1
|
Gambino G, Rizzo V, Giglia G, Ferraro G, Sardo P. Cannabinoids, TRPV and nitric oxide: the three ring circus of neuronal excitability. Brain Struct Funct 2019; 225:1-15. [PMID: 31792694 DOI: 10.1007/s00429-019-01992-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
Abstract
Endocannabinoid system is considered a relevant player in the regulation of neuronal excitability, since it contributes to maintaining the balance of the synaptic ionic milieu. Perturbations to bioelectric conductances have been implicated in the pathophysiological processes leading to hyperexcitability and epileptic seizures. Cannabinoid influence on neurosignalling is exerted on classic receptor-mediated mechanisms or on further molecular targets. Among these, transient receptor potential vanilloid (TRPV) are ionic channels modulated by cannabinoids that are involved in the transduction of a plethora of stimuli and trigger fundamental downstream pathways in the post-synaptic site. In this review, we aim at providing a brief summary of the most recent data about the cross-talk between cannabinoid system and TRPV channels, drawing attention on their role on neuronal hyperexcitability. Then, we aim to unveil a plausible point of interaction between these neural signalling systems taking into consideration nitric oxide, a gaseous molecule inducing profound modifications to neural performances. From this novel perspective, we struggle to propose innovative cellular mechanisms in the regulation of hyperexcitability phenomena, with the goal of exploring plausible CB-related mechanisms underpinning epileptic seizures.
Collapse
Affiliation(s)
- Giuditta Gambino
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy.
| | - Valerio Rizzo
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Giuseppe Giglia
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Giuseppe Ferraro
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| | - Pierangelo Sardo
- Department of Experimental Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Sezione di Fisiologia Umana G. Pagano, University of Palermo, Corso Tukory 129, Palermo, Italy
| |
Collapse
|
2
|
Prieto-Martín AI, Llorens S, Pardal-Fernández JM, Muñoz LJ, López DE, Escribano J, Nava E, de Cabo C. Opposite caudal versus rostral brain nitric oxide synthase response to generalized seizures in a novel rodent model of reflex epilepsy. Life Sci 2012; 90:531-7. [DOI: 10.1016/j.lfs.2012.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 01/09/2023]
|
3
|
Ibragic S, Sofic E, Suljic E, Avdagic N, Bajraktarevic A, Tahirovic I. Serum nitric oxide concentrations in patients with multiple sclerosis and patients with epilepsy. J Neural Transm (Vienna) 2011; 119:7-11. [PMID: 21779769 DOI: 10.1007/s00702-011-0686-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 07/02/2011] [Indexed: 11/25/2022]
Abstract
Nitric oxide (NO), a neurotransmitter and a free radical, has been purported to be involved in numerous neurological diseases. We investigated the serum nitric oxide concentration in 30 patients with multiple sclerosis (MS), in 30 patients with epilepsy and in 30 control subjects. The aim was also to determine whether a statistically significant difference in serum NO concentrations exists between the groups of interest. The total serum nitric oxide concentration was measured using the Griess reaction after reducing nitrates to nitrites with elemental zinc. In the group multiple sclerosis, the mean NO concentrations were X ± SEM = 31.02 ± 1.79 μmol/l, in the control group X ± SEM = 25.31 ± 1.44 μmol/l and in the group epilepsy X ± SEM = 22.51 ± 1.28 μmol/l. Student's t test showed a statistically significant difference between subjects with multiple sclerosis and the control group (p = 0.013), as well as between the groups multiple sclerosis and epilepsy (p = 0.0002). This data confirms that NO may play an important role in the pathogenesis of multiple sclerosis, whereas its role in epilepsy still remains unclear.
Collapse
Affiliation(s)
- Saida Ibragic
- Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33-35, 71 000 Sarajevo, Bosnia-Herzegovina
| | | | | | | | | | | |
Collapse
|
4
|
Süer C, Dolu N, Artis S, Aydogan S. Effects of carnosine on long-term plasticity of medial perforant pathway/dentate gyrus synapses in urethane-anesthetized rats: an in vivo model. Exp Brain Res 2009; 197:135-42. [DOI: 10.1007/s00221-009-1899-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 06/08/2009] [Indexed: 11/28/2022]
|
5
|
Lamotrigine differently modulates 7-nitroindazole and L-arginine influence on rat maximal dentate gyrus activation. J Neural Transm (Vienna) 2007; 115:27-34. [DOI: 10.1007/s00702-007-0824-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 09/17/2007] [Indexed: 11/26/2022]
|
6
|
Sardo P, Ferraro G. Modulatory effects of nitric oxide-active drugs on the anticonvulsant activity of lamotrigine in an experimental model of partial complex epilepsy in the rat. BMC Neurosci 2007; 8:47. [PMID: 17605830 PMCID: PMC1950521 DOI: 10.1186/1471-2202-8-47] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 07/03/2007] [Indexed: 11/22/2022] Open
Abstract
Background The effects induced by administering the anticonvulsant lamotrigine, the preferential inhibitor of neuronal nitric oxide synthase 7-nitroindazole and the precursor of NO synthesis L-arginine, alone or in combination, on an experimental model of partial complex seizures (maximal dentate gyrus activation) were studied in urethane anaesthetized rats. The epileptic activity of the dentate gyrus was obtained through the repetitive stimulation of the angular bundle and maximal dentate gyrus activation latency, duration and post-stimulus afterdischarge duration were evaluated. Results Either Lamotrigine (10 mg kg-1) or 7-nitroindazole (75 mg kg-1) i.p. administration had an anticonvulsant effect, significantly reducing the number of animals responding to angular bundle stimulation. On the contrary, i.p. injection of L-arginine (1 g kg-1) induced an aggravation of the epileptiform phenomena, demonstrated by the significant augmentation of the duration of both maximal dentate activation and afterdischarge. Furthermore, the injection of lamotrigine and 7-nitroindazole in combination significantly increased the anticonvulsant effects induced by the same drugs separately, either reducing the number of responding animals or decreasing both maximal dentate gyrus activation and afterdischarge durations. On the contrary, the combined treatment with L-arginine and lamotrigine did not modify the maximal dentate gyrus activation parameters suggesting an adversative effect of L-arginine-increased nitric oxide levels on the lamotrigine-induced anticonvulsant action. Conclusion The present results indicate that the nitrergic neurotransmission exerts a significant modulatory role in the control of the development of paroxystic phenomena in the maximal dentate gyrus activation model of epilepsy. Finally, our data suggest a functional relationship between the nitric oxide system and the anticonvulsant effect of lamotrigine which could be enhanced by reducing nitric oxide levels and, conversely, dampened by an increased nitrergic activity.
Collapse
Affiliation(s)
- Pierangelo Sardo
- Dipartimento di Medicina sperimentale, Sezione di Fisiologia umana "G. Pagano", Università degli Studi di Palermo, C.so Tukory, 129 – 90134 Palermo, Italy
| | - Giuseppe Ferraro
- Dipartimento di Medicina sperimentale, Sezione di Fisiologia umana "G. Pagano", Università degli Studi di Palermo, C.so Tukory, 129 – 90134 Palermo, Italy
| |
Collapse
|
7
|
Li H, Prince DA. Synaptic activity in chronically injured, epileptogenic sensory-motor neocortex. J Neurophysiol 2002; 88:2-12. [PMID: 12091528 DOI: 10.1152/jn.00507.2001] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recorded spontaneous and evoked synaptic currents in pyramidal neurons of layer V in chronically injured, epileptogenic neocortex to assess changes in the efficacy of excitatory and inhibitory neurotransmission that might promote cortical hyperexcitability. Partial sensory-motor neocortical isolations with intact blood supply ("undercuts") were made in 20 rats on postnatal day 21-25 and examined 2-6 wk later in standard brain slice preparations using whole cell patch-clamp techniques. Age-matched, uninjured naive rats (n = 20) were used as controls. Spontaneous and miniature excitatory and inhibitory postsynaptic currents (s- and mEPSCs; s- and mIPSCs) were recorded using patch-clamp techniques. The average frequency of s- and mEPSCs was significantly higher, while that of s- and mIPSCs was significantly lower in neurons of undercuts versus controls. The increased frequency of excitatory events was due to an increase in both s- and mEPSC frequency, suggesting an increased number of excitatory contacts and/or increased release probability at excitatory terminals. No significant difference was observed in 10-90% rise time of these events. The input-output slopes of fast, short-latency, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid/kainate (AMPA/KA) receptor-mediated components of evoked EPSCs were steeper in undercuts than in controls. The peak amplitude of the AMPA/KA component of EPSCs evoked by supra-threshold stimuli was significantly greater in the partially isolated neocortex. In contrast, the N-methyl-D-aspartate receptor-mediated component of evoked EPSCs was not significantly different in neurons of injured versus control cortex, suggesting that the increased AMPA/KA component was due to postsynaptic alterations. Results support the conclusion that layer V pyramidal neurons receive increased AMPA/KA receptor-mediated excitatory synaptic drive and decreased GABA(A) receptor-mediated inhibition in this chronically injured, epileptogenic cortex. This shift in the balance of excitatory and inhibitory synaptic activation of layer V pyramidal cells toward excitation might be maladaptive and play a critical role in epileptogenesis.
Collapse
Affiliation(s)
- Huifang Li
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
8
|
Abstract
Long-term potentiation (LTP) is a sustained increase in the efficacy of synaptic transmission, based on functional changes involving pre- and postsynaptic mechanisms, and has been considered a cellular model for learning and memory. The sulphurated tripeptide glutathione acts as a powerful antioxidant agent within the nervous system. Recent in vitro studies suggest that the cellular redox status might influence the mechanisms involved in synaptic plasticity. It is not known, however, how glutathione depletion might affect LTP. In the present study, we evaluated the input-output relationships, LTP, and paired-pulse interactions in rats with low glutathione levels induced by systemic injection of diethylmaleate. Our results in anesthetized rats show that the basic synaptic transmission between the perforant pathway and the dentate gyrus granule cells was not affected by glutathione depletion. However, in the same synapses it was not possible to induce prolonged changes in synaptic efficacy (LTP). Paired-pulse facilitation was also absent in the treated animals, suggesting an impairment of short-term synaptic interactions. These findings indicate that low content of glutathione can impair short-term and long-term mechanisms of synaptic plasticity and stress the importance of the redox balance in the normal function of brain circuitry.
Collapse
|
9
|
Jiang D, Akopian G, Ho YS, Walsh JP, Andersen JK. Chronic brain oxidation in a glutathione peroxidase knockout mouse model results in increased resistance to induced epileptic seizures. Exp Neurol 2000; 164:257-68. [PMID: 10915565 DOI: 10.1006/exnr.2000.7431] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Systemic administration of kainic acid (KA) to rodents results in limbic seizures and subsequent neurodegeneration similar to that observed in certain types of human epilepsy, and it is a commonly used animal model for this disease. Oxidative stress has been suggested to play a role in the neuronal injury associated with KA administration. Based on this observation, chronic treatment with antioxidants has been proposed as a possible protective therapy against neuronal damage associated with epileptic seizures. Here we demonstrate by histochemical, electrophysiological, and biochemical means that knockout mice with decreased activity of the protective antioxidant enzyme glutathione peroxidase, which display elevated basal brain oxidative stress levels, are resistant to KA-induced seizure activity and neurodegeneration. This appears to be a result of decreased NMDA receptor function due to oxidation of its NR1 subunit. This suggests that the chronic use of antioxidants as antiepileptic agents to modulate NMDA-dependent seizure-induced neurodegeneration may be detrimental rather than protective and calls into question their use as a therapeutic agent in the treatment of epilepsy.
Collapse
Affiliation(s)
- D Jiang
- Division of Neurogerontology, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | |
Collapse
|
10
|
Ferraro G, Montalbano ME, La Grutta V. Nitric oxide and glutamate interaction in the control of cortical and hippocampal excitability. Epilepsia 1999; 40:830-6. [PMID: 10403205 DOI: 10.1111/j.1528-1157.1999.tb00788.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE We investigated the role of nitric oxide (NO) as a new neurotransmitter in the control of excitability of the hippocampus and the cerebral cortex, as well as the possible functional interaction between NO and the glutamate systems. METHODS The experiments were performed on anesthetized rats. The bioelectrical activities of the somatosensory cortex and the CA1 region of the hippocampus of these rats were recorded. Pharmacologic inhibition of NO synthase (NOS) through the nonselective and brain-selective inhibitors, N-nitro-L-arginine methyl ester (L-NAME) and 7-nitroindazole (7-NI), was performed. RESULTS The treatments caused the appearance of an interictal discharge activity in both the structures. The latency of induction and the duration of the interictal discharge activity were strictly related to the dose of NOS inhibitor used. In some cases, after L-NAME treatment at high doses, it was possible to note spike and wave afterdischarge activity in the hippocampus. All the NOS inhibitor-mediated excitatory effects were abolished by intraperitoneal (i.p.) pretreatment with the N-methyl-D-aspartic acid (NMDA) receptor antagonists (DL-2-amino-5-phosphonovaleric acid, 2-APV; dizolcipine, MK-801) and partly suppressed after the i.p. injection of the non-NMDA antagonist (6-cyano-7-nitroquinoxaline-2,3-dione; CNQX). CONCLUSIONS All data showed that the reduction of NO levels in the nervous system causes the functional prevalence of the excitatory neurotransmission, which is probably due to an NMDA overactivity caused by the absence of the NO-mediated modulatory action. Thus, it is possible to hypothesize a neuroprotective role for NO, probably through a selective desensitization of the NMDA receptors.
Collapse
Affiliation(s)
- G Ferraro
- Institute of Human Physiology, University of Palermo, Italy
| | | | | |
Collapse
|
11
|
Abstract
This paper reviews what is currently known about the redox state of the glutamate synapse and its possible role in modulating synaptic plasticity and thus learning and neurocomputation. The hypothesis is presented that the growth or pruning of the synaptic spine is controlled in part by the balance in the synapse between neurodestructive pro-oxidants (e.g., nitric acid radical and hydrogen peroxide) and neuroprotective antioxidants (e.g., ascorbate and carnosine). In addition, there may be a role for catecholamines, in particular dopamine, related to its role in reinforcement signalling. Activation of the dopamine D2 receptor induces the synthesis of an antioxidant enzyme, possibly catalase. Dopamine may also affect the redox balance in the glutamate synapse directly by diffusion from the adjacent dopaminergic bouton-en-passage. Catecholamines are powerful antioxidants, scavengers of free radicals and iron chelators. Catecholamine-iron complexes are potent dismuters of superoxide ions. Additional agents participating in spine pruning may be neurotoxic catecholamine o-quinones present in the brain. This system may be at fault in schizophrenia and Parkinson's disease. Experiments to test the hypothesis are suggested.
Collapse
|
12
|
Abstract
Oxidation-reduction (redox) based regulation of signal transduction and gene expression is emerging as a fundamental regulatory mechanism in cell biology. Electron flow through side chain functional CH2-SH groups of conserved cysteinyl residues in proteins account for their redox-sensing properties. Because in most intracellular proteins thiol groups are strongly "buffered" against oxidation by the highly reduced environment inside the cell, only accessible protein thiol groups with high thiol-disulfide oxidation potentials are likely to be redox sensitive. The list of redox-sensitive signal transduction pathways is steadily growing, and current information suggests that manipulation of the cell redox state may prove to be an important strategy for the management of AIDS and some forms of cancer. The endogenous thioredoxin and glutathione systems are of central importance in redox signaling. Among the thiol agents tested for their efficacy to modulate cellular redox status, N-acetyl-L-cysteine (NAC) and alpha-lipoic acid hold promise for clinical use. A unique advantage of lipoate is that it is able to utilize cellular reducing equivalents, and thus it harnesses the metabolic power of the cell to continuously regenerate its reductive vicinal dithiol form. Because lipoate can be readily recycled in the cell, it has an advantage over N-acetyl-L-cysteine on a concentration:effect basis. Our current knowledge of redox regulated signal transduction has led to the unfolding of the remarkable therapeutic potential of cellular thiol modulating agents.
Collapse
Affiliation(s)
- C K Sen
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200, USA.
| |
Collapse
|
13
|
Rafiki A, Chevassus-au-Louis N, Ben-Ari Y, Khrestchatisky M, Represa A. Glutamate receptors in dysplasic cortex: an in situ hybridization and immunohistochemistry study in rats with prenatal treatment with methylazoxymethanol. Brain Res 1998. [DOI: 10.1016/s0006-8993(97)01273-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Bernard CL, Hirsch JC, Khazipov R, Ben-Ari Y, Gozlan H. Redox modulation of synaptic responses and plasticity in rat CA1 hippocampal neurons. Exp Brain Res 1997; 113:343-52. [PMID: 9063720 DOI: 10.1007/bf02450332] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Effects of redox reagents on excitatory and inhibitory synaptic responses as well as on the bidrectional plasticity of alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor-mediated synaptic responses were studied in CA1 pyramidal neurons in rat hippocampal slices. The oxidizing agent 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB, 200 microM) did not affect AMPA, GABAA or GABAB receptor-mediated synaptic responses or the activation of presynaptic metabotropic receptors. However, DTNB irreversibly decreased (by approximately 50%) currents evoked by focal application of NMDA. DTNB also decreased the NMDA component of the EPSC. The reversal potential of NMDA currents and the Mg2+ block were not modified. In the presence of physiological concentrations of Mg2+ (1.3 mM), DTNB did not affect the NMDA receptor-dependent induction of long-term potentiation (LTP) or long-term depression (LTD) expressed by AMPA receptors. In contrast, DTNB fully prevented LTP and LTD induced and expressed by NMDA receptors. Plasticity of NMDA receptor-mediated synaptic responses could be reinstated by the reducing agent tris-(2-carboxyethyl) phosphine (TCEP, 200 microM). These results suggest that persistent, bidirectional changes in synaptic currents mediated by NMDA receptors cannot be evoked when these receptors are in an oxidized state, whereas NMDA-dependent LTP and LTD are still expressed by AMPA receptors. Our observations raise the possibility of developing therapeutic agents that would prevent persistent excitotoxic enhancement of NMDA receptor-mediated events without blocking longterm modifications of AMPA receptor-mediated synaptic responses, thought to underlie memory processes.
Collapse
Affiliation(s)
- C L Bernard
- INSERM U29, Hôpital de Port-Royal, Paris, France
| | | | | | | | | |
Collapse
|
15
|
Quesada O, Hirsch JC, Gozlan H, Ben-Ari Y, Bernard C. Epileptiform activity but not synaptic plasticity is blocked by oxidation of NMDA receptors in a chronic model of temporal lobe epilepsy. Epilepsy Res 1997; 26:373-80. [PMID: 9095399 DOI: 10.1016/s0920-1211(96)01004-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Simultaneous extracellular recordings were performed in stratum radiatum and stratum pyramidale of hippocampal slices 7 days following unilateral intracerebroventricular injections of kainic acid. In this ex vivo experimental model of human temporal lobe epilepsy, stimulation of the surviving commissural fibres in stratum radiatum produced graded epileptiform activity in the CA1 area. The oxidizing reagent 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) acting at NMDA receptors redox sites decreases NMDA receptor-mediated responses by half and suppresses evoked epileptiform discharges. We have examined the effect of DTNB on NMDA-dependent bidirectional synaptic plasticity and EPSP/spike coupling. DTNB treatment did not prevent either long-term potentiation induced by tetanic stimulation or long-term depression induced by low frequency stimulation of field EPSPs. Application of DTNB alone did not induce EPSP/spike dissociation. However, both high and low frequency stimulations induced EPSP/spike potentiation indicating that neurons had a high probability to discharge in synchrony. These results suggest that oxidizing reagents may provide novel antiepileptic treatments since they decrease NMDA-dependent evoked epileptiform activity but do not interfere with either NMDA-dependent synaptic plasticity or the probability of synchronous discharge.
Collapse
Affiliation(s)
- O Quesada
- INSERM U29, Hôpital de Port Royal, Paris, France
| | | | | | | | | |
Collapse
|