1
|
Kim JA, Berlow NE, Lathara M, Bharathy N, Martin LR, Purohit R, Cleary MM, Liu Q, Michalek JE, Srinivasa G, Cole BL, Chen SD, Keller C. Sensitization of osteosarcoma to irradiation by targeting nuclear FGFR1. Biochem Biophys Res Commun 2022; 621:101-108. [DOI: 10.1016/j.bbrc.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022]
|
2
|
Zhang X, Zhang H, Gong J, Yu H, Wu D, Hou J, Li M, Sun X. Aging affects the biological activity of fibroblast growth factor (FGF) in gastric epithelial cell, which is partially rescued by uridine. Bioengineered 2022; 13:3724-3738. [PMID: 35105283 PMCID: PMC8974118 DOI: 10.1080/21655979.2022.2029066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aging has become an irreversible trend in the world, the health problems caused by aging cannot be ignored. The physiological functions of human body begin to decline with aging, the decline of gastrointestinal function caused by aging is an important problem that needs to be resolved. In this work, we evaluated the anti-aging effect of uridine in the senescent gastric epithelial cell model, and found that the aging level of gastric epithelial cell was significantly down-regulated by uridine treatment, uridine could obviously down-regulate the ratio of the SA-β-gal-positive senescent cells. Furthermore, aging-related marker molecules (such as p16 and p21) were also significantly down-regulated under uridine treatment. Additionally, the levels of inflammation and oxidative stress were also significantly reduced by uridine treatment. Next, our further studies the effect of aging on FGF activity on gastric epithelial cell, and found that FGF/FGFR-mediated signaling pathways were significantly down-regulated. However, uridine treatment can not only alleviate the senescence of gastric epithelial cell, but also can partially restore the sensitivity of FGF signaling. Taken together, the current work indicates that uridine shows a good anti-aging effect, which lays a solid foundation for the related research in this filed.
Collapse
Affiliation(s)
- Xiaomei Zhang
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| | - Huifeng Zhang
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| | - Jingli Gong
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| | - Huan Yu
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| | - Di Wu
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| | - Junyu Hou
- School of Pharmacy, Beihua University, Jilin City, China
| | - Minghui Li
- School of Pharmacy, Beihua University, Jilin City, China
| | - Xin Sun
- School of Pharmacy, Jilin Medical University, Jilin city, Jilin Province, 132013 China
| |
Collapse
|
3
|
Tuzon CT, Rigueur D, Merrill AE. Nuclear Fibroblast Growth Factor Receptor Signaling in Skeletal Development and Disease. Curr Osteoporos Rep 2019; 17:138-146. [PMID: 30982184 PMCID: PMC8221190 DOI: 10.1007/s11914-019-00512-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Fibroblast growth factor receptor (FGFR) signaling regulates proliferation and differentiation during development and homeostasis. While membrane-bound FGFRs play a central role in these processes, the function of nuclear FGFRs is also critical. Here, we highlight mechanisms for nuclear FGFR translocation and the effects of nuclear FGFRs on skeletal development and disease. RECENT FINDINGS Full-length FGFRs, internalized by endocytosis, enter the nucleus through β-importin-dependent mechanisms that recognize the nuclear localization signal within FGFs. Alternatively, soluble FGFR intracellular fragments undergo nuclear translocation following their proteolytic release from the membrane. FGFRs enter the nucleus during the cellular transition between proliferation and differentiation. Once nuclear, FGFRs interact with chromatin remodelers to alter the epigenetic state and transcription of their target genes. Dysregulation of nuclear FGFR is linked to the etiology of congenital skeletal disorders and neoplastic transformation. Revealing the activities of nuclear FGFR will advance our understanding of 20 congenital skeletal disorders caused by FGFR mutations, as well as FGFR-related cancers.
Collapse
Affiliation(s)
- Creighton T Tuzon
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA
| | - Diana Rigueur
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA
| | - Amy E Merrill
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
4
|
Membrane-Associated, Not Cytoplasmic or Nuclear, FGFR1 Induces Neuronal Differentiation. Cells 2019; 8:cells8030243. [PMID: 30875802 PMCID: PMC6468866 DOI: 10.3390/cells8030243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/04/2019] [Accepted: 03/08/2019] [Indexed: 01/22/2023] Open
Abstract
The intracellular transport of receptor tyrosine kinases results in the differential activation of various signaling pathways. In this study, optogenetic stimulation of fibroblast growth factor receptor type 1 (FGFR1) was performed to study the effects of subcellular targeting of receptor kinases on signaling and neurite outgrowth. The catalytic domain of FGFR1 fused to the algal light-oxygen-voltage-sensing (LOV) domain was directed to different cellular compartments (plasma membrane, cytoplasm and nucleus) in human embryonic kidney (HEK293) and pheochromocytoma (PC12) cells. Blue light stimulation elevated the pERK and pPLCγ1 levels in membrane-opto-FGFR1-transfected cells similarly to ligand-induced receptor activation; however, no changes in pAKT levels were observed. PC12 cells transfected with membrane-opto-FGFR1 exhibited significantly longer neurites after light stimulation than after growth factor treatment, and significantly more neurites extended from their cell bodies. The activation of cytoplasmic FGFR1 kinase enhanced ERK signaling in HEK293 cells but not in PC12 cells and did not induce neuronal differentiation. The stimulation of FGFR1 kinase in the nucleus also did not result in signaling changes or neurite outgrowth. We conclude that FGFR1 kinase needs to be associated with membranes to induce the differentiation of PC12 cells mainly via ERK activation.
Collapse
|
5
|
Papadopoulos N, Lennartsson J, Heldin CH. PDGFRβ translocates to the nucleus and regulates chromatin remodeling via TATA element-modifying factor 1. J Cell Biol 2018; 217:1701-1717. [PMID: 29545370 PMCID: PMC5940298 DOI: 10.1083/jcb.201706118] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/05/2018] [Accepted: 02/01/2018] [Indexed: 12/24/2022] Open
Abstract
PDGFRβ translocates to the nucleus in a ligand-dependent manner tethered by TATA element–modifying factor 1 (TMF-1). Papadopoulos et al. show that PDGFRβ interacts with TMF-1 and Fer kinase in the nucleus, regulating chromatin remodeling by the SWI–SNF complex and controlling proliferation via a p21-dependent mechanism. Translocation of full-length or fragments of receptors to the nucleus has been reported for several tyrosine kinase receptors. In this paper, we show that a fraction of full-length cell surface platelet-derived growth factor (PDGF) receptor β (PDGFRβ) accumulates in the nucleus at the chromatin and the nuclear matrix after ligand stimulation. Nuclear translocation of PDGFRβ was dependent on PDGF-BB–induced receptor dimerization, clathrin-mediated endocytosis, β-importin, and intact Golgi, occurring in both normal and cancer cells. In the nucleus, PDGFRβ formed ligand-inducible complexes with the tyrosine kinase Fer and its substrate, TATA element–modifying factor 1 (TMF-1). PDGF-BB stimulation decreased TMF-1 binding to the transcriptional regulator Brahma-related gene 1 (Brg-1) and released Brg-1 from the SWI–SNF chromatin remodeling complex. Moreover, knockdown of TMF-1 by small interfering RNA decreased nuclear translocation of PDGFRβ and caused significant up-regulation of the Brg-1/p53-regulated cell cycle inhibitor CDKN1A (encoding p21) without affecting PDGFRβ-inducible immediate-early genes. In conclusion, nuclear interactions of PDGFRβ control proliferation by chromatin remodeling and regulation of p21 levels.
Collapse
Affiliation(s)
- Natalia Papadopoulos
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden
| | - Johan Lennartsson
- Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden.,Department of Pharmaceutical Biomedicine, Uppsala University, Uppsala, Sweden
| | - Carl-Henrik Heldin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden .,Science for Life Laboratory, Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Kesten D, Horovitz-Fried M, Brutman-Barazani T, Sampson SR. Insulin-induced translocation of IR to the nucleus in insulin responsive cells requires a nuclear translocation sequence. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:551-559. [PMID: 29317261 DOI: 10.1016/j.bbamcr.2018.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 02/02/2023]
Abstract
Insulin binding to its cell surface receptor (IR) activates a cascade of events leading to its biological effects. The Insulin-IR complex is rapidly internalized and then is either recycled back to the plasma membrane or sent to lysosomes for degradation. Although most of the receptor is recycled or degraded, a small amount may escape this pathway and migrate to the nucleus of the cell where it might be important in promulgation of receptor signals. In this study we explored the mechanism by which insulin induces IR translocation to the cell nucleus. Experiments were performed cultured L6 myoblasts, AML liver cells and 3T3-L1 adipocytes. Insulin treatment induced a rapid increase in nuclear IR protein levels within 2 to 5 min. Treatment with WGA, an inhibitor of nuclear import, reduced insulin-induced increases nuclear IR protein; IR was, however, translocated to a perinuclear location. Bioinformatics tools predicted a potential nuclear localization sequence (NLS) on IR. Immunofluorescence staining showed that a point mutation on the predicted NLS blocked insulin-induced IR nuclear translocation. In addition, blockade of nuclear IR activation in isolated nuclei by an IR blocking antibody abrogated insulin-induced increases in IR tyrosine phosphorylation and nuclear PKCδ levels. Furthermore, over expression of mutated IR reduced insulin-induced glucose uptake and PKB phosphorylation. When added to isolated nuclei, insulin induced IR phosphorylation but had no effect on nuclear IR protein levels. These results raise questions regarding the possible role of nuclear IR in IR signaling and insulin resistance.
Collapse
Affiliation(s)
- Dov Kesten
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | - Sanford R Sampson
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
7
|
Narla ST, Lee YW, Benson C, Sarder P, Brennand K, Stachowiak E, Stachowiak M. Common developmental genome deprogramming in schizophrenia - Role of Integrative Nuclear FGFR1 Signaling (INFS). Schizophr Res 2017; 185:17-32. [PMID: 28094170 PMCID: PMC5507209 DOI: 10.1016/j.schres.2016.12.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Abstract
The watershed-hypothesis of schizophrenia asserts that over 200 different mutations dysregulate distinct pathways that converge on an unspecified common mechanism(s) that controls disease ontogeny. Consistent with this hypothesis, our RNA-sequencing of neuron committed cells (NCCs) differentiated from established iPSCs of 4 schizophrenia patients and 4 control subjects uncovered a dysregulated transcriptome of 1349 mRNAs common to all patients. Data reveals a global dysregulation of developmental genome, deconstruction of coordinated mRNA networks, and the formation of aberrant, new coordinated mRNA networks indicating a concerted action of the responsible factor(s). Sequencing of miRNA transcriptomes demonstrated an overexpression of 16 miRNAs and deconstruction of interactive miRNA-mRNA networks in schizophrenia NCCs. ChiPseq revealed that the nuclear (n) form of FGFR1, a pan-ontogenic regulator, is overexpressed in schizophrenia NCCs and overtargets dysregulated mRNA and miRNA genes. The nFGFR1 targeted 54% of all human gene promoters and 84.4% of schizophrenia dysregulated genes. The upregulated genes reside within major developmental pathways that control neurogenesis and neuron formation, whereas downregulated genes are involved in oligodendrogenesis. Our results indicate (i) an early (preneuronal) genomic etiology of schizophrenia, (ii) dysregulated genes and new coordinated gene networks are common to unrelated cases of schizophrenia, (iii) gene dysregulations are accompanied by increased nFGFR1-genome interactions, and (iv) modeling of increased nFGFR1 by an overexpression of a nFGFR1 lead to up or downregulation of selected genes as observed in schizophrenia NCCs. Together our results designate nFGFR1 signaling as a potential common dysregulated mechanism in investigated patients and potential therapeutic target in schizophrenia.
Collapse
Affiliation(s)
- S. T. Narla
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA,Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, NY, USA
| | - Y-W. Lee
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - C.A. Benson
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA,Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, NY, USA
| | - P. Sarder
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - K. Brennand
- Icahn School of Medicine at Mount Sinai, Departments of Psychiatry and Neuroscience, New York, NY, USA
| | - E.K. Stachowiak
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA,Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, NY, USA
| | - M.K. Stachowiak
- Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY, USA,Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, NY, USA,Correspondence should be addressed to Michal K. Stachowiak Department of Pathology and Anatomical Sciences, SUNY, 3435 Main Street, 206A Farber Hall, Buffalo, N.Y. 14214, tel. (716) 829 3540
| |
Collapse
|
8
|
Terranova C, Narla ST, Lee YW, Bard J, Parikh A, Stachowiak EK, Tzanakakis ES, Buck MJ, Birkaya B, Stachowiak MK. Global Developmental Gene Programing Involves a Nuclear Form of Fibroblast Growth Factor Receptor-1 (FGFR1). PLoS One 2015; 10:e0123380. [PMID: 25923916 PMCID: PMC4414453 DOI: 10.1371/journal.pone.0123380] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/17/2015] [Indexed: 12/11/2022] Open
Abstract
Genetic studies have placed the Fgfr1 gene at the top of major ontogenic pathways that enable gastrulation, tissue development and organogenesis. Using genome-wide sequencing and loss and gain of function experiments the present investigation reveals a mechanism that underlies global and direct gene regulation by the nuclear form of FGFR1, ensuring that pluripotent Embryonic Stem Cells differentiate into Neuronal Cells in response to Retinoic Acid. Nuclear FGFR1, both alone and with its partner nuclear receptors RXR and Nur77, targets thousands of active genes and controls the expression of pluripotency, homeobox, neuronal and mesodermal genes. Nuclear FGFR1 targets genes in developmental pathways represented by Wnt/β-catenin, CREB, BMP, the cell cycle and cancer-related TP53 pathway, neuroectodermal and mesodermal programing networks, axonal growth and synaptic plasticity pathways. Nuclear FGFR1 targets the consensus sequences of transcription factors known to engage CREB-binding protein, a common coregulator of transcription and established binding partner of nuclear FGFR1. This investigation reveals the role of nuclear FGFR1 as a global genomic programmer of cell, neural and muscle development.
Collapse
Affiliation(s)
- Christopher Terranova
- Department of Pathology and Anatomical Sciences, Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Sridhar T. Narla
- Department of Pathology and Anatomical Sciences, Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Yu-Wei Lee
- Department of Pathology and Anatomical Sciences, Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Jonathan Bard
- Next-Generation Sequencing and Expression Analysis Core, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Abhirath Parikh
- Department of Chemical and Biological Engineering, Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Ewa K. Stachowiak
- Department of Pathology and Anatomical Sciences, Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Emmanuel S. Tzanakakis
- Department of Chemical and Biological Engineering, Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Michael J. Buck
- Department of Biochemistry, Genomics and Bioinformatics Core, Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Barbara Birkaya
- Department of Pathology and Anatomical Sciences, Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Michal K. Stachowiak
- Department of Pathology and Anatomical Sciences, Western New York Stem Cell Culture and Analysis Center, State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
9
|
Stachowiak MK, Birkaya B, Aletta JM, Narla ST, Benson CA, Decker B, Stachowiak EK. "Nuclear FGF receptor-1 and CREB binding protein: an integrative signaling module". J Cell Physiol 2015; 230:989-1002. [PMID: 25503065 DOI: 10.1002/jcp.24879] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/05/2014] [Indexed: 12/15/2022]
Abstract
In this review we summarize the current understanding of a novel integrative function of Fibroblast Growth Factor Receptor-1 (FGFR1) and its partner CREB Binding Protein (CBP) acting as a nuclear regulatory complex. Nuclear FGFR1 and CBP interact with and regulate numerous genes on various chromosomes. FGFR1 dynamic oscillatory interactions with chromatin and with specific genes, underwrites gene regulation mediated by diverse developmental signals. Integrative Nuclear FGFR1 Signaling (INFS) effects the differentiation of stem cells and neural progenitor cells via the gene-controlling Feed-Forward-And-Gate mechanism. Nuclear accumulation of FGFR1 occurs in numerous cell types and disruption of INFS may play an important role in developmental disorders such as schizophrenia, and in metastatic diseases such as cancer. Enhancement of INFS may be used to coordinate the gene regulation needed to activate cell differentiation for regenerative purposes or to provide interruption of cancer stem cell proliferation.
Collapse
Affiliation(s)
- Michal K Stachowiak
- Department of Pathology and Anatomical Sciences, Western New York Stem Cells Culture and Analysis Center, State University of New York, Buffalo
| | | | | | | | | | | | | |
Collapse
|
10
|
Coleman SJ, Chioni AM, Ghallab M, Anderson RK, Lemoine NR, Kocher HM, Grose RP. Nuclear translocation of FGFR1 and FGF2 in pancreatic stellate cells facilitates pancreatic cancer cell invasion. EMBO Mol Med 2014; 6:467-81. [PMID: 24503018 PMCID: PMC3992074 DOI: 10.1002/emmm.201302698] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pancreatic cancer is characterised by desmoplasia, driven by activated pancreatic stellate cells (PSCs). Over-expression of FGFs and their receptors is a feature of pancreatic cancer and correlates with poor prognosis, but whether their expression impacts on PSCs is unclear. At the invasive front of human pancreatic cancer, FGF2 and FGFR1 localise to the nucleus in activated PSCs but not cancer cells. In vitro, inhibiting FGFR1 and FGF2 in PSCs, using RNAi or chemical inhibition, resulted in significantly reduced cell proliferation, which was not seen in cancer cells. In physiomimetic organotypic co-cultures, FGFR inhibition prevented PSC as well as cancer cell invasion. FGFR inhibition resulted in cytoplasmic localisation of FGFR1 and FGF2, in contrast to vehicle-treated conditions where PSCs with nuclear FGFR1 and FGF2 led cancer cells to invade the underlying extra-cellular matrix. Strikingly, abrogation of nuclear FGFR1 and FGF2 in PSCs abolished cancer cell invasion. These findings suggest a novel therapeutic approach, where preventing nuclear FGF/FGFR mediated proliferation and invasion in PSCs leads to disruption of the tumour microenvironment, preventing pancreatic cancer cell invasion.
Collapse
Affiliation(s)
- Stacey J Coleman
- Centre for Tumour Biology Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, UK
| | | | | | | | | | | | | |
Collapse
|
11
|
Chromatin-associated CSF-1R binds to the promoter of proliferation-related genes in breast cancer cells. Oncogene 2013; 33:4359-64. [PMID: 24362524 PMCID: PMC4141303 DOI: 10.1038/onc.2013.542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 10/04/2013] [Accepted: 11/04/2013] [Indexed: 12/18/2022]
Abstract
The colony-stimulating factor-1 (CSF-1) and its receptor CSF-1R physiologically regulate the monocyte/macrophage system, trophoblast implantation and breast development. An abnormal CSF-1R expression has been documented in several human epithelial tumors, including breast carcinomas. We recently demonstrated that CSF-1/CSF-1R signaling drives proliferation of breast cancer cells via ‘classical' receptor tyrosine kinase signaling, including activation of the extracellular signal-regulated kinase 1/2. In this paper, we show that CSF-1R can also localize within the nucleus of breast cancer cells, either cell lines or tissue specimens, irrespectively of their intrinsic molecular subtype. We found that the majority of nuclear CSF-1R is located in the chromatin-bound subcellular compartment. Chromatin immunoprecipitation revealed that CSF-1R, once in the nucleus, binds to the promoters of the proliferation-related genes CCND1, c-JUN and c-MYC. CSF-1R also binds the promoter of its ligand CSF-1 and positively regulates CSF-1 expression. The existence of such a receptor/ligand regulatory loop is a novel aspect of CSF-1R signaling. Moreover, our results provided the first evidence of a novel localization site of CSF-1R in breast cancer cells, suggesting that CSF-1R could act as a transcriptional regulator on proliferation-related genes.
Collapse
|
12
|
Song S, Rosen KM, Corfas G. Biological function of nuclear receptor tyrosine kinase action. Cold Spring Harb Perspect Biol 2013; 5:5/7/a009001. [PMID: 23818495 DOI: 10.1101/cshperspect.a009001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Receptor tyrosine kinases (RTKs) were believed until recently to act at the cell membrane in a singular fashion (i.e., binding of ligands on the extracellular domain would activate the intrinsic tyrosine kinase activity in the intracellular domain), which would then start a cascade involving other intracellular signaling molecules that would act as effectors. However, new evidence indicates that some RTKs can signal through a different modality; they can move into the nucleus where they directly exert their actions. Although some studies have showed that the proteolytically released intracellular domain of several RTKs can move to the nucleus where they influence gene expression and cell function, others suggest that RTKs can also move to the nucleus as holoproteins. The identification of this novel signaling mechanism calls for a critical reevaluation of the mechanisms of action of RTKs and their biological roles.
Collapse
Affiliation(s)
- Sungmin Song
- FM Kirby Neurobiology Center, Children's Hospital Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
13
|
Syntaxin 6-mediated Golgi translocation plays an important role in nuclear functions of EGFR through microtubule-dependent trafficking. Oncogene 2013; 33:756-70. [PMID: 23376851 DOI: 10.1038/onc.2013.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 11/02/2012] [Accepted: 11/21/2012] [Indexed: 12/18/2022]
Abstract
Receptor tyrosine kinases (RTKs) are cell surface receptors that initiate signal cascades in response to ligand stimulation. Abnormal expression and dysregulated intracellular trafficking of RTKs have been shown to be involved in tumorigenesis. Recent evidence shows that these cell surface receptors translocate from cell surface to different cellular compartments, including the Golgi, mitochondria, endoplasmic reticulum (ER) and the nucleus, to regulate physiological and pathological functions. Although some trafficking mechanisms have been resolved, the mechanism of intracellular trafficking from cell surface to the Golgi is not yet completely understood. Here we report a mechanism of Golgi translocation of epidermal growth factor receptor (EGFR) in which EGF-induced EGFR travels to the Golgi via microtubule-dependent movement by interacting with dynein and fuses with the Golgi through syntaxin 6-mediated membrane fusion. We also demonstrate that the microtubule- and syntaxin 6-mediated Golgi translocation of EGFR is necessary for its consequent nuclear translocation and nuclear functions. Thus, together with previous studies, the microtubule- and syntaxin 6-mediated trafficking pathway from cell surface to the Golgi, ER and the nucleus defines a comprehensive trafficking route for EGFR to travel from cell surface to the Golgi and the nucleus.
Collapse
|
14
|
Irschick R, Trost T, Karp G, Hausott B, Auer M, Claus P, Klimaschewski L. Sorting of the FGF receptor 1 in a human glioma cell line. Histochem Cell Biol 2013; 139:135-48. [PMID: 22903848 DOI: 10.1007/s00418-012-1009-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2012] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is a receptor tyrosine kinase promoting tumor growth in a variety of cancers, including glioblastoma. Binding of FGFs triggers the intracellular Ras/Raf/ERK signaling pathway leading to cell proliferation. Down-regulation of FGFR1 and, consequently, inactivation of its signaling pathways represent novel treatment strategies for glioblastoma. In this study, we investigated the internalization and endocytic trafficking of FGFR1 in the human glioma cell line U373. Stimulation with FGF-2 induced cell rounding accompanied by increased BrdU and pERK labeling. The overexpression of FGFR1 (without FGF treatment) resulted in enhanced phosphorylated FGFR1 suggesting receptor autoactivation. Labeled ligand (FGF-2-Cy5.5) was endocytosed in a clathrin- and caveolin-dependent manner. About 25 % of vesicles carrying fluorescently tagged FGFR1 represented early endosomes, 15 % transferrin-positive recycling endosomes and 40 % Lamp1-positive late endosomal/lysosomal vesicles. Stimulation with FGF-2 increased the colocalization rate in each of these vesicle populations. The treatment with the lysosomal inhibitor leupeptin resulted in FGFR1 accumulation in lysosomes, but did not enhance receptor recycling as observed in neurons. Analysis of vesicle distributions revealed an accumulation of recycling endosomes in the perinuclear region. In conclusion, the shuttling of receptor tyrosine kinases can be directly visualized by overexpression of fluorescently tagged receptors which respond to ligand stimulation and follow the recycling and degradation pathways similarly to their endogenous counterparts.
Collapse
Affiliation(s)
- Regina Irschick
- Division of Neuroanatomy, Medical University Innsbruck, Muellerstrasse 59, 6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
15
|
Lee YW, Terranova C, Birkaya B, Narla S, Kehoe D, Parikh A, Dong S, Ratzka A, Brinkmann H, Aletta JM, Tzanakakis ES, Stachowiak EK, Claus P, Stachowiak MK. A novel nuclear FGF Receptor-1 partnership with retinoid and Nur receptors during developmental gene programming of embryonic stem cells. J Cell Biochem 2012; 113:2920-36. [DOI: 10.1002/jcb.24170] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Chioni AM, Grose R. FGFR1 cleavage and nuclear translocation regulates breast cancer cell behavior. ACTA ACUST UNITED AC 2012; 197:801-17. [PMID: 22665522 PMCID: PMC3373409 DOI: 10.1083/jcb.201108077] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
FGFR1 cleavage by Granzyme B induces its nuclear translocation, in which it stimulates cell migration through effects on gene expression. FGF-10 and its receptors, FGFR1 and FGFR2, have been implicated in breast cancer susceptibility and progression, suggesting that fibroblast growth factor (FGF) signaling may be co-opted by breast cancer cells. We identify a novel pathway downstream of FGFR1 activation, whereby the receptor is cleaved and traffics to the nucleus, where it can regulate specific target genes. We confirm Granzyme B (GrB) as the protease responsible for cleavage and show that blocking GrB activity stopped FGFR1 trafficking to the nucleus and abrogates the promigratory effect of FGF stimulation. We confirm the in vivo relevance of our findings, showing that FGFR1 localized to the nucleus specifically in invading cells in both clinical material and a three-dimensional model of breast cancer. We identify target genes for FGFR1, which exert significant effects on cell migration and may represent an invasive signature. Our experiments identify a novel mechanism by which FGF signaling can regulate cancer cell behavior and provide a novel therapeutic target for treatment of invasive breast cancer.
Collapse
Affiliation(s)
- Athina-Myrto Chioni
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, England, UK
| | | |
Collapse
|
17
|
FGF2 gene transfer restores hippocampal functions in mouse models of Alzheimer's disease and has therapeutic implications for neurocognitive disorders. Proc Natl Acad Sci U S A 2011; 108:E1339-48. [PMID: 22042871 DOI: 10.1073/pnas.1102349108] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The adult hippocampus plays a central role in memory formation, synaptic plasticity, and neurogenesis. The subgranular zone of the dentate gyrus contains neural progenitor cells with self-renewal and multilineage potency. Transgene expression of familial Alzheimer's disease-linked mutants of β-amyloid precursor protein (APP) and presenilin-1 leads to a significant inhibition of neurogenesis, which is potentially linked to age-dependent memory loss. To investigate the effect of neurogenesis on cognitive function in a relevant disease model, FGF2 gene is delivered bilaterally to the hippocampi of APP+presenilin-1 bigenic mice via an adenoassociated virus serotype 2/1 hybrid (AAV2/1-FGF2). Animals injected with AAV2/1-FGF2 at a pre- or postsymptomatic stage show significantly improved spatial learning in the radial arm water maze test. A neuropathological investigation demonstrates that AAV2/1-FGF2 injection enhances the number of doublecortin, BrdU/NeuN, and c-fos-positive cells in the dentate gyrus, and the clearance of fibrillar amyloid-β peptide (Aβ) in the hippocampus. AAV2/1-FGF2 injection also enhances long-term potentiation in another APP mouse model (J20) compared with control AAV2/1-GFP-injected littermates. An in vitro study confirmed the enhanced neurogenesis of mouse neural stem cells by direct AAV2/1-FGF2 infection in an Aβ oligomer-sensitive manner. Further, FGF2 enhances Aβ phagocytosis in primary cultured microglia, and reduces Aβ production from primary cultured neurons after AAV2/1-FGF2 infection. Thus, our data indicate that virus-mediated FGF2 gene delivery has potential as an alternative therapy of Alzheimer's disease and possibly other neurocognitive disorders.
Collapse
|
18
|
Sladek CD, Stevens W, Levinson SR, Song Z, Jensen DD, Flynn FW. Characterization of nuclear neurokinin 3 receptor expression in rat brain. Neuroscience 2011; 196:35-48. [PMID: 21939739 DOI: 10.1016/j.neuroscience.2011.08.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
Abstract
Ligand-induced translocation of the G-protein-coupled receptor, neurokinin 3 (NK3-R), to the nucleus of hypothalamic neurons was reported using antibodies (ABs) raised against the C-terminal region of NK3-R. The current work was undertaken to substantiate the ability of NK3-R to enter the nucleus and identify which portion of the NK3-R molecule enters the nucleus. ABs directed at epitopes in the N-terminal and second extracellular loop of the rat NK3-R molecule were used to evaluate western blots of whole tissue homogenates and nuclear fractions from multiple brain areas. Specificity of the protein bands recognized by these ABs was demonstrated using Chinese hamster ovary (CHO) cells transfected with rat or human NK3-R. Both ABs prominently recognized a diffuse protein band of ∼56-65 kDa (56 kDa=predicted size) and distinct ∼70-kDa and 95-kDa proteins in homogenates of multiple brain areas. The ∼95-kDa protein recognized by the extracellular loop AB was enriched in nuclear fractions. Recognition of these proteins by ABs directed at different regions of the NK3-R supports their identification as NK3-R. The size differences reflect variable glycosylation and possibly linkage to different cytosolic and nuclear proteins. Recognition of protein bands by both ABs in nuclear fractions is consistent with the full-length NK3-R entering the nucleus. Hypotension increased the density of the ∼95-kDa band in nuclear fractions from the supraoptic nucleus indicating activity-induced nuclear translocation. Since NK3-R is widely distributed in the CNS, the presence of NK3-R in nuclei from multiple brain regions suggests that it may broadly influence CNS gene expression in a ligand-dependent manner.
Collapse
Affiliation(s)
- C D Sladek
- Department of Physiology and Biophysics, University of Colorado School of Medicine, 12800 E. 19th Avenue, Aurora, CO 80045, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Tseng HC, Lyu PC, Lin WC. Nuclear localization of orphan receptor protein kinase (Ror1) is mediated through the juxtamembrane domain. BMC Cell Biol 2010; 11:48. [PMID: 20587074 PMCID: PMC2907318 DOI: 10.1186/1471-2121-11-48] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 06/30/2010] [Indexed: 11/20/2022] Open
Abstract
Background Several receptor tyrosine kinases (RTKs) such as EGFR, FGFR, TRK, and VEGFR are capable of localizing in the cell nucleus in addition to their usual plasma membrane localization. Recent reports also demonstrate that nuclear-localized RTKs have important cellular functions such as transcriptional activation. On the basis of preliminary bioinformatic analysis, additional RTKs, including receptor tyrosine kinase-like orphan receptor 1 (Ror1) were predicted to have the potential for nuclear subcellular localization. Ror1 is a receptor protein tyrosine kinase that modulates neurite growth in the central nervous system. Because the nuclear localization capability of the Ror1 cytoplasmic domain has not been reported, we examined the cellular expression distribution of this region. Results The Ror1 cytoplasmic region was amplified and cloned into reporter constructs with fluorescent tags. Following transfection, the nuclear distribution patterns of transiently expressed fusion proteins were observed. Serial deletion constructs were then used to map the juxtamembrane domain of Ror1 (aa_471-513) for this nuclear translocation activity. Further site-directed mutagenesis suggested that a KxxK-16 aa-KxxK sequence at residues 486-509 is responsible for the nuclear translocation interaction. Subsequent immunofluorescence analysis by cotransfection of Ran and Ror1 implied that the nuclear translocation event of Ror1 might be mediated through the Ran pathway. Conclusions We have predicted several RTKs that contain the nuclear localization signals. This is the first report to suggest that the juxtamembrane domain of the Ror1 cytoplasmic region mediates the translocation event. Ran GTPase is also implicated in this event. Our study might be beneficial in future research to understand the Ror1 biological signaling pathway.
Collapse
Affiliation(s)
- Hsiao-Chun Tseng
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan
| | | | | |
Collapse
|
20
|
Liu J, Agarwal S. Mechanical signals activate vascular endothelial growth factor receptor-2 to upregulate endothelial cell proliferation during inflammation. THE JOURNAL OF IMMUNOLOGY 2010; 185:1215-21. [PMID: 20548028 DOI: 10.4049/jimmunol.0903660] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Signals generated by the dynamic mechanical strain critically regulate endothelial cell proliferation and angiogenesis; however, the molecular basis remains unclear. We investigated the mechanisms by which human dermal microvascular endothelial cells (HDMECs) perceive mechanical signals and relay them intracellularly to regulate gene expression and endothelial cell proliferation. HDMECs were exposed to low/physiologic levels of dynamic strain and probed for the differential activation/inhibition of kinases in the mechanosignaling cascade associated with endothelial cell gene activation. Because angiogenesis is important at inflammatory sites, we also assessed the mechanisms of mechanosignaling in the presence of an proinflammatory cytokine IL-1beta. In this article, we demonstrate that the mechanosignaling cascade is initiated by vascular endothelial growth receptor-2 (VEGFR2) activation. Mechanoactivation of VEGFR2 results in its nuclear translocation and elevation of PI3K-dependent Ser473-Akt phosphorylation. Subsequently, activated Akt inactivates the kinase activity of the serine/threonine kinase, glycogen synthase kinase-3beta (GSK3beta), via its Ser9 phosphorylation. Thus, inactive GSK3beta fails to phosphorylate cyclin D1 and prevents its proteosomal degradation and, consequently, promotes endothelial cell survival and proliferation. In the presence of IL-1beta, cyclin D1 is phosphorylated and degraded, leading to inhibition of cell proliferation. However, mechanical signals repress cyclin D1 phosphorylation and upregulate cell proliferation, despite the presence of IL-1beta. The data indicate that the VEGFR2/Akt/GSK3beta signaling cascade plays a critical role in sensing and phospho-relaying mechanical stimuli in endothelial cells. Furthermore, mechanical forces control highly interconnected networks of proinflammatory and Akt signaling cascades to upregulate endothelial cell proliferation.
Collapse
Affiliation(s)
- Jie Liu
- Biomechanics and Tissue Engineering Laboratory, Division of Oral Biology, The Ohio State University College of Dentistry, Columbus, OH 43210, USA
| | | |
Collapse
|
21
|
Andersson MK, Göransson M, Olofsson A, Andersson C, Aman P. Nuclear expression of FLT1 and its ligand PGF in FUS-DDIT3 carrying myxoid liposarcomas suggests the existence of an intracrine signaling loop. BMC Cancer 2010; 10:249. [PMID: 20515481 PMCID: PMC2889895 DOI: 10.1186/1471-2407-10-249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 06/01/2010] [Indexed: 01/05/2023] Open
Abstract
Background The FUS-DDIT3 fusion oncogene encodes an abnormal transcription factor that has a causative role in the development of myxoid/round-cell liposarcomas (MLS/RCLS). We have previously identified FLT1 (VEGFR1) as a candidate downstream target gene of FUS-DDIT3. The aim of this study was to investigate expression of FLT1 and its ligands in MLS cells. Methods HT1080 human fibrosarcoma cells were transiently transfected with FUS-DDIT3-GFP variant constructs and FLT1 expression was measured by quantitative real-time PCR. In addition, FLT1, PGF, VEGFA and VEGFB expression was measured in MLS/RCLS cell lines, MLS/RCLS tumors and in normal adiopocytes. We analyzed nine cases of MLS/RCLS and one cell line xenografted in mice for FLT1 protein expression using immunohistochemistry. MLS/RCLS cell lines were also analyzed for FLT1 by immunofluorescence and western blot. MLS/RCLS cell lines were additionally treated with FLT1 tyrosine kinase inhibitors and assayed for alterations in proliferation rate. Results FLT1 expression was dramatically increased in transfected cells stably expressing FUS-DDIT3 and present at high levels in cell lines derived from MLS. The FLT1 protein showed a strong nuclear expression in cells of MLS tissue as well as in cultured MLS cells, which was confirmed by cellular fractionation. Tissue array analysis showed a nuclear expression of the FLT1 protein also in several other tumor and normal cell types including normal adipocytes. The FLT1 ligand coding gene PGF was highly expressed in cultured MLS cells compared to normal adipocytes while the other ligand genes VEGFA and VEGFB were expressed to lower levels. A more heterogeneous expression pattern of these genes were observed in tumor samples. No changes in proliferation rate of MLS cells were detected at concentrations for which the kinase inhibitors have shown specific inhibition of FLT1. Conclusions Our results imply that FLT1 is induced as an indirect downstream effect of FUS-DDIT3 expression in MLS. This could be a consequence of the ability of FUS-DDIT3 to hijack parts of normal adipose tissue development and reprogram primary cells to a liposarcoma-like phenotype. The findings of nuclear FLT1 protein and expression of corresponding ligands in MLS and normal tissues may have implications for tissue homeostasis and tumor development through auto- or intracrine signaling.
Collapse
Affiliation(s)
- Mattias K Andersson
- Lundberg Laboratory for Cancer Research, Department of Pathology, Sahlgrenska Academy at Göteborg University, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
22
|
Wang YN, Yamaguchi H, Hsu JM, Hung MC. Nuclear trafficking of the epidermal growth factor receptor family membrane proteins. Oncogene 2010; 29:3997-4006. [PMID: 20473332 DOI: 10.1038/onc.2010.157] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiple membrane-bound receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR) and ErbB-2, have been reported to be localized in the nucleus, where emerging evidence suggests that they are involved in transcriptional regulation, cell proliferation, DNA repair and chemo- and radio-resistance. Recent studies have shown that endocytosis and endosomal sorting are involved in the nuclear transport of cell surface RTKs. However, the detailed mechanism by which the full-length receptors embedded in the endosomal membrane travel all the way from the cell surface to the early endosomes and pass through the nuclear pore complexes is unknown. This important area has been overlooked for decades, which has hindered progress in our understanding of nuclear RTKs' functions. Here, we discuss the putative mechanisms by which EGFR family RTKs are shuttled into the nucleus. Understanding the trafficking mechanisms as to how RTKs are transported from the cell surface to the nucleus will significantly contribute to understanding the functions of the nuclear RTKs.
Collapse
Affiliation(s)
- Y-N Wang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
23
|
Flores J, Galan-Rodriguez B, Rojo A, Ramiro-Fuentes S, Cuadrado A, Fernandez-Espejo E. Fibroblast growth factor-1 within the ventral tegmental area participates in motor sensitizing effects of morphine. Neuroscience 2010; 165:198-211. [DOI: 10.1016/j.neuroscience.2009.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/03/2009] [Accepted: 10/03/2009] [Indexed: 11/16/2022]
|
24
|
Fibroblast growth factor-2 regulates the stability of nuclear bodies. Proc Natl Acad Sci U S A 2009; 106:12747-52. [PMID: 19617559 DOI: 10.1073/pnas.0900122106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear bodies are distinct subnuclear structures. The survival of motoneuron (SMN) gene is mutated or deleted in patients with the neurodegenerative disease spinal muscular atrophy (SMA). The gene product SMN is a marker protein for one class of nuclear bodies denoted as nuclear gems. SMN has also been found in Cajal bodies, which co-localize with gems in many cell types. Interestingly, SMA patients display a reduced number of gems. Little is known about the regulation of nuclear body formation and stabilization. We have previously shown that a nuclear isoform of the fibroblast growth factor-2 (FGF-2(23)) binds directly to SMN. In this study, we analyzed the consequences of FGF-2(23) binding to SMN with regard to nuclear body formation. On a molecular level, we showed that FGF-2(23) competed with Gemin2 (a component of the SMN complex that is necessary for gem stabilization) for binding to SMN. Down-regulation of Gemin2 by siRNA caused destabilization of SMN-positive nuclear bodies. This process is reflected in both cellular and in vivo systems by a negative regulatory function of FGF-2 in nuclear body formation: in HEK293 cells, FGF-2(23) decreased the number of SMN-positive nuclear bodies. The same effect could be observed in motoneurons of FGF-2 transgenic mice. This study demonstrates the functional role of a growth factor in the regulation of structural entities of the nucleus.
Collapse
|
25
|
Dunham-Ems SM, Lee YW, Stachowiak EK, Pudavar H, Claus P, Prasad PN, Stachowiak MK. Fibroblast growth factor receptor-1 (FGFR1) nuclear dynamics reveal a novel mechanism in transcription control. Mol Biol Cell 2009; 20:2401-12. [PMID: 19261810 DOI: 10.1091/mbc.e08-06-0600] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nuclear FGFR1 acts as a developmental gene regulator in cooperation with FGF-2, RSK1, and CREB-binding protein (CBP). FRAP analysis revealed three nuclear FGFR1 populations: i) a fast mobile, ii) a slower mobile population reflecting chromatin-bound FGFR1, and iii) an immobile FGFR1 population associated with the nuclear matrix. Factors (cAMP, CBP) that induce FGFR1-mediated gene activation shifted FGFR1 from the nuclear matrix (immobile) to chromatin (slow) and reduced the movement rate of the chromatin-bound population. Transcription inhibitors accelerated FGFR1 movement; the content of the chromatin-bound slow FGFR1 decreased, whereas the fast population increased. The transcriptional activation appears to involve conversion of the immobile matrix-bound and the fast nuclear FGFR1 into a slow chromatin-binding population through FGFR1's interaction with CBP, RSK1, and the high-molecular-weight form of FGF-2. Our findings support a general mechanism in which gene activation is governed by protein movement and collisions with other proteins and nuclear structures.
Collapse
Affiliation(s)
- Star M Dunham-Ems
- Department of Pathology and Anatomical Sciences, and Department of Chemistry, State University of New York, Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Allerstorfer S, Sonvilla G, Fischer H, Spiegl-Kreinecker S, Gauglhofer C, Setinek U, Czech T, Marosi C, Buchroithner J, Pichler J, Silye R, Mohr T, Holzmann K, Grasl-Kraupp B, Marian B, Grusch M, Fischer J, Micksche M, Berger W. FGF5 as an oncogenic factor in human glioblastoma multiforme: autocrine and paracrine activities. Oncogene 2008; 27:4180-90. [PMID: 18362893 DOI: 10.1038/onc.2008.61] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fibroblast growth factor 5 (FGF5) is widely expressed in embryonic but scarcely in adult tissues. Here we report simultaneous overexpression of FGF5 and its predominant high-affinity receptor (FGFR1 IIIc) in astrocytic brain tumour specimens (N=49) and cell cultures (N=49). The levels of both ligand and receptor increased with enhanced malignancy in vivo and in vitro. Furthermore, secreted FGF5 protein was generally present in the supernatants of glioblastoma (GBM) cells. siRNA-mediated FGF5 downmodulation reduced moderately but significantly GBM cell proliferation while recombinant FGF5 (rFGF5) increased this parameter preferentially in cell lines with low endogenous expression levels. Apoptosis induction by prolonged serum starvation was significantly prevented by rFGF5. Moreover, tumour cell migration was distinctly stimulated by rFGF5 but attenuated by FGF5 siRNA. Blockade of FGFR1-mediated signals by pharmacological FGFR inhibitors or a dominant-negative FGFR1 IIIc protein inhibited GBM cell proliferation and/or induced apoptotic cell death. Moreover, rFGF5 and supernatants of highly FGF5-positive GBM cell lines specifically stimulated proliferation, migration and tube formation of human umbilical vein endothelial cells. In summary, we demonstrate for the first time that FGF5 contributes to the malignant progression of human astrocytic brain tumours by both autocrine and paracrine effects.
Collapse
Affiliation(s)
- S Allerstorfer
- Department of Medicine I, Institute of Cancer Research, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Stachowiak MK, Maher PA, Stachowiak EK. Integrative Nuclear Signaling in Cell Development—A Role for FGF Receptor-1. DNA Cell Biol 2007; 26:811-26. [DOI: 10.1089/dna.2007.0664] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Michal K. Stachowiak
- Molecular and Structural Neurobiology and Gene Therapy Program, State University of New York, Buffalo, New York
| | | | - Ewa K. Stachowiak
- Molecular and Structural Neurobiology and Gene Therapy Program, State University of New York, Buffalo, New York
| |
Collapse
|
28
|
Abstract
The response of a cell to the myriad of signals that it receives is varied, and it is dependent on many different factors. The most-studied responses involve growth-factor signalling and these signalling cascades have become key targets for cancer therapy. Recent reports have indicated that growth-factor receptors and associated adaptors can accumulate in the nucleus. Are there novel functions for these proteins that might affect our understanding of their role in cancer and have implications for drug resistance?
Collapse
Affiliation(s)
- Charles Massie
- CRUK Uro-Oncology Group, Department of Oncology, University of Cambridge, c/o Hutchison/MRC Cancer Research Centre, Addenbrookes Hospital, Hills Road, Cambridge, CB2 2XZ, UK
| | | |
Collapse
|
29
|
Dunham-Ems SM, Pudavar HE, Myers JM, Maher PA, Prasad PN, Stachowiak MK. Factors controlling fibroblast growth factor receptor-1's cytoplasmic trafficking and its regulation as revealed by FRAP analysis. Mol Biol Cell 2006; 17:2223-35. [PMID: 16481405 PMCID: PMC1446089 DOI: 10.1091/mbc.e05-08-0749] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Biochemical and microscopic studies have indicated that FGFR1 is a transmembrane and soluble protein present in the cytosol and nucleus. How FGFR1 enters the cytosol and subsequently the nucleus to control cell development and associated gene activities has become a compelling question. Analyses of protein synthesis, cytoplasmic subcompartmental distribution and movement of FGFR1-EGFP and FGFR1 mutants showed that FGFR1 exists as three separate populations (a) a newly synthesized, highly mobile, nonglycosylated, cytosolic receptor that is depleted by brefeldin A and resides outside the ER-Golgi lumen, (b) a slowly diffusing membrane receptor population, and (c) an immobile membrane pool increased by brefeldin A. RSK1 increases the highly mobile cytosolic FGFR1 population and its overall diffusion rate leading to increased FGFR1 nuclear accumulation, which coaccumulates with RSK1. A model is proposed in which newly synthesized FGFR1 can enter the (a) "nuclear pathway," where the nonglycosylated receptor is extruded from the pre-Golgi producing highly mobile cytosolic receptor molecules that rapidly accumulate in the nucleus or (b) "membrane pathway," in which FGFR1 is processed through the Golgi, where its movement is spatially restricted to trans-Golgi membranes with limited lateral mobility. Entrance into the nuclear pathway is favored by FGFR1's interaction with kinase active RSK1.
Collapse
MESH Headings
- Animals
- Brefeldin A/pharmacology
- Cattle
- Cell Nucleus/chemistry
- Cell Nucleus/metabolism
- Cells, Cultured
- Cytoplasm/metabolism
- Fluorescence Recovery After Photobleaching
- Golgi Apparatus/metabolism
- Green Fluorescent Proteins/analysis
- Green Fluorescent Proteins/genetics
- Humans
- Models, Biological
- Protein Biosynthesis
- Protein Transport/drug effects
- Receptor, Fibroblast Growth Factor, Type 1/analysis
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Recombinant Fusion Proteins/analysis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Ribosomal Protein S6 Kinases, 90-kDa/analysis
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
Collapse
Affiliation(s)
- Star M Dunham-Ems
- Molecular and Structural Neurobiology and Gene Therapy Program, Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | | | |
Collapse
|
30
|
Leadbeater WE, Gonzalez AM, Logaras N, Berry M, Turnbull JE, Logan A. Intracellular trafficking in neurones and glia of fibroblast growth factor-2, fibroblast growth factor receptor 1 and heparan sulphate proteoglycans in the injured adult rat cerebral cortex. J Neurochem 2006; 96:1189-200. [PMID: 16417571 DOI: 10.1111/j.1471-4159.2005.03632.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potent gliogenic and neurotrophic fibroblast growth factor (FGF)-2 signals through a receptor complex comprising high-affinity FGF receptor (FGFR)1 with heparan sulphate proteoglycans (HSPGs) as co-receptors. We examined the intracellular dynamics of FGF-2, FGFR1 and the HSPGs syndecan-2 and -3, glypican-1 and -2, and perlecan in neurones and glia in and around adult rat cerebral wounds. In the intact cerebral cortex, FGF-2 and FGFR1 mRNA and protein were constitutively expressed in astrocytes and neurones respectively. FGF-2 protein was localized exclusively to astrocyte nuclei. After injury, expression of FGF-2 mRNA was up-regulated only in astrocytes, whereas FGFR1 mRNA expression was increased in both glia and neurones, a disparity indicating that FGF-2 may act as a paracrine and autocrine factor for neurones and glia respectively. FGF-2 protein localized to both cytoplasm and nuclei of injury-responsive neurones and glia. There was weak or no staining of HSPGs in the normal cerebral neuropil and glia nuclei, with a few immunopositive neurones. Specific HSPGs responded to injury by differentially co-localizing with trafficked intracellular FGF-2 and FGFR1. The spatiotemporal dynamics of FGF-2-FGFR1-HSPG complex formation implies a role for individual HSPGs in regulating FGF-2 storage, nuclear trafficking and cell-specific injury responses in CNS wounds.
Collapse
Affiliation(s)
- W E Leadbeater
- Molecular Neuroscience Group, Division of Medical Sciences, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
The nuclear localization of a number of growth factors, cytokine ligands and their receptors has been reported in various cell lines and tissues. These include members of the fibroblast growth factor (FGF), epidermal growth factor and growth hormone families. Accordingly, a number of nuclear functions have begun to emerge for these protein families. The demonstration of functional interactions of these proteins with the nuclear import machinery has further supported their functions as nuclear signal transducers. Here, we review the membrane- trafficking machinery and pathways demonstrated to regulate this cell surface to nucleus-trafficking event and highlight the many remaining unanswered questions. We focus on the FGF family, which is providing many of the clues as to the process of this unusual phenomenon.
Collapse
Affiliation(s)
- David M Bryant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
32
|
Kranenburg AR, Willems-Widyastuti A, Mooi WJ, Saxena PR, Sterk PJ, de Boer WI, Sharma HS. Chronic obstructive pulmonary disease is associated with enhanced bronchial expression of FGF-1, FGF-2, and FGFR-1. J Pathol 2005; 206:28-38. [PMID: 15772985 DOI: 10.1002/path.1748] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An important feature of chronic obstructive pulmonary disease (COPD) is airway remodelling, the molecular mechanisms of which are poorly understood. In this study, the role of fibroblast growth factors (FGF-1 and FGF-2) and their receptor, FGFR-1, was assessed in bronchial airway wall remodelling in patients with COPD (FEV1 < 75%; n = 15) and without COPD (FEV1 > 85%; n = 16). FGF-1 and FGFR-1 were immunolocalized in bronchial epithelium, airway smooth muscle (ASM), submucosal glandular epithelium, and vascular smooth muscle. Quantitative digital image analysis revealed increased cytoplasmic expression of FGF-2 in bronchial epithelium (0.35 +/- 0.03 vs 0.20 +/- 0.04, p < 0.008) and nuclear localization in ASM (p < 0.0001) in COPD patients compared with controls. Elevated levels of FGFR-1 in ASM (p < 0.005) and of FGF-1 (p < 0.04) and FGFR-1 (p < 0.001) in bronchial epithelium were observed. In cultured human ASM cells, FGF-1 and/or FGF-2 (10 ng/ml) induced cellular proliferation, as shown by [3H]thymidine incorporation and by cell number counts. Steady-state mRNA levels of FGFR-1 were elevated in human ASM cells treated with either FGF-1 or FGF-2. The increased bronchial expression of fibroblast growth factors and their receptor in patients with COPD, and the mitogenic response of human ASM cells to FGFs in vitro suggest a potential role for the FGF/FGFR-1 system in the remodelling of bronchial airways in COPD.
Collapse
Affiliation(s)
- Andor R Kranenburg
- Department of Pharmacology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Cassina P, Pehar M, Vargas MR, Castellanos R, Barbeito AG, Estévez AG, Thompson JA, Beckman JS, Barbeito L. Astrocyte activation by fibroblast growth factor-1 and motor neuron apoptosis: implications for amyotrophic lateral sclerosis. J Neurochem 2005; 93:38-46. [PMID: 15773903 DOI: 10.1111/j.1471-4159.2004.02984.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fibroblast growth factor-1 (FGF1 or acidic FGF) is highly expressed in motor neurons. FGF-1 is released from cells by oxidative stress, which might occur from SOD-1 aberrant function in amyotrophic lateral sclerosis (ALS). Although FGF-1 is known to be neuroprotective after spinal cord injury or axotomy, we found that FGF-1 could activate spinal cord astrocytes in a manner that decreased motor neuron survival in co-cultures. FGF-1 induced accumulation of the FGF receptor 1 (FGFR1) in astrocyte nuclei and potently stimulated nerve growth factor (NGF) expression and secretion. The FGFR1 tyrosine kinase inhibitor PD166866 prevented these effects. Previously, we have shown that NGF secretion by reactive astrocytes induces motor neuron apoptosis through a p75(NTR)-dependent mechanism. Embryonic motor neurons co-cultured on the top of astrocytes exhibiting activated FGFR1 underwent apoptosis, which was prevented by PD166866 or by adding either anti-NGF or anti-p75(NTR) neutralizing antibodies. In the degenerating spinal cord of mice carrying the ALS mutation G93A of Cu, Zn superoxide dismutase, FGF-1 was no longer localized only in the cytosol of motor neurons, while FGFR1 accumulated in the nuclei of reactive astrocytes. These results suggest that FGF-1 released by oxidative stress from motor neurons might have a role in activating astrocytes, which could in turn initiate motor neuron apoptosis in ALS through a p75(NTR)-dependent mechanism.
Collapse
Affiliation(s)
- Patricia Cassina
- Departamento de Histología, Facultad de Medicina, Universidad de la República Montevideo, Uruguay
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Somanathan S, Stachowiak EK, Siegel AJ, Stachowiak MK, Berezney R. Nuclear matrix bound fibroblast growth factor receptor is associated with splicing factor rich and transcriptionally active nuclear speckles. J Cell Biochem 2004; 90:856-69. [PMID: 14587039 DOI: 10.1002/jcb.10672] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have used confocal microscopy combined with computer image analysis to evaluate the functional significance of a constitutively expressed form of the receptor tyrosine kinase FGFR1 (fibroblast growth factor receptor 1) in the nucleus of rapidly proliferating serum stimulated TE 671 cells, a medullobastoma human cell line. Our results demonstrate a limited number of large sites and numerous smaller sites of FGFR1 in the nuclear interior. The larger sites showed virtually complete colocalization (>90%) with splicing factor rich nuclear speckles while the smaller sites showed very limited overlap (<20%). Similar results were found for several other proliferating cell lines grown in culture. An in situ transcription assay was used to determine colocalization with transcription sites by incorporating 5-bromouridine triphosphate (BrUTP) followed by dual staining for BrUTP and FGFR1. These results combined with those from using an antibody against the large subunit of RNA polymerase II suggest a significant degree of colocalization (26-38%) over both the large and small sites. No colocalization was detected with sites of DNA replication. The spatial arrangements of FGFR1 sites and colocalization with nuclear speckles were maintained following extraction for nuclear matrix. Moreover, immunoblots indicated a significant enrichment of FGFR1 in the nuclear matrix fraction. Our findings suggest an involvement of a nuclear matrix bound FGFR1 in transcriptional and RNA processing events in the cell nucleus. We further propose that nuclear speckles, aside from a role in transcriptional/RNA processing events, may serve as fundamental regulatory factories for the integration of diverse signaling and regulatory factors that impact transcription and cellular regulation.
Collapse
Affiliation(s)
- Suryanarayan Somanathan
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | | | |
Collapse
|
35
|
Sekhon SS, Tan X, Micsenyi A, Bowen WC, Monga SPS. Fibroblast growth factor enriches the embryonic liver cultures for hepatic progenitors. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:2229-40. [PMID: 15161655 PMCID: PMC1615755 DOI: 10.1016/s0002-9440(10)63779-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fibroblast growth factors (FGFs) play an important role in hepatic induction during development. The aim of our study was to investigate the effect of exogenous FGFs on ex vivo liver development. We begin our analysis by examining FGF signaling during early mouse liver development. Phospho-FGF receptor (Tyr653/654) was detected in embryonic day 10 (E10) to E12 livers only. Next, E10 livers were cultured in the presence of FGF1, FGF4, or FGF8 for 72 hours and examined for histology, proliferation, apoptosis, and differentiation. FGFs especially FGF8 promoted sheet-like architecture, cell proliferation, and survival as compared to the control. All FGFs induced a striking increase in the number of c-kit and alpha-fetoprotein-positive progenitors, without altering albumin staining. However these progenitors were CK-19-positive (biliary and bipotential progenitor marker) only in the presence of FGF1 or FGF4 and not FGF8. FGFs also induced beta-catenin, a stem cell renewal factor in these cultures. In conclusion, the presence of activated FGFR indicates a physiological role of FGF during early liver development. FGF1 and FGF4 enrich the embryonic liver cultures for bipotential hepatic progenitors. FGF8 promotes such enrichment and induces a one-step differentiation toward a unipotential hepatocyte progenitor. Thus, FGFs might be useful for enrichment and propagation of developmental hepatic progenitors.
Collapse
Affiliation(s)
- Sandeep S Sekhon
- Department of Internal Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
36
|
Dunham SM, Pudavar HE, Prasad PN, Stachowiak MK. Cellular Signaling and Protein−Protein Interactions Studied Using Fluorescence Recovery after Photobleaching. J Phys Chem B 2004. [DOI: 10.1021/jp0400972] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Star M. Dunham
- Molecular and Structural Neurobiology and Gene Therapy Program, Department of Pathology and Anatomical Sciences, Farber Hall 206A, State University of New York at Buffalo, 3435 Main Street, Buffalo, New York 142214, and Institute for Lasers, Photonics and BioPhotonics, 428, NSC, Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260
| | - Haridas E. Pudavar
- Molecular and Structural Neurobiology and Gene Therapy Program, Department of Pathology and Anatomical Sciences, Farber Hall 206A, State University of New York at Buffalo, 3435 Main Street, Buffalo, New York 142214, and Institute for Lasers, Photonics and BioPhotonics, 428, NSC, Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260
| | - Paras N. Prasad
- Molecular and Structural Neurobiology and Gene Therapy Program, Department of Pathology and Anatomical Sciences, Farber Hall 206A, State University of New York at Buffalo, 3435 Main Street, Buffalo, New York 142214, and Institute for Lasers, Photonics and BioPhotonics, 428, NSC, Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260
| | - Michal K. Stachowiak
- Molecular and Structural Neurobiology and Gene Therapy Program, Department of Pathology and Anatomical Sciences, Farber Hall 206A, State University of New York at Buffalo, 3435 Main Street, Buffalo, New York 142214, and Institute for Lasers, Photonics and BioPhotonics, 428, NSC, Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260
| |
Collapse
|
37
|
Hu Y, Fang X, Dunham SM, Prada C, Stachowiak EK, Stachowiak MK. 90-kDa ribosomal S6 kinase is a direct target for the nuclear fibroblast growth factor receptor 1 (FGFR1): role in FGFR1 signaling. J Biol Chem 2004; 279:29325-35. [PMID: 15117958 DOI: 10.1074/jbc.m311144200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is a transmembrane protein capable of transducing stimulation by secreted FGFs. In addition, newly synthesized FGFR1 enters the nucleus in response to cellular stimulation and during development. Nuclear FGFR1 can transactivate CRE (cAMP responsive element), activate CRE-binding protein (CREB)-binding protein (CBP) and gene activities causing cellular growth and differentiation. Here, a yeast two-hybrid assay was performed to identify FGFR1-binding proteins and the mechanism of nuclear FGFR1 action. Ten FGFR1-binding proteins were identified. Among the proteins detected with the intracellular FGFR1 domain was a 90-kDa ribosomal S6 kinase (RSK1), a regulator of CREB, CBP, and histone phosphorylation. FGFR1 bound to the N-terminal region of RSK1. The FGFR1-RSK1 interaction was confirmed by co-immunoprecipitation and colocalization in the nucleus and cytoplasm of mammalian cells. Predominantly nuclear FGFR1-RSK1 interaction was observed in the rat brain during neurogenesis and in cAMP-stimulated cultured neural cells. In TE671 cells, transfected FGFR1 colocalized and coimmunoprecipitated, almost exclusively, with nuclear RSK1. Nuclear RSK1 kinase activity and RSK1 activation of CREB were enhanced by transfected FGFR1. In contrast, kinase-deleted FGFR1 (TK-), which did not bind to RSK1 failed to stimulate nuclear RSK1 activity or RSK1 activation of CREB. Kinase inactive FGFR1 (K514A) bound effectively to nuclear RSK1, but it failed to stimulate RSK1. Thus, active FGFR1 kinase regulates the functions of nuclear RSK1. The interaction of nuclear FGFR1 with pluripotent RSK1 offers a new mechanism through which FGFR1 may control fundamental cellular processes.
Collapse
Affiliation(s)
- Yafang Hu
- Department of Pathology and Anatomical Sciences, State University of New York, Buffalo, New York 142214, USA
| | | | | | | | | | | |
Collapse
|
38
|
Nindl W, Kavakebi P, Claus P, Grothe C, Pfaller K, Klimaschewski L. Expression of basic fibroblast growth factor isoforms in postmitotic sympathetic neurons: synthesis, intracellular localization and involvement in karyokinesis. Neuroscience 2004; 124:561-72. [PMID: 14980727 DOI: 10.1016/j.neuroscience.2003.11.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2003] [Indexed: 11/16/2022]
Abstract
Low and high molecular weight isoforms of the mitogen and multifunctional cytokine basic fibroblast growth factor (FGF-2) are up-regulated in neurons and glial cells in response to peripheral nerve lesion. While synthesis, regulation and functions of FGF-2 in non-neuronal cells are well established, the significance of neuronal FGF-2 remains to be investigated in the peripheral nervous system. Therefore, the expression, intracellular localization and possible effects of FGF-2 isoforms were analyzed in primary sympathetic neurons derived from the rat superior cervical ganglion. FGF-2 is detected in the nucleus and in perinuclear Golgi fields of early postnatal neurons which also express mRNA and protein for the FGF receptor type 1. Biolistic transfection of plasmids encoding FGF-2 isoforms fused to fluorescent proteins demonstrates nuclear targeting of 18 kDa FGF-2 and 23 kDa FGF-2 with prominent accumulation in the nucleolus of neurons. Neither overexpression nor treatment with FGF-2 isoforms promotes survival of sympathetic neurons deprived of nerve growth factor; however, neuronal transfection of the high molecular weight FGF-2 isoform in dissociated and slice cultures results in a bi- or multinuclear phenotype. The present study provides evidence for neuronal synthesis and targeting of FGF-2 to the nucleus and Golgi apparatus supporting a dual role of FGF-2 in the nucleus and secretory pathway of sympathetic neurons.
Collapse
Affiliation(s)
- W Nindl
- Department of Neuroanatomy, Institute of Anatomy, Histology and Embryology, Medical University Innsbruck, Muellerstrasse 59, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
39
|
Coumoul X, Deng CX. Roles of FGF receptors in mammalian development and congenital diseases. ACTA ACUST UNITED AC 2003; 69:286-304. [PMID: 14745970 DOI: 10.1002/bdrc.10025] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Four fibroblast growth factor receptors (FGFR1-4) constitute a family of transmembrane tyrosine kinases that serve as high affinity receptors for at least 22 FGF ligands. Gene targeting in mice has yielded valuable insights into the functions of this important gene family in multiple biological processes. These include mesoderm induction and patterning; cell growth, migration, and differentiation; organ formation and maintenance; neuronal differentiation and survival; wound healing; and malignant transformation. Furthermore, discoveries that mutations in three of the four receptors result in more than a dozen human congenital diseases highlight the importance of these genes in skeletal development. In this review, we will discuss recent progress on the roles of FGF receptors in mammalian development and congenital diseases, with an emphasis on signal transduction pathways.
Collapse
Affiliation(s)
- Xavier Coumoul
- Genetics of Development and Disease Branch, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
40
|
Stachowiak MK, Fang X, Myers JM, Dunham SM, Berezney R, Maher PA, Stachowiak EK. Integrative nuclear FGFR1 signaling (INFS) as a part of a universal ?feed-forward-and-gate? signaling module that controls cell growth and differentiation. J Cell Biochem 2003; 90:662-91. [PMID: 14587025 DOI: 10.1002/jcb.10606] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A novel signaling mechanism is described through which extracellular signals and intracellular signaling pathways regulate proliferation, growth, differentiation, and other functions of cells in the nervous system. Upon cell stimulation, fibroblast growth factor receptor-1 (FGFR1), a typically plasma membrane-associated protein, is released from ER membranes into the cytosol and translocates to the cell nucleus by an importin-beta-mediated transport pathway along with its ligand, FGF-2. The nuclear accumulation of FGFR1 is activated by changes in cell contacts and by stimulation of cells with growth factors, neurotransmitters and hormones as well as by a variety of different second messengers and thus was named integrative nuclear FGFR1 signaling (INFS). In the nucleus, FGFR1 localizes specifically within nuclear matrix-attached speckle-domains, which are known to be sites for RNA Pol II-mediated transcription and co-transcriptional pre-mRNA processing. In these domains, nuclear FGFR1 colocalizes with RNA transcription sites, splicing factors, modified histones, phosphorylated RNA Pol II, and signaling kinases. Within the nucleus, FGFR1 serves as a general transcriptional regulator, as indicated by its association with the majority of active nuclear centers of RNA synthesis and processing, by the ability of nuclear FGFR1 to activate structurally distinct genes located on different chromosomes and by its stimulation of multi-gene programs for cell growth and differentiation. We propose that FGFR1 is part of a universal "feed-forward-and-gate" signaling module in which classical signaling cascades initiated by specific membrane receptors transmit signals to sequence specific transcription factors (ssTFs), while INFS elicited by the same stimuli feeds the signal forward to the common coactivator, CREB-binding protein (CBP). Activation of CBP by INFS, along with the activation of ssTFs by classical signaling cascades brings about coordinated responses from structurally different genes located at different genomic loci.
Collapse
Affiliation(s)
- Michal K Stachowiak
- Molecular and Structural Neurobiology and Gene Therapy Program, Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, New York 14214, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Myers JM, Martins GG, Ostrowski J, Stachowiak MK. Nuclear trafficking of FGFR1: a role for the transmembrane domain. J Cell Biochem 2003; 88:1273-91. [PMID: 12647309 DOI: 10.1002/jcb.10476] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Several members of the fibroblast growth factor (FGF) family lack signal peptide (SP) sequences and are present only in trace amounts outside the cell. However, these proteins contain nuclear localization signals (NLS) and accumulate in the cell nucleus. Our studies have shown that full length FGF receptor 1 (FGFR1) accumulates within the nuclear interior in parallel with FGF-2. We tested the hypothesis that an atypical transmembrane domain (TM) plays a role in FGFR1 trafficking into the nuclear interior. With FGFR1 destined for constitutive fusion with the plasma membrane due to its SP, how the receptor may enter the nucleus is unclear. Sequence analysis identified that FGFR1 has an atypical TM containing short stretches of hydrophobic amino acids (a.a.) interrupted by polar a.a. The beta-sheet is the predicted conformation of the FGFR1 TM, in contrast to the alpha-helical conformation of other single TM tyrosine kinase receptors, including FGFR4. Receptor trafficking in live cells was studied by confocal microscopy via C-terminal FGFR1 fusions to enhanced green fluorescent protein (EGFP) and confirmed by subcellular fractionation and Western immunoblotting. Nuclear entry of FGFR1-EGFP was independent of karyokinessis, and was observed in rapidly proliferating human TE671 cells, in slower proliferating glioma SF763 and post-mitotic bovine adrenal medullary cells (BAMC). In contrast, a chimeric FGFR1/R4-EGFP, where the TM of FGFR1 was replaced with that of FGFR4, was associated with membranes (golgi-ER, plasma, and nuclear), but was absent from the nucleus and cytosol. FGFR1delta-EGFP mutants, with hydrophobic TM a.a. replaced with polar a.a., showed reduced association with membranes and increased cytosolic/nuclear accumulation with an increase in TM hydrophilicity. FGFR1(TM-)-EGFP (TM deleted), was detected in the golgi-ER vesicles, cytosol, and nuclear interior; thus demonstrating that the FGFR1 TM does not function as a NLS. To test whether cytosolic FGFR1 provides a source of nuclear FGFR1, cells were transfected with FGFR1(SP-) (SP was deleted), resulting in cytosolic, non-membrane, protein accumulation in the cytosol and the cell nucleus. Our results indicate that an unstable association with cellular membranes is responsible for the release of FGFR1 into the cytosol and cytosolic FGFR1 constitutes the source of the nuclear receptor.
Collapse
Affiliation(s)
- Jason M Myers
- Molecular and Structural Neurobiology and Gene Therapy Program, Department of Pathology and Anatomical Sciences, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
42
|
Bilak MM, Hossain WA, Morest DK. Intracellular fibroblast growth factor produces effects different from those of extracellular application on development of avian cochleovestibular ganglion cells in vitro. J Neurosci Res 2003; 71:629-47. [PMID: 12584722 DOI: 10.1002/jnr.10498] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In an avian coculture system, the neuronal precursors of the cochleovestibular ganglion typically migrated from the otocyst and differentiated in response to soluble fibroblast growth factor (FGF-2), which had free access to FGF receptors on the cell surface. Free FGF-2 switched cells from a proliferation mode to migration, accompanied by increases in process outgrowth, fasciculation, and polysialic acid expression. Microsphere-bound FGF-2 had some of the same effects, but in addition it increased proliferation and decreased fasciculation and polysialic acid. As shown by immunohistochemistry, FGF-2 that was bound to latex microspheres depleted the FGF surface receptor protein, which localized with the microspheres in the cytoplasm and nucleus. For microsphere-bound FGF-2, the surface receptor-mediated responses to FGF-2 appear to be limited and the door opened to another venue of intracellular events or an intracrine mechanism.
Collapse
Affiliation(s)
- Masako M Bilak
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | |
Collapse
|
43
|
Stachowiak EK, Fang X, Myers J, Dunham S, Stachowiak MK. cAMP-induced differentiation of human neuronal progenitor cells is mediated by nuclear fibroblast growth factor receptor-1 (FGFR1). J Neurochem 2003; 84:1296-312. [PMID: 12614330 DOI: 10.1046/j.1471-4159.2003.01624.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activation of cAMP signaling pathway and its transcriptional factor cyclic AMP response element binding protein (CREB) and coactivator are key determinants of neuronal differentiation and plasticity. We show that nuclear fibroblast growth factor receptor-1 (FGFR1) mediates cAMP-induced neuronal differentiation and regulates CREB and CREB binding protein (CBP) function in alpha-internexin-expressing human neuronal progenitor cells (HNPC). In proliferating HNPC, FGFR1 was associated with the cytoplasm and plasma membrane. Treatment with dB-cAMP induced nuclear accumulation of FGFR1 and caused neuronal differentiation, accompanied by outgrowth of neurites expressing MAP2 and neuron-specific neurofilament-L protein and enolase. HNPC transfected with nuclear/cytoplasmic FGFR1 or non-membrane FGFR1(SP-/NLS), engineered to accumulate exclusively in the cell nucleus, underwent neuronal differentiation in the absence of cAMP stimulation. In contrast, FGFR1/R4, with highly hydrophobic transmembrane domain of FGFR4, was membrane associated, did not enter the nucleus and failed to induce neuronal differentiation. Transfection of tyrosine kinase-deleted dominant negative receptor mutants, cytoplasmic/nuclear FGFR1(TK-) or nuclear FGFR1(SP-/NLS)(TK-), prevented cAMP-induced neurite outgrowth. Nuclear FGFR1 localized in speckle-like domains rich in phosphorylated histone 3 and splicing factors, regions known for active RNA transcription and processing, and activated the neurofilament-L gene promoter. FGFR1(SP-/NLS) transactivated CRE, up-regulated phosphorylation and transcriptional activity of CREB and stimulated the activity of CBP several-fold. Thus, cAMP-induced nuclear accumulation of FGFR1 provides a signal that triggers molecular events leading to neuronal differentiation.
Collapse
Affiliation(s)
- E K Stachowiak
- Molecular and Structural Neurobiology and Gene Therapy Program, Department Pathology and Anatomical Sciences, State University of New York, Buffalo 14214, USA
| | | | | | | | | |
Collapse
|
44
|
Kanda T, Funato N, Baba Y, Kuroda T. Evidence for fibroblast growth factor receptors in myofibroblasts during palatal mucoperiosteal repair. Arch Oral Biol 2003; 48:213-21. [PMID: 12648559 DOI: 10.1016/s0003-9969(02)00204-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Fibroblast growth factors (FGFs) regulate cell growth and differentiation and play crucial roles in the process of tissue repair and remodelling. We have previously shown that basic FGF is widely expressed at the injured site. Since the presence of FGF receptors (FGFRs) determines cellular responsiveness, we examined the localisation of FGFR1, FGFR2 and FGFR3 expression by immunohistochemistry throughout the repair of full-thickness excisional wounds up to 28 days after wounding. Strong expression of FGFR1 was observed in the nuclei of myofibroblasts, which are characterised by alpha-smooth muscle (alpha-SM) actin expression. The weak expression of FGFR2 was also observed in the nuclei of myofibroblasts. In contrast, there was no staining for FGFR3 in fibroblasts through the wound healing process. In addition, transforming growth factor-beta1 (TGF-beta1), a potential inducer of myofibroblasts, enhanced the expression of FGFR1 and FGFR2 in the nuclei of palatal fibroblasts in vitro. These findings suggest that FGFR1 and FGFR2 in myofibroblasts may be responsible for the signal transduction of FGF during the wound healing process.
Collapse
Affiliation(s)
- T Kanda
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Japan.
| | | | | | | |
Collapse
|
45
|
Claus P, Doring F, Gringel S, Muller-Ostermeyer F, Fuhlrott J, Kraft T, Grothe C. Differential intranuclear localization of fibroblast growth factor-2 isoforms and specific interaction with the survival of motoneuron protein. J Biol Chem 2003; 278:479-85. [PMID: 12397076 DOI: 10.1074/jbc.m206056200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor 2 (FGF-2) is an important modulator of cell growth and differentiation and a neurotrophic factor. FGF-2 occurs in isoforms, at a low molecular weight of 18,000 and at least two high molecular weight forms (21,000 and 23,000), representing alternative translation products from a single mRNA. In addition to its role as an extracellular ligand, FGF-2 localizes to the nuclei of cells. Here we show differential localization of the 18- and 23-kDa isoforms in the nuclei of rat Schwann cells. Whereas the 18-kDa isoform was found in the nucleoli, nucleoplasm, and Cajal bodies, the 23-kDa isoform localized in a punctuate pattern and associates with mitotic chromosomes suggesting different functional roles of the isoforms. Moreover, we show here that the 23-kDa FGF-2 isoform co-immunoprecipitates specifically with the survival of motor neuron protein (SMN). SMN is an assembly and recycling factor of the splicing machinery and locates to the cytoplasm, the nucleoplasm, and nuclear gems, where it co-localizes with 23-kDa FGF-2. Patients with spinal muscular atrophy suffer from fatal degeneration of motoneurons because of mutations and deletions of the gene for the SMN protein.
Collapse
Affiliation(s)
- Peter Claus
- Department of Neuroanatomy, Hannover Medical School, 30625 Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
46
|
Patel VA, Logan A, Watkinson JC, Uz-Zaman S, Sheppard MC, Ramsden JD, Eggo MC. Isolation and characterization of human thyroid endothelial cells. Am J Physiol Endocrinol Metab 2003; 284:E168-76. [PMID: 12388152 DOI: 10.1152/ajpendo.00096.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
From collagenase digests of human thyroid, endothelial cells were separated from follicular cells by their greater adherence to gelatin-coated plates. Endothelial cells were further purified using fluorescence-activated cell sorting, selecting for cells expressing factor VIII-related antigen. Isolated cells were negative for thyroglobulin and calcitonin when examined by immunostaining. The receptor for the angiopoietins, Tie-2, was expressed by the cells, and expression was increased by agents that elevate cAMP. Nitric oxide synthase (NOS) 3, the endothelial form of NOS, was expressed by the cells and similarly regulated. Cells responded strongly to the mitogen fibroblast growth factor (FGF)-2 in growth assays but only weakly to vascular endothelial growth factor (VEGF). VEGF was, however, able to stimulate nitric oxide release from the cells consistent with their endothelial origin. The FGF receptor (FGFR1) was full length (120 kDa) and immunolocalized to the cytosol and nucleus. Thyrotropin (TSH) did not regulate FGFR1, but its expression was increased by VEGF. Thrombospondin, a product of follicular cells, was a growth inhibitor, but neither TSH nor 3,5,3'-triiodothyronine had direct mitogenic effects. Thyroid follicular cell conditioned medium contained plasminogen activator activity and stimulated the growth of the endothelial cells, but when treated with plasminogen to produce the endothelial-specific inhibitor, angiostatin, growth was inhibited. Human thyroid endothelial cell cultures will be invaluable in determining the cross talk between endothelial and follicular cells during goitrogenesis.
Collapse
Affiliation(s)
- Vimal A Patel
- Division of Medical Sciences, University of Birmingham, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
47
|
Olsnes S, Klingenberg O, Wiedłocha A. Transport of exogenous growth factors and cytokines to the cytosol and to the nucleus. Physiol Rev 2003; 83:163-82. [PMID: 12506129 DOI: 10.1152/physrev.00021.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In recent years a number of growth factors, cytokines, protein hormones, and other proteins have been found in the nucleus after having been added externally to cells. This review evaluates the evidence that translocation takes place and discusses possible mechanisms. As a demonstration of the principle that extracellular proteins can penetrate cellular membranes and reach the cytosol, a brief overview of the penetration mechanism of protein toxins with intracellular sites of action is given. Then problems and pitfalls in attempts to demonstrate the presence of proteins in the cytosol and in the nucleus as opposed to intracellular vesicular compartments are discussed, and some new approaches to study this are described. A detailed overview of the evidence for translocation of fibroblast growth factor, HIV-Tat, interferon-gamma, and other proteins where there is evidence for intracellular action is given, and translocation mechanisms are discussed. It is concluded that although there are many pitfalls, the bulk of the experiments indicate that certain proteins are indeed able to enter the cytosol and nucleus. Possible roles of the internalized proteins are discussed.
Collapse
Affiliation(s)
- Sjur Olsnes
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Oslo, Norway.
| | | | | |
Collapse
|
48
|
Bayatti N, Engele J. Cyclic AMP differentially regulates the expression of fibroblast growth factor and epidermal growth factor receptors in cultured cortical astroglia. Neuroscience 2002; 114:81-9. [PMID: 12207956 DOI: 10.1016/s0306-4522(02)00222-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fibroblast growth factor (FGF)-2 and transforming growth factor alpha (TGFalpha) promote astroglial proliferation during brain development and reactive processes. The mitogenic potential of both growth factors is attenuated by increasing intracellular cAMP levels, an effect currently assumed to depend on the inhibition of the mitogen-activated protein kinase cascade. In the present study, we sought to determine whether cAMP interferes with the mitogenic potential of FGF-2 and TGFalpha on astroglia by affecting the expression of respective growth factor receptors. Treatment of highly enriched cultures of cortical astrocytes with dibutyryl cAMP accelerated the TGFalpha-induced internalization and subsequent functional inactivation of epidermal growth factor (EGF) receptor by transiently inhibiting EGF receptor mRNA synthesis. In apparent contrast, both short- and long-term activation of cAMP-dependent signaling pathways robustly promoted the expression of FGF receptors 1 and 2, whereas expression levels of FGF receptor 3 remained unaffected. Moreover, elevation of intracellular cAMP levels did not prevent translocation of FGF receptor 1 to the cell nucleus, a mechanism thought to be essential for FGF-2-induced cell proliferation. We propose that cAMP controls the mitogenic effects of TGFalpha and FGF-2 on astroglial cells by distinctly different mechanisms. Whereas cAMP seems to interfere with the mitogenic effects of TGFalpha on astroglial cells by affecting both the expression level and signaling of the EGF receptor, the modulatory effects of cAMP on FGF-2-induced astroglial proliferation seem to solely result from an inhibition of FGF receptor-activated signaling pathways.
Collapse
Affiliation(s)
- N Bayatti
- Anatomie und Zellbiologie, Universität Ulm, 89069 Ulm, Germany
| | | |
Collapse
|
49
|
Kranenburg AR, De Boer WI, Van Krieken JHJM, Mooi WJ, Walters JE, Saxena PR, Sterk PJ, Sharma HS. Enhanced expression of fibroblast growth factors and receptor FGFR-1 during vascular remodeling in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2002; 27:517-25. [PMID: 12397010 DOI: 10.1165/rcmb.4474] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Important characteristics of chronic obstructive pulmonary disease (COPD) include airway and vascular remodeling, the molecular mechanisms of which are poorly understood. We assessed the role of fibroblast growth factors (FGF) in pulmonary vascular remodeling by examining the expression pattern of FGF-1, FGF-2, and the FGF receptor (FGFR-1) in peripheral area of lung tissues from patients with COPD (FEV(1) < or = 75%; n = 15) and without COPD (FEV(1) > or = 85%; n = 13). Immunohistochemical staining results were evaluated by digital video image analysis as well as by manual scoring. FGF-1 and FGFR-1 were detected in vascular smooth muscle (VSM), airway smooth muscle, and airway epithelial cells. FGF-2 was localized in the cytoplasm of airway epithelium and in the nuclei of airway smooth muscle, VSM, and endothelial cells. In COPD cases, an unequivocal increase in FGF-2 expression was observed in VSM (3-fold, P = 0.001) and endothelium (2-fold, P = 0.007) of small pulmonary vessels with a luminal diameter under 200 micro m. In addition, FGFR-1 levels were elevated in the intima (1.5-fold, P = 0.05). VSM cells of large (> 200 micro m) pulmonary vessels showed increased staining for FGF-1 (1.6-fold, P < 0.03) and FGFR-1 (1.4-fold, P < 0.04) in COPD. Pulmonary vascular remodeling, assessed as the ratio of alpha-smooth muscle actin staining and vascular wall area with the lumen diameter, was increased in large vessels of patients with COPD (P = 0.007) and was inversely correlated with FEV(1) values (P < 0.007). Our results suggest an autocrine role of the FGF-FGFR-1 system in the pathogenesis of COPD-associated vascular remodeling.
Collapse
Affiliation(s)
- Andor R Kranenburg
- Department of Pharmacology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ueno S, Ito JI, Nagayasu Y, Furukawa T, Yokoyama S. An acidic fibroblast growth factor-like factor secreted into the brain cell culture medium upregulates apoE synthesis, HDL secretion and cholesterol metabolism in rat astrocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1589:261-72. [PMID: 12031793 DOI: 10.1016/s0167-4889(02)00181-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Production and release of apolipoprotein (apo) E and cholesterol were highly upregulated in the astrocytes prepared by 1-week secondary culture after 1-month primary culture of rat fetal brain cells (M/W cells) in comparison to the cells prepared by a conventional method of 1-week primary and 1-week secondary culture (W/W cells). Both cell preparations were mostly composed of astrocytes with small population of other glial cells, except that type-2 astrocyte-like cells accounted for 5-15% of M/W cells indicating more activated and/or matured status. The conditioned medium of the 1-month primary culture stimulated W/W cells to increase the release of apoE and cholesterol into the medium. The treatment of W/W cells by acidic fibroblast growth factor (aFGF) similarly upregulated biosyntheses and release of apoE and cholesterol. The effect of the conditioned medium was completely inhibited by pretreatment with an anti-aFGF antibody. The increase of the aFGF message was demonstrated in the brain cells after 1-month primary culture. The findings suggested that an aFGF-like trophic factor upregulates biosynthesis and secretion of apoE-high density lipoprotein (HDL) in astrocytes probably by autocrine stimulation in this culture system. Since this cytokine is highly expressed in the development or post-injury period of the brain, it putatively activates intercellular cholesterol transport to support construction or recovery of the brain.
Collapse
Affiliation(s)
- Sachiko Ueno
- Psychiatry and Cognitive-Behavioral Science, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Japan
| | | | | | | | | |
Collapse
|