explains the properties of IS257 (IS431) and IS1216, which belong to the same IS family and mobilize resistance genes in Gram-positive staphylococci and enterococci.
Collapse
|
20
|
Djordjevic SP, Stokes HW, Roy Chowdhury P. Mobile elements, zoonotic pathogens and commensal bacteria: conduits for the delivery of resistance genes into humans, production animals and soil microbiota. Front Microbiol 2013; 4:86. [PMID: 23641238 PMCID: PMC3639385 DOI: 10.3389/fmicb.2013.00086] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2013] [Accepted: 03/27/2013] [Indexed: 01/07/2023] Open
Abstract
Multiple antibiotic resistant pathogens represent a major clinical challenge in both human and veterinary context. It is now well-understood that the genes that encode resistance are context independent. That is, the same gene is commonly present in otherwise very disparate pathogens in both humans and production and companion animals, and among bacteria that proliferate in an agricultural context. This can be true even for pathogenic species or clonal types that are otherwise confined to a single host or ecological niche. It therefore follows that mechanisms of gene flow must exist to move genes from one part of the microbial biosphere to another. It is widely accepted that lateral (or horizontal) gene transfer (L(H)GT) drives this gene flow. LGT is relatively well-understood mechanistically but much of this knowledge is derived from a reductionist perspective. We believe that this is impeding our ability to deal with the medical ramifications of LGT. Resistance genes and the genetic scaffolds that mobilize them in multiply drug resistant bacteria of clinical significance are likely to have their origins in completely unrelated parts of the microbial biosphere. Resistance genes are increasingly polluting the microbial biosphere by contaminating environmental niches where previously they were not detected. More attention needs to be paid to the way that humans have, through the widespread application of antibiotics, selected for combinations of mobile elements that enhance the flow of resistance genes between remotely linked parts of the microbial biosphere. Attention also needs to be paid to those bacteria that link human and animal ecosystems. We argue that multiply antibiotic resistant commensal bacteria are especially important in this regard. More generally, the post genomics era offers the opportunity for understanding how resistance genes are mobilized from a one health perspective. In the long term, this holistic approach offers the best opportunity to better manage what is an enormous problem to humans both in terms of health and food security.
Collapse
|
21
|
Recombination in IS26 and Tn2 in the evolution of multiresistance regions carrying blaCTX-M-15 on conjugative IncF plasmids from Escherichia coli. Antimicrob Agents Chemother 2011; 55:4971-8. [PMID: 21859935 DOI: 10.1128/aac.00025-11] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
CTX-M-15 now appears to be the dominant extended-spectrum β-lactamase worldwide, and a number of different factors may contribute to this success. These include associations between bla(CTX-M-15) and particular plasmids (IncF) and/or strains, such as Escherichia coli ST131, as well as the genetic contexts in which this gene is found. We previously identified bla(CTX-M-15) as the dominant ESBL gene in the western Sydney area, Australia, and found that it was carried mainly on IncF or IncI1 plasmids. Here, we have mapped the multiresistance regions of the 11 conjugative plasmids with one or more IncF replicons obtained from that survey and conducted a limited comparison of plasmid backbones. Two plasmids with only an IncFII replicon appear to be very similar to the published plasmids pC15-1a and pEK516. The remaining nine plasmids, with multiple IncF replicons, have multiresistance regions related to those of pC15-1a and pEK516, but eight contain additional modules previously found in resistance plasmids from different geographic locations that carry a variety of different resistance genes. Differences between the multiresistance regions are largely due to IS26-mediated deletions, insertions, and/or rearrangements, which can explain the observed variable associations between bla(CTX-M-15) and certain other resistance genes. We found no evidence of independent movement of bla(CTX-M-15) or of a large multiresistance region between different plasmid backbones. Instead, homologous recombination between common components, such as IS26 and Tn2, appeared to be more important in creating new multiresistance regions, and this may be coupled with recombination in plasmid backbones to reassort multiple IncF replicons as well as components of multiresistance regions.
Collapse
|
22
|
Cain AK, Hall RM. Transposon Tn5393e Carrying theaphA1-Containing Transposon Tn6023Upstream ofstrABDoes Not Confer Resistance to Streptomycin. Microb Drug Resist 2011; 17:389-94. [DOI: 10.1089/mdr.2011.0037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Amy K. Cain
- School of Molecular Bioscience, The University of Sydney, New South Wales, Australia
| | - Ruth M. Hall
- School of Molecular Bioscience, The University of Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Abstract
Antibiotic resistance in Gram-negative bacteria is often due to the acquisition of resistance genes from a shared pool. In multiresistant isolates these genes, together with associated mobile elements, may be found in complex conglomerations on plasmids or on the chromosome. Analysis of available sequences reveals that these multiresistance regions (MRR) are modular, mosaic structures composed of different combinations of components from a limited set arranged in a limited number of ways. Components common to different MRR provide targets for homologous recombination, allowing these regions to evolve by combinatorial evolution, but our understanding of this process is far from complete. Advances in technology are leading to increasing amounts of sequence data, but currently available automated annotation methods usually focus on identifying ORFs and predicting protein function by homology. In MRR, where the genes are often well characterized, the challenge is to identify precisely which genes are present and to define the boundaries of complete and fragmented mobile elements. This review aims to summarize the types of mobile elements involved in multiresistance in Gram-negative bacteria and their associations with particular resistance genes, to describe common components of MRR and to illustrate methods for detailed analysis of these regions.
Collapse
Affiliation(s)
- Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The University of Sydney, Westmead Hospital, Sydney, NSW 2145, Australia.
| |
Collapse
|
24
|
Cain AK, Liu X, Djordjevic SP, Hall RM. Transposons Related to Tn1696in IncHI2 Plasmids in Multiply Antibiotic ResistantSalmonella entericaSerovar Typhimurium from Australian Animals. Microb Drug Resist 2010; 16:197-202. [DOI: 10.1089/mdr.2010.0042] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Amy K. Cain
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia
| | - Xiulan Liu
- Microbiology and Immunology Section, Elizabeth Macarthur Agricultural Institute, Industry and Investment New South Wales, Camden, New South Wales, Australia
- Department of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Steven P. Djordjevic
- Microbiology and Immunology Section, Elizabeth Macarthur Agricultural Institute, Industry and Investment New South Wales, Camden, New South Wales, Australia
| | - Ruth M. Hall
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
AbaR5, a large multiple-antibiotic resistance region found in Acinetobacter baumannii. Antimicrob Agents Chemother 2009; 53:2667-71. [PMID: 19364869 DOI: 10.1128/aac.01407-08] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
A multiply antibiotic-resistant Acinetobacter baumannii strain, 3208, contains the aacC1-orfP-orfP-orfQ-aadA1 gene cassette array; sul1, tetA(A), and aphA1b genes; and a mer operon in a large region containing a novel transposon, Tn6020, and segments of Tn1696, Tn21, Tn1721, and Tn5393. This region is part of a genomic resistance island, AbaR5, related to and found in the same chromosomal position as AbaR1. This strain is the first European clone I isolate detected in Australia.
Collapse
|
26
|
Chen CY, Nace GW, Solow B, Fratamico P. Complete nucleotide sequences of 84.5- and 3.2-kb plasmids in the multi-antibiotic resistant Salmonella enterica serovar Typhimurium U302 strain G8430. Plasmid 2006; 57:29-43. [PMID: 16828159 DOI: 10.1016/j.plasmid.2006.05.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2006] [Revised: 05/11/2006] [Accepted: 05/12/2006] [Indexed: 01/09/2023]
Abstract
The multi-antibiotic resistant (MR) Salmonella enterica serovar Typhimurium phage type U302 strain G8430 exhibits the penta-resistant ACSSuT-phenotype (ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracycline), and is also resistant to carbenicillin, erythromycin, kanamycin, and gentamicin. Two plasmids, 3.2- and 84.5-kb in size, carrying antibiotic resistance genes were isolated from this strain, and the nucleotide sequences were determined and analyzed. The 3.2-kb plasmid, pU302S, belongs to the ColE1 family and carries the aph(3')-I gene (Kan(R)). The 84.5-kb plasmid, pU302L, is an F-like plasmid and contains 14 complete IS elements and multiple resistance genes including aac3, aph(3')-I, sulII, tetA/R, strA/B, bla(TEM-1), mph, and the mer operon. Sequence analyses of pU302L revealed extensive homology to various plasmids or transposons, including F, R100, pHCM1, pO157, and pCTX-M3 plasmids and TnSF1 transposon, in regions involved in plasmid replication/maintenance functions and/or in antibiotic resistance gene clusters. Though similar to the conjugative plasmids F and R100 in the plasmid replication regions, pU302L does not contain oriT and the tra genes necessary for conjugal transfer. This mosaic pattern of sequence similarities suggests that pU302L acquired the resistance genes from a variety of enteric bacteria and underscores the importance of a further understanding of horizontal gene transfer among the enteric bacteria.
Collapse
Affiliation(s)
- Chin-Yi Chen
- Eastern Regional Research Center, Agriculture Research Service, US Department of Agriculture, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA.
| | | | | | | |
Collapse
|
27
|
García A, Navarro F, Miró E, Mirelis B, Campoy S, Coll P. Characterization of the highly variable region surrounding the blaCTX-M-9 gene in non-related Escherichia coli from Barcelona. J Antimicrob Chemother 2005; 56:819-26. [PMID: 16188915 DOI: 10.1093/jac/dki345] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The dispersion of a clone, a plasmid or a mobile element carrying the bla(CTX-M-9) gene was evaluated in 30 Escherichia coli strains isolated in Barcelona between 1996 and 1999. The presence of the previously described orf513-bearing class 1 integron, In60, carrying the bla(CTX-M-9) gene, was also studied. METHODS The clonality was analysed by pulsed-field gel electrophoresis. Plasmid analysis was performed by S1 digestion and hybridization with the CTX-M-9 probe. PCR mapping using specific designed primers was used to study the presence of In60 and In60-like structures. RESULTS The clonality between the 30 strains was minor. The size of bla(CTX-M-9) carrying plasmids ranged between approximately 80 and 430 kb. One strain produced only a chromosome-encoded CTX-M-9 beta-lactamase. Thirty-six per cent of the strains showed differences with respect to the In60 structure due to an insertion or deletion events. CONCLUSIONS These findings suggest that the bla(CTX-M-9) gene may be carried by a mobile element that disperses it between plasmids. The fast dispersion of the CTX-M-9 enzyme could therefore be due to both diffusion of plasmids and mobile elements.
Collapse
Affiliation(s)
- Aurora García
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Miriagou V, Carattoli A, Tzelepi E, Villa L, Tzouvelekis LS. IS26-associated In4-type integrons forming multiresistance loci in enterobacterial plasmids. Antimicrob Agents Chemother 2005; 49:3541-3. [PMID: 16048979 PMCID: PMC1196216 DOI: 10.1128/aac.49.8.3541-3543.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Three distinct multiresistant loci from enterobacterial plasmids each comprised an integron and an IS26-associated sequence. Sequence comparison suggested a common ancestral structure that derived from an IS26 insertion into the 5' conserved segment of an In4-type integron and evolved through acquisition of gene cassettes and IS26-mediated recruitment of additional resistance genes of diverse origin.
Collapse
Affiliation(s)
- Vivi Miriagou
- Laboratory of Bacteriology, Hellenic Pasteur Institute, Vas. Sofias 127, Athens 11521, Greece.
| | | | | | | | | |
Collapse
|
29
|
Miriagou V, Tzouvelekis LS, Villa L, Lebessi E, Vatopoulos AC, Carattoli A, Tzelepi E. CMY-13, a novel inducible cephalosporinase encoded by an Escherichia coli plasmid. Antimicrob Agents Chemother 2004; 48:3172-4. [PMID: 15273143 PMCID: PMC478546 DOI: 10.1128/aac.48.8.3172-3174.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
An IncN plasmid (p541) from Escherichia coli carried a Citrobacter freundii-derived sequence of 4,252 bp which included an ampC-ampR region and was bound by two directly repeated IS26 elements. ampC encoded a novel cephalosporinase (CMY-13) with activity similar to that of CMY-2. AmpR was likely functional as indicated in induction experiments.
Collapse
Affiliation(s)
- V Miriagou
- Laboratory of Bacteriology, Hellenic Pasteur Institute, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
30
|
Doroshenko VG, Livshits VA. Structure and mode of transposition of Tn2555 carrying sucrose utilization genes. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09503.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022] Open
|
31
|
Abstract
Aminoglycoside antibiotics have had a major impact on our ability to treat bacterial infections for the past half century. Whereas the interest in these versatile antibiotics continues to be high, their clinical utility has been compromised by widespread instances of resistance. The multitude of mechanisms of resistance is disconcerting but also illuminates how nature can manifest resistance when bacteria are confronted by antibiotics. This article reviews the most recent knowledge about the mechanisms of aminoglycoside action and the mechanisms of resistance to these antibiotics.
Collapse
Affiliation(s)
- Sergei B Vakulenko
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
32
|
Abstract
A complex class 1 integron, In34, found in a conjugative plasmid from a multidrug-resistant Klebsiella pneumoniae strain isolated in 1997 at a hospital in Sydney, Australia, was shown to have a backbone related to that of In2, which belongs to the In5 family. In In34, the aadB gene cassette replaces the aadA1a cassette in In2, and two additional resistance genes, dfrA10 and aphA1, that are not part of a gene cassette are present. The aphA1 gene is in a Tn4352-like transposon that is located in the tniA gene. The dfrA10 gene lies adjacent to a 2,154-bp DNA segment, known as the common region, that contains an open reading frame predicting a product of 513 amino acids (Orf513). Orf513 is 66 and 55% identical to the products of two further open reading frames that, like the common region, are found adjacent to antibiotic resistance genes. A 27-bp conserved sequence was found at one end of each type of common region. The loss of dfrA10 due to homologous recombination between flanking direct repeats and incorporation of the excised circle by homologous recombination were demonstrated. Part of In34 is identical to the sequenced portion of In7, which is from a multidrug-resistant Escherichia coli strain that had been isolated 19 years earlier in the same hospital. In34 and In7 are in plasmids that contain the same six resistance genes conferring resistance to ampicillin, chloramphenicol, gentamicin, kanamycin, neomycin, tobramycin, trimethoprim, and sulfonamides, but the plasmid backbones appear to be unrelated, suggesting that translocation of a multiple-drug-resistance-determining region as well as horizontal transfer may have occurred.
Collapse
Affiliation(s)
- Sally R Partridge
- CSIRO Molecular Science, Riverside Life Sciences Centre, Riverside Corporate Park, North Ryde, NSW 2113, Australia
| | | |
Collapse
|
33
|
Noguchi N, Emura A, Matsuyama H, O'Hara K, Sasatsu M, Kono M. Nucleotide sequence and characterization of erythromycin resistance determinant that encodes macrolide 2'-phosphotransferase I in Escherichia coli. Antimicrob Agents Chemother 1995; 39:2359-63. [PMID: 8619599 PMCID: PMC162946 DOI: 10.1128/aac.39.10.2359] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023] Open
Abstract
The DNA fragment (3.3 kb) containing the erythromycin resistance determinant was cloned from Escherichia coli Tf481A and sequenced. Deletion and complementation analyses indicated that the expression of high-level resistance to erythromycin requires two genes, mphA and mrx, which encode macrolide 2'-phosphotransferase I and an unidentified hydrophobic protein, respectively.
Collapse
Affiliation(s)
- N Noguchi
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Barg NL, Register S, Thomson C, Amyes S. Sequence identity with type VIII and association with IS176 of type IIIc dihydrofolate reductase from Shigella sonnei. Antimicrob Agents Chemother 1995; 39:112-6. [PMID: 7695291 PMCID: PMC162495 DOI: 10.1128/aac.39.1.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023] Open
Abstract
An uncommon dihydrofolate reductase (DHFR), type IIIc, was coded for by Shigella sonnei that harbors plasmid pBH700 and that was isolated in North Carolina. The trimethoprim resistance gene carried on pBH700 was subcloned and sequenced. The nucleotide sequence of the gene encoding type IIIc DHFR was identical to the gene encoding type VIII DHFR. The type IIIc amino acid sequence was approximately 50% similar to those of DHFRs commonly found in enteric bacteria. Furthermore, this gene was flanked by IS176 (IS26), an insertion sequence usually associated with those of aminoglycoside resistance genes. The gene for type IIIc DHFR was located by hybridization within a 1,993-bp PstI fragment in each of eight conjugative plasmids from geographically diverse strains of S. sonnei. Each plasmid also conferred resistance to ampicillin, streptomycin, and sulfamethoxazole and belonged to incompatibility group M. Plasmids carrying this new trimethoprim resistance gene, which is uniquely associated with IS176, have disseminated throughout the United States.
Collapse
Affiliation(s)
- N L Barg
- Department of Medicine, Vanderbilt University Medical School, Nashville, Tennessee
| | | | | | | |
Collapse
|
35
|
Elhai J, Cai Y, Wolk CP. Conduction of pEC22, a plasmid coding for MR.EcoT22I, mediated by a resident Tn3-like transposon, Tn5396. J Bacteriol 1994; 176:5059-67. [PMID: 8051018 PMCID: PMC196345 DOI: 10.1128/jb.176.16.5059-5067.1994] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023] Open
Abstract
pEC22 is a small plasmid that encodes the restriction-modification system MR.EcoT22I. Restriction and functional analysis of the plasmid identified the positions of genes encoding that system. The plasmid is able to be conducted by conjugal plasmids, a process mediated by a transposon contained within pEC22. This cryptic transposon, called Tn5396, was isolated from pEC22 and partially sequenced. The sequence of Tn5396 is for the most part typical of transposons of the Tn3 family and is most similar to that of Tn1000. The transposon differs from closely related transposons in that it lacks well-conserved sequences in the inverted-repeat region and has an unusually long terminal inverted repeat. Consideration of regions of internal sequence similarity in this and other transposons in the Tn3 family supports a theory of the mechanism by which the ends of Tn3-like transposons may maintain substantial identity between their inverted repeats over the course of evolutionary time.
Collapse
Affiliation(s)
- J Elhai
- Michigan State University-Department of Energy Plant Research Laboratory, East Lansing 48824
| | | | | |
Collapse
|
36
|
Lambert T, Gerbaud G, Courvalin P. Characterization of transposon Tn1528, which confers amikacin resistance by synthesis of aminoglycoside 3'-O-phosphotransferase type VI. Antimicrob Agents Chemother 1994; 38:702-6. [PMID: 8031033 PMCID: PMC284528 DOI: 10.1128/aac.38.4.702] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023] Open
Abstract
Providencia stuartii BM2667, which was isolated from an abdominal abscess, was resistant to amikacin by synthesis of aminoglycoside 3'-O-phosphotransferase type VI. The corresponding gene, aph(3')-VIa, was carried by a 30-kb self-transferable plasmid of incompatibility group IncN. The resistance gene was cloned into pUC18, and the recombinant plasmid, pAT246, was transformed into Escherichia coli DH1 (recA) harboring pOX38Gm. The resulting clones were mixed with E. coli HB101 (recA), and transconjugants were used to transfer pAT246 by plasmid conduction to E. coli K802N (rec+). Analysis of plasmid DNAs from the transconjugants of K802N by agarose gel electrophoresis and Southern hybridization indicated the presence of a transposon, designated Tn1528, in various sites of pOX38Gm. This 5.2-kb composite element consisted of aph(3')-VIa flanked by two direct copies of IS15-delta and transposed at a frequency of 4 x 10(-5). It therefore appears that IS15-delta, an insertion sequence widely spread in gram-negative bacteria, is likely responsible for dissemination to members of the family Enterobacteriaceae of aph(3')-VIa, a gene previously confined to Acinetobacter spp.
Collapse
Affiliation(s)
- T Lambert
- Centre d'Etudes Pharmaceutiques, Chatenay-Malabry, Paris, France
| | | | | |
Collapse
|
37
|
Navashin SM, Vakulenko SB. DNA probes for studies of aminoglycoside resistance in enterobacteriaceae clinical strains. World J Microbiol Biotechnol 1992; 8 Suppl 1:33-5. [DOI: 10.1007/bf02421485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
|
38
|
Abstract
We have determined the complete nucleotide sequence of the 8.3-kb multicopy plasmid NTP16 and produced a functional map of its gene organization. Sixty percent of the plasmid DNA comprises transposon-derived sequences; in the remaining 3320 bp, we have identified three protein coding regions. NTP16 has a ColE1-type replication system, a cis-acting stability locus and a mobilization system comprising an oriT site and one mobilization protein. The roles of the other two protein products of this plasmid are unknown, but they are possibly involved in the plasmid incompatibility system.
Collapse
Affiliation(s)
- P M Cannon
- Department of Genetics and Microbiology, University of Liverpool, United Kingdom
| | | |
Collapse
|
39
|
Abstract
A new aminoglycoside resistance gene (aphA1-IAB) confers high-level resistance to neomycin. The sequence of aphA1-IAB is closely related to aphA1 found in the transposons Tn4352, Tn903 and Tn602. For example, aphA1-IAB differs from aphA1-903 at five nucleotides that result in four amino acid replacements. The enzyme encoded by aphA1-IAB has a significantly higher turnover number with neomycin, kanamycin and G418 as substrates than does the aphA1-903 enzyme. A parsimonious phylogenetic tree suggests that aphA1-IAB evolved from an ancestral form that is closely related or identical to the aphA1 found in Tn903. The excess of replacement substitutions over silent substitutions in aphA1-IAB, as well as its convergence toward aphA3 from Staphylococcus aureus, is indicative of selective evolution. Our hypothesis to explain these results is that aphA1-IAB evolved under the selective pressure of neomycin use in relatively recent times.
Collapse
Affiliation(s)
- K Y Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis 95616
| | | | | |
Collapse
|
40
|
Abstract
The plasmid pBWH77, originally found in an isolate of Klebsiella pneumoniae, harbors a new antibiotic resistance operon containing two resistance genes transcribed from an IS26-hybrid promoter, as shown by nucleotide sequencing, mRNA mapping, and the effect of inserting a transcription terminator within the promoter-proximal gene. The nucleotide sequence of this region revealed that the operon (IAB) is made up of three sections that are closely related to previously described genetic elements. The -35 region of the promoter, together with the adjacent sequence, is identical to sequences of the IS26 element. One of the resistance genes, aphA7, which is located next to the hybrid promoter, confers assistance to neomycin and structurally related aminoglycosides. This aphA7 gene is highly homologous to aphA1 of Tn903, with five nucleotide differences. The second gene, blaS2A, encodes an evolved SHV-type beta-lactamase with a pI of 7.6 that confers resistance to the broad-spectrum cephalosporins cefotaxime and ceftizoxime. The deduced amino acid sequence of SHV-2A shows that amino acid 238 is a serine, a residue reported to confer resistance to cefotaxime. We discuss how the operon may have evolved by a combination of insertion sequence-mediated genetic rearrangements and acquisitive evolution. Using phylogenetic parsimony, we show that aphA7 in the IAB operon evolved from an ancestral form similar to aphA1 in Tn903 and that blaS2A evolved from an ancestral form similar to blaS1.
Collapse
Affiliation(s)
- K Y Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis 95616
| | | | | |
Collapse
|
41
|
Colonna B, Bernardini M, Micheli G, Maimone F, Nicoletti M, Casalino M. The Salmonella wien virulence plasmid pZM3 carries Tn1935, a multiresistance transposon containing a composite IS1936-kanamycin resistance element. Plasmid 1988; 20:221-31. [PMID: 2854280 DOI: 10.1016/0147-619x(88)90028-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
Tn1935, a 23.5-kb transposon mediating resistance to ampicillin, kanamycin, mercury, spectinomycin, and sulfonamide was isolated from pZM3, an IncFIme virulence plasmid from Salmonella wien. Tn1935 possesses the entire sequence of Tn21 and contains two additional DNA segments of 0.95 and 2.7 kb carrying the ampicillin and kanamycin resistance genes, respectively. The latter is part of a composite element since it is flanked by two IS15-like insertion sequences (IS1936) in direct orientation. IS1936 is about 800 bp long and is closely related to IS15 delta, IS26, IS46, IS140, and IS176. Functional analysis of IS1936-mediated cointegrates shows that both insertion sequences are active and able to form cointegrates at the same frequency. Resolution of the cointegrates requires the presence of the host Rec system. The presence of the composite IS1936-element within Tn1935 supports the hypothesis that multidrug resistance transposons evolved by insertion of antibiotic determinants which are themselves transposable.
Collapse
Affiliation(s)
- B Colonna
- Dipartimento di Biologia Cellulare e dello Sviluppo, Universitá di Roma La Sapienza, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Pansegrau W, Miele L, Lurz R, Lanka E. Nucleotide sequence of the kanamycin resistance determinant of plasmid RP4: homology to other aminoglycoside 3'-phosphotransferases. Plasmid 1987; 18:193-204. [PMID: 2832861 DOI: 10.1016/0147-619x(87)90062-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
The kanamycin resistance determinant of the broad-host-range plasmid RP4 encodes an aminoglycoside 3'-phosphotransferase of type I. The nucleotide sequence of the kanamycin resistance gene (Kmr) and the right end of the insertion element IS8 of plasmid RP4 has been determined. The gene (816 bp) is located between IS8 and the region (Tra 1) encoding plasmid factors mediating bacterial conjugation. Kmr and Tra 1 are transcribed toward each other. The nucleotide sequence has been compared to five related aphA genes originating from gram-negative and gram-positive organisms and from antibiotic producers. Among these that of Tn903 shares the highest degree of similarity (60%) with the RP4 gene. Significant similarities were also detected between the amino acid sequences of the six enzymes. The C-terminal domains of six different aminoglycoside 3'-phosphotransferases (APH(3'] are highly conserved. They are substantially similar to segments of a variety of enzymes using ATP as cofactor. The role of the C-terminal sequences of APH(3') as potential domains for ATP recognition and binding is discussed.
Collapse
Affiliation(s)
- W Pansegrau
- Max-Planck-Institut für Molekulare Genetik, Abteilung Schuster, Berlin, Germany
| | | | | | | |
Collapse
|
43
|
Vakulenko S, Kálmán M, Horváth B, Simoncsits A. The nucleotide sequence of an aminoglycoside 3'-phosphotransferase gene from E. coli. Nucleic Acids Res 1987; 15:8111. [PMID: 2823223 PMCID: PMC306333 DOI: 10.1093/nar/15.19.8111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- S Vakulenko
- Institute of Genetics, Hungarian Academy of Sciences, Szeged
| | | | | | | |
Collapse
|
44
|
Abstract
Mobilization of the multicopy plasmid NTP16, like that of ColE1, is promoted by a range of conjugal plasmids. However, the mechanisms employed for NTP16 mobilization differ between groups. Mobilization by the IncI1 plasmid R64 requires trans-acting products from NTP16 plus a cis-acting region of the small plasmid. In contrast, this system is used inefficiently by the F plasmid and instead, a high-frequency conduction process occurs. Analysis of exconjugant cells reveals that F-mediated mobilization of NTP16 frequently involves rearrangements of NTP16 DNA, promoted by the Tn1000 transposon of F and/or by the kanamycin resistance transposon (Tn4352) of NTP16. Possible mechanisms for the high-frequency F-mediated mobilization of NTP16 are discussed. The plasmid NTP1, which is closely related to NTP16, is also mobilized efficiently by R64. It is not however efficiently mobilized by F, demonstrating the requirement for the Tn4352 element, which is not present in this plasmid, for effective F-mediated transfer.
Collapse
Affiliation(s)
- C M Lambert
- Department of Genetics, University of Liverpool, England
| | | | | |
Collapse
|
45
|
Abstract
A functional and physical analysis of the multicopy plasmid NTP16 is presented. The plasmid-encoded drug resistance determinants are located, as are regions encoding the origin of replication, incompatibility functions, copy number determinants, and mobility functions. It is demonstrated that NTP16 probably arose from the closely related plasmid NTP1 by the acquisition of a novel kanamycin resistance transposon, Tn4352, followed by deletion of some NTP1 sequences. The incompatibility behavior of NTP16 derivatives indicates a system of control rather more complex than that which operates in ColE1. In addition to the RNA I/primer RNA system, the production of a further trans-acting product is demonstrated and its site of action located. A series of derivative plasmids have been created which may prove useful as vectors for genetic engineering.
Collapse
|