1
|
Giese D, Li H, Liu W, Staxäng K, Hodik M, Ladak HM, Agrawal S, Schrott‐Fischer A, Glueckert R, Rask‐Andersen H. Microanatomy of the human tunnel of Corti structures and cochlear partition-tonotopic variations and transcellular signaling. J Anat 2024; 245:271-288. [PMID: 38613211 PMCID: PMC11259753 DOI: 10.1111/joa.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Auditory sensitivity and frequency resolution depend on the optimal transfer of sound-induced vibrations from the basilar membrane (BM) to the inner hair cells (IHCs), the principal auditory receptors. There remains a paucity of information on how this is accomplished along the frequency range in the human cochlea. Most of the current knowledge is derived either from animal experiments or human tissue processed after death, offering limited structural preservation and optical resolution. In our study, we analyzed the cytoarchitecture of the human cochlear partition at different frequency locations using high-resolution microscopy of uniquely preserved normal human tissue. The results may have clinical implications and increase our understanding of how frequency-dependent acoustic vibrations are carried to human IHCs. A 1-micron-thick plastic-embedded section (mid-modiolar) from a normal human cochlea uniquely preserved at lateral skull base surgery was analyzed using light and transmission electron microscopy (LM, TEM). Frequency locations were estimated using synchrotron radiation phase-contrast imaging (SR-PCI). Archival human tissue prepared for scanning electron microscopy (SEM) and super-resolution structured illumination microscopy (SR-SIM) were also used and compared in this study. Microscopy demonstrated great variations in the dimension and architecture of the human cochlear partition along the frequency range. Pillar cell geometry was closely regulated and depended on the reticular lamina slope and tympanic lip angle. A type II collagen-expressing lamina extended medially from the tympanic lip under the inner sulcus, here named "accessory basilar membrane." It was linked to the tympanic lip and inner pillar foot, and it may contribute to the overall compliance of the cochlear partition. Based on the findings, we speculate on the remarkable microanatomic inflections and geometric relationships which relay different sound-induced vibrations to the IHCs, including their relevance for the evolution of human speech reception and electric stimulation with auditory implants. The inner pillar transcellular microtubule/actin system's role of directly converting vibration energy to the IHC cuticular plate and ciliary bundle is highlighted.
Collapse
Affiliation(s)
- Dina Giese
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck SurgeryUppsala UniversityUppsalaSweden
| | - Hao Li
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck SurgeryUppsala UniversityUppsalaSweden
| | - Wei Liu
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck SurgeryUppsala UniversityUppsalaSweden
| | - Karin Staxäng
- The Rudbeck TEM Laboratory, BioVis PlatformUppsala UniversityUppsalaSweden
| | - Monika Hodik
- The Rudbeck TEM Laboratory, BioVis PlatformUppsala UniversityUppsalaSweden
| | - Hanif M. Ladak
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Department of Electrical and Computer EngineeringWestern UniversityLondonOntarioCanada
| | - Sumit Agrawal
- Department of Otolaryngology‐Head and Neck SurgeryWestern UniversityLondonOntarioCanada
| | | | - Rudolf Glueckert
- Inner Ear Laboratory, Department of OtorhinolaryngologyMedical University InnsbruckInnsbruckAustria
| | - Helge Rask‐Andersen
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck SurgeryUppsala UniversityUppsalaSweden
| |
Collapse
|
2
|
Chatterjee P, Morgan CP, Krey JF, Benson C, Goldsmith J, Bateschell M, Ricci AJ, Barr-Gillespie PG. GIPC3 couples to MYO6 and PDZ domain proteins and shapes the hair cell apical region. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530466. [PMID: 36909580 PMCID: PMC10002731 DOI: 10.1101/2023.02.28.530466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
GIPC3 has been implicated in auditory function. Initially localized to the cytoplasm of inner and outer hair cells of the cochlea, GIPC3 increasingly concentrated in cuticular plates and at cell junctions during postnatal development. Early postnatal Gipc3 KO/KO mice had mostly normal mechanotransduction currents, but had no auditory brainstem response at one month of age. Cuticular plates of Gipc3 KO/KO hair cells did not flatten during development as did those of controls; moreover, hair bundles were squeezed along the cochlear axis in mutant hair cells. Junctions between inner hair cells and adjacent inner phalangeal cells were also severely disrupted in Gipc3 KO/KO cochleas. GIPC3 bound directly to MYO6, and the loss of MYO6 led to altered distribution of GIPC3. Immunoaffinity purification of GIPC3 from chicken inner ear extracts identified co-precipitating proteins associated with adherens junctions, intermediate filament networks, and the cuticular plate. Several of immunoprecipitated proteins contained GIPC-family consensus PDZ binding motifs (PBMs), including MYO18A, which binds directly to the PDZ domain of GIPC3. We propose that GIPC3 and MYO6 couple to PBMs of cytoskeletal and cell-junction proteins to shape the cuticular plate. Summary statement The PDZ-domain protein GIPC3 couples the molecular motors MYO6 and MYO18A to actin cytoskeleton structures in hair cells. GIPC3 is necessary for shaping the hair cell’s cuticular plate and hence the arrangement of the stereocilia in the hair bundle.
Collapse
Affiliation(s)
- Paroma Chatterjee
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Clive P. Morgan
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Jocelyn F. Krey
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Connor Benson
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Jennifer Goldsmith
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Michael Bateschell
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Anthony J. Ricci
- Department of Otolaryngology—Head & Neck Surgery, Stanford University, Stanford, California 94305, USA ss
| | - Peter G. Barr-Gillespie
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
- Manuscript correspondence at
| |
Collapse
|
3
|
Fu X, An Y, Wang H, Li P, Lin J, Yuan J, Yue R, Jin Y, Gao J, Chai R. Deficiency of Klc2 Induces Low-Frequency Sensorineural Hearing Loss in C57BL/6 J Mice and Human. Mol Neurobiol 2021; 58:4376-4391. [PMID: 34014435 DOI: 10.1007/s12035-021-02422-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
The transport system in cochlear hair cells (HCs) is important for their function, and the kinesin family of proteins transports numerous cellular cargos via the microtubule network in the cytoplasm. Here, we found that Klc2 (kinesin light chain 2), the light chain of kinesin-1 that mediates cargo binding and regulates kinesin-1 motility, is essential for cochlear function. We generated mice lacking Klc2, and they suffered from low-frequency hearing loss as early as 1 month of age. We demonstrated that deficiency of Klc2 resulted in abnormal transport of mitochondria and the down-regulation of the GABAA receptor family. In addition, whole-genome sequencing (WGS) of patient showed that KLC2 was related to low-frequency hearing in human. Hence, to explore therapeutic approaches, we developed adeno-associated virus containing the Klc2 wide-type cDNA sequence, and Klc2-null mice delivered virus showed apparent recovery, including decreased ABR threshold and reduced out hair cell (OHC) loss. In summary, we show that the kinesin transport system plays an indispensable and special role in cochlear HC function in mice and human and that mitochondrial localization is essential for HC survival.
Collapse
Affiliation(s)
- Xiaolong Fu
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,College of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yachun An
- School of Life Science, Shandong University, Qingdao, China
| | - Hongyang Wang
- College of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Peipei Li
- School of Life Science, Shandong University, Qingdao, China
| | - Jing Lin
- Waksman Institute, the State University of New Jersey, RutgersNew Brunswick, NJ, USA
| | - Jia Yuan
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Rongyu Yue
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated To Shandong University, Jinan, China
| | - Yecheng Jin
- School of Life Science, Shandong University, Qingdao, China
| | - Jiangang Gao
- College of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China. .,College of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
| |
Collapse
|
4
|
Song J, Patterson R, Metlagel Z, Krey JF, Hao S, Wang L, Ng B, Sazzed S, Kovacs J, Wriggers W, He J, Barr-Gillespie PG, Auer M. A cryo-tomography-based volumetric model of the actin core of mouse vestibular hair cell stereocilia lacking plastin 1. J Struct Biol 2020; 210:107461. [PMID: 31962158 PMCID: PMC7067663 DOI: 10.1016/j.jsb.2020.107461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/11/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
Electron cryo-tomography allows for high-resolution imaging of stereocilia in their native state. Because their actin filaments have a higher degree of order, we imaged stereocilia from mice lacking the actin crosslinker plastin 1 (PLS1). We found that while stereocilia actin filaments run 13 nm apart in parallel for long distances, there were gaps of significant size that were stochastically distributed throughout the actin core. Actin crosslinkers were distributed through the stereocilium, but did not occupy all possible binding sites. At stereocilia tips, protein density extended beyond actin filaments, especially on the side of the tip where a tip link is expected to anchor. Along the shaft, repeating density was observed that corresponds to actin-to-membrane connectors. In the taper region, most actin filaments terminated near the plasma membrane. The remaining filaments twisted together to make a tighter bundle than was present in the shaft region; the spacing between them decreased from 13 nm to 9 nm, and the apparent filament diameter decreased from 6.4 to 4.8 nm. Our models illustrate detailed features of distinct structural domains that are present within the stereocilium.
Collapse
Affiliation(s)
- Junha Song
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Roma Patterson
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zoltan Metlagel
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jocelyn F Krey
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Samantha Hao
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Linshanshan Wang
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Brian Ng
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Salim Sazzed
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA
| | - Julio Kovacs
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, USA
| | - Willy Wriggers
- Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, USA
| | - Jing He
- Department of Computer Science, Old Dominion University, Norfolk, VA, USA
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center & Vollum Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Manfred Auer
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
5
|
Stereocilia Rootlets: Actin-Based Structures That Are Essential for Structural Stability of the Hair Bundle. Int J Mol Sci 2020; 21:ijms21010324. [PMID: 31947734 PMCID: PMC6981779 DOI: 10.3390/ijms21010324] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 12/04/2022] Open
Abstract
Sensory hair cells of the inner ear rely on the hair bundle, a cluster of actin-filled stereocilia, to transduce auditory and vestibular stimuli into electrical impulses. Because they are long and thin projections, stereocilia are most prone to damage at the point where they insert into the hair cell’s soma. Moreover, this is the site of stereocilia pivoting, the mechanical movement that induces transduction, which additionally weakens this area mechanically. To bolster this fragile area, hair cells construct a dense core called the rootlet at the base of each stereocilium, which extends down into the actin meshwork of the cuticular plate and firmly anchors the stereocilium. Rootlets are constructed with tightly packed actin filaments that extend from stereocilia actin filaments which are wrapped with TRIOBP; in addition, many other proteins contribute to the rootlet and its associated structures. Rootlets allow stereocilia to sustain innumerable deflections over their lifetimes and exemplify the unique manner in which sensory hair cells exploit actin and its associated proteins to carry out the function of mechanotransduction.
Collapse
|
6
|
Du TT, Dewey JB, Wagner EL, Cui R, Heo J, Park JJ, Francis SP, Perez-Reyes E, Guillot SJ, Sherman NE, Xu W, Oghalai JS, Kachar B, Shin JB. LMO7 deficiency reveals the significance of the cuticular plate for hearing function. Nat Commun 2019; 10:1117. [PMID: 30850599 PMCID: PMC6408450 DOI: 10.1038/s41467-019-09074-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 02/15/2019] [Indexed: 12/25/2022] Open
Abstract
Sensory hair cells, the mechanoreceptors of the auditory and vestibular systems, harbor two specialized elaborations of the apical surface, the hair bundle and the cuticular plate. In contrast to the extensively studied mechanosensory hair bundle, the cuticular plate is not as well understood. It is believed to provide a rigid foundation for stereocilia motion, but specifics about its function, especially the significance of its integrity for long-term maintenance of hair cell mechanotransduction, are not known. We discovered that a hair cell protein called LIM only protein 7 (LMO7) is specifically localized in the cuticular plate and the cell junction. Lmo7 KO mice suffer multiple cuticular plate deficiencies, including reduced filamentous actin density and abnormal stereociliar rootlets. In addition to the cuticular plate defects, older Lmo7 KO mice develop abnormalities in inner hair cell stereocilia. Together, these defects affect cochlear tuning and sensitivity and give rise to late-onset progressive hearing loss.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Cochlea/physiology
- Disease Models, Animal
- Hair Cells, Auditory/physiology
- Hair Cells, Auditory/ultrastructure
- Hair Cells, Auditory, Inner/physiology
- Hair Cells, Auditory, Inner/ultrastructure
- Hearing/genetics
- Hearing/physiology
- Hearing Loss/etiology
- Hearing Loss/genetics
- Hearing Loss/physiopathology
- LIM Domain Proteins/deficiency
- LIM Domain Proteins/genetics
- LIM Domain Proteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Microscopy, Electron, Scanning
- Stereocilia/genetics
- Stereocilia/physiology
- Stereocilia/ultrastructure
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Ting-Ting Du
- Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - James B Dewey
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA, 90033, USA
| | - Elizabeth L Wagner
- Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - Runjia Cui
- National Institute for Deafness and Communications Disorders, National Institute of Health, Bethesda, MD, 20892, USA
| | - Jinho Heo
- Center for Cell Signaling and Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jeong-Jin Park
- Biomolecular Analysis Facility, University of Virginia, Charlottesville, VA, 22908, USA
| | - Shimon P Francis
- Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Stacey J Guillot
- Advanced Microscopy core, University of Virginia, Charlottesville, VA, 22908, USA
| | - Nicholas E Sherman
- Biomolecular Analysis Facility, University of Virginia, Charlottesville, VA, 22908, USA
| | - Wenhao Xu
- Genetically Engineered Murine Model (GEMM) core, University of Virginia, Charlottesville, VA, 22908, USA
| | - John S Oghalai
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA, 90033, USA
| | - Bechara Kachar
- National Institute for Deafness and Communications Disorders, National Institute of Health, Bethesda, MD, 20892, USA
| | - Jung-Bum Shin
- Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
7
|
A cytoskeleton structure revealed by super-resolution fluorescence imaging in inner ear hair cells. Cell Discov 2019; 5:12. [PMID: 30792888 PMCID: PMC6379372 DOI: 10.1038/s41421-018-0076-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 12/03/2022] Open
|
8
|
Abstract
This review is focused on the unusual composition of the endolymph of the inner ear and its function in mechanoelectrical transduction. The role of K(+) and Ca(2+) in excitatory influx, the very low Na(+), Ca(2+) and Mg(2+) concentrations of endolymph, stereocilia structure of hair cells and some proteins involved in mechanosensory signal transduction with emphasis on auditory receptors are presented and analyzed in more details. An alternative hypothetical model of ciliary structure and endolymph with a 'normal' composition is discussed. It is concluded that the unique endolymph cation content is more than an energy saving mechanism that avoids disturbing circulatory vibrations to achieve a much better mechanosensory resolution. It is the only possible way to fulfil the requirements for a precise ciliary mechanoelectrical transduction in conditions where pressure events with quite diverse amplitudes and duration are transformed into adequate hair cell membrane depolarizations, which are regulated by a sensitive Ca(2+)-dependent feedback tuning.
Collapse
Affiliation(s)
- H Gagov
- Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia, Bulgaria.
| | | | | |
Collapse
|
9
|
Cheng C, Nowak RB, Biswas SK, Lo WK, FitzGerald PG, Fowler VM. Tropomodulin 1 Regulation of Actin Is Required for the Formation of Large Paddle Protrusions Between Mature Lens Fiber Cells. Invest Ophthalmol Vis Sci 2017; 57:4084-99. [PMID: 27537257 PMCID: PMC4986768 DOI: 10.1167/iovs.16-19949] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose To elucidate the proteins required for specialized small interlocking protrusions and large paddle domains at lens fiber cell tricellular junctions (vertices), we developed a novel method to immunostain single lens fibers and studied changes in cell morphology due to loss of tropomodulin 1 (Tmod1), an F-actin pointed end–capping protein. Methods We investigated F-actin and F-actin–binding protein localization in interdigitations of Tmod1+/+ and Tmod1−/− single mature lens fibers. Results F-actin–rich small protrusions and large paddles were present along cell vertices of Tmod1+/+ mature fibers. In contrast, Tmod1−/− mature fiber cells lack normal paddle domains, while small protrusions were unaffected. In Tmod1+/+ mature fibers, Tmod1, β2-spectrin, and α-actinin are localized in large puncta in valleys between paddles; but in Tmod1−/− mature fibers, β2-spectrin was dispersed while α-actinin was redistributed at the base of small protrusions and rudimentary paddles. Fimbrin and Arp3 (actin-related protein 3) were located in puncta at the base of small protrusions, while N-cadherin and ezrin outlined the cell membrane in both Tmod1+/+ and Tmod1−/− mature fibers. Conclusions These results suggest that distinct F-actin organizations are present in small protrusions versus large paddles. Formation and/or maintenance of large paddle domains depends on a β2-spectrin–actin network stabilized by Tmod1. α-Actinin–crosslinked F-actin bundles are enhanced in absence of Tmod1, indicating altered cytoskeleton organization. Formation of small protrusions is likely facilitated by Arp3-branched and fimbrin-bundled F-actin networks, which do not depend on Tmod1. This is the first work to reveal the F-actin–associated proteins required for the formation of paddles between lens fibers.
Collapse
Affiliation(s)
- Catherine Cheng
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Roberta B Nowak
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Sondip K Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Paul G FitzGerald
- Department of Cell Biology and Human Anatomy, University of California, Davis, California, United States
| | - Velia M Fowler
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| |
Collapse
|
10
|
Remodeling of the Inner Hair Cell Microtubule Meshwork in a Mouse Model of Auditory Neuropathy AUNA1. eNeuro 2016; 3:eN-NWR-0295-16. [PMID: 28058271 PMCID: PMC5197407 DOI: 10.1523/eneuro.0295-16.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 11/26/2022] Open
Abstract
Auditory neuropathy 1 (AUNA1) is a form of human deafness resulting from a point mutation in the 5′ untranslated region of the Diaphanous homolog 3 (DIAPH3) gene. Notably, the DIAPH3 mutation leads to the overexpression of the DIAPH3 protein, a formin family member involved in cytoskeleton dynamics. Through study of diap3-overexpressing transgenic (Tg) mice, we examine in further detail the anatomical, functional, and molecular mechanisms underlying AUNA1. We identify diap3 as a component of the hair cells apical pole in wild-type mice. In the diap3-overexpressing Tg mice, which show a progressive threshold shift associated with a defect in inner hair cells (IHCs), the neurotransmitter release and potassium conductances are not affected. Strikingly, the overexpression of diap3 results in a selective and early-onset alteration of the IHC cuticular plate. Molecular dissection of the apical components revealed that the microtubule meshwork first undergoes aberrant targeting into the cuticular plate of Tg IHCs, followed by collapse of the stereociliary bundle, with eventual loss of the IHC capacity to transmit incoming auditory stimuli.
Collapse
|
11
|
Weck ML, Grega-Larson NE, Tyska MJ. MyTH4-FERM myosins in the assembly and maintenance of actin-based protrusions. Curr Opin Cell Biol 2016; 44:68-78. [PMID: 27836411 DOI: 10.1016/j.ceb.2016.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/12/2016] [Indexed: 12/13/2022]
Abstract
Unconventional myosins are actin-based molecular motors that serve a multitude of roles within the cell. One group of myosin motors, the MyTH4-FERM myosins, play an integral part in building and maintaining finger-like protrusions, which allow cells to interact with their external environment. Suggested to act primarily as transporters, these motor proteins enrich adhesion molecules, actin-regulatory proteins and other factors at the tips of filopodia, microvilli, and stereocilia. Below we review data from biophysical, biochemical, and cell biological studies, which implicate these myosins as central players in the assembly, maintenance and function of actin-based protrusions.
Collapse
Affiliation(s)
- Meredith L Weck
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 3154 MRB III, PMB 407935, 465 21st Avenue South, Nashville, TN 37240-7935, United States
| | - Nathan E Grega-Larson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 3154 MRB III, PMB 407935, 465 21st Avenue South, Nashville, TN 37240-7935, United States
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 3154 MRB III, PMB 407935, 465 21st Avenue South, Nashville, TN 37240-7935, United States.
| |
Collapse
|
12
|
Wichmann C, Moser T. Relating structure and function of inner hair cell ribbon synapses. Cell Tissue Res 2015; 361:95-114. [PMID: 25874597 PMCID: PMC4487357 DOI: 10.1007/s00441-014-2102-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/18/2014] [Indexed: 01/28/2023]
Abstract
In the mammalian cochlea, sound is encoded at synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs). Each SGN receives input from a single IHC ribbon-type active zone (AZ) and yet SGNs indefatigably spike up to hundreds of Hz to encode acoustic stimuli with submillisecond precision. Accumulating evidence indicates a highly specialized molecular composition and structure of the presynapse, adapted to suit these high functional demands. However, we are only beginning to understand key features such as stimulus-secretion coupling, exocytosis mechanisms, exo-endocytosis coupling, modes of endocytosis and vesicle reformation, as well as replenishment of the readily releasable pool. Relating structure and function has become an important avenue in addressing these points and has been applied to normal and genetically manipulated hair cell synapses. Here, we review some of the exciting new insights gained from recent studies of the molecular anatomy and physiology of IHC ribbon synapses.
Collapse
Affiliation(s)
- C. Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University Medical Center Göttingen, Göttingen, Germany
| | - T. Moser
- Collaborative Research Center 889, University Medical Center Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, University of Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Andrade LR. Evidence for changes in beta- and gamma-actin proportions during inner ear hair cell life. Cytoskeleton (Hoboken) 2015; 72:282-91. [PMID: 26033950 DOI: 10.1002/cm.21227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/11/2015] [Accepted: 05/21/2015] [Indexed: 12/18/2022]
Abstract
Cytoplasmic actin isoforms beta (β-) and gamma (γ-) perform crucial physiological roles in inner ear hair cells (HC). The stereocilium, which is structured by parallel actin filaments composed of both isoforms, is the responsive organelle to mechanical stimuli such as sound, gravity and head movements. Modifications in isoform proportions affect the function of the stereocilia as previously shown in genetic studies of mutant mice. Here, immunogold labeling TEM studies in mice showed that both β- and γ-actin isoforms colocalize throughout stereocilia actin filaments, adherens junctions and cuticular plates as early as embryonic stage 16.5. Gold-particle quantification indicated that there was 40% more γ- actin than β-actin at E16.5. In contrast, β- and γ-actin were equally concentrated in adult stereocilia of cochlear and vestibular HC. Interestingly, all actin-based structures presented almost five-fold more β-actin than γ-actin in 22 month- old mice, suggesting that γ-actin is probably under-expressed during the aging process. These data provide evidence of dynamic modifications of the actin isoforms in stereocilia, cuticular plates and cell junctions during the whole HC life.
Collapse
Affiliation(s)
- Leonardo R Andrade
- Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.,Laboratory of Biomineralization, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
14
|
Pollock LM, McDermott BM. The cuticular plate: A riddle, wrapped in a mystery, inside a hair cell. ACTA ACUST UNITED AC 2015; 105:126-39. [DOI: 10.1002/bdrc.21098] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Lana M. Pollock
- Department of Otolaryngology-Head and Neck Surgery; Case Western Reserve University; Cleveland Ohio
- Department of Genetics and Genome Sciences; Case Western Reserve University; Cleveland Ohio
| | - Brian M. McDermott
- Department of Otolaryngology-Head and Neck Surgery; Case Western Reserve University; Cleveland Ohio
- Department of Genetics and Genome Sciences; Case Western Reserve University; Cleveland Ohio
- Department of Biology; Case Western Reserve University; Cleveland Ohio
- Department of Neurosciences; Case Western Reserve University; Cleveland Ohio
| |
Collapse
|
15
|
Taylor R, Bullen A, Johnson SL, Grimm-Günter EM, Rivero F, Marcotti W, Forge A, Daudet N. Absence of plastin 1 causes abnormal maintenance of hair cell stereocilia and a moderate form of hearing loss in mice. Hum Mol Genet 2014; 24:37-49. [PMID: 25124451 PMCID: PMC4262491 DOI: 10.1093/hmg/ddu417] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Hearing relies on the mechanosensory inner and outer hair cells (OHCs) of the organ of Corti, which convert mechanical deflections of their actin-rich stereociliary bundles into electrochemical signals. Several actin-associated proteins are essential for stereocilia formation and maintenance, and their absence leads to deafness. One of the most abundant actin-bundling proteins of stereocilia is plastin 1, but its function has never been directly assessed. Here, we found that plastin 1 knock-out (Pls1 KO) mice have a moderate and progressive form of hearing loss across all frequencies. Auditory hair cells developed normally in Pls1 KO, but in young adult animals, the stereocilia of inner hair cells were reduced in width and length. The stereocilia of OHCs were comparatively less affected; however, they also showed signs of degeneration in ageing mice. The hair bundle stiffness and the acquisition of the electrophysiological properties of hair cells were unaffected by the absence of plastin 1, except for a significant change in the adaptation properties, but not the size of the mechanoelectrical transducer currents. These results show that in contrast to other actin-bundling proteins such as espin, harmonin or Eps8, plastin 1 is dispensable for the initial formation of stereocilia. However, the progressive hearing loss and morphological defects of hair cells in adult Pls1 KO mice point at a specific role for plastin 1 in the preservation of adult stereocilia and optimal hearing. Hence, mutations in the human PLS1 gene may be associated with relatively mild and progressive forms of hearing loss.
Collapse
Affiliation(s)
- Ruth Taylor
- Centre for Auditory Research, UCL Ear Institute, University College London, London, UK
| | - Anwen Bullen
- Centre for Auditory Research, UCL Ear Institute, University College London, London, UK
| | - Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, UK and
| | - Eva-Maria Grimm-Günter
- Centre for Cardiovascular and Metabolic Research, The Hull York Medical School, University of Hull, Hull, UK
| | - Francisco Rivero
- Centre for Cardiovascular and Metabolic Research, The Hull York Medical School, University of Hull, Hull, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, UK and
| | - Andrew Forge
- Centre for Auditory Research, UCL Ear Institute, University College London, London, UK
| | - Nicolas Daudet
- Centre for Auditory Research, UCL Ear Institute, University College London, London, UK
| |
Collapse
|
16
|
Zheng J, Furness D, Duan C, Miller KK, Edge RM, Chen J, Homma K, Hackney CM, Dallos P, Cheatham MA. Marshalin, a microtubule minus-end binding protein, regulates cytoskeletal structure in the organ of Corti. Biol Open 2013; 2:1192-202. [PMID: 24244856 PMCID: PMC3828766 DOI: 10.1242/bio.20135603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/01/2013] [Indexed: 12/30/2022] Open
Abstract
Dramatic structural changes in microtubules (MT) and the assembly of complicated intercellular connections are seen during the development of the cellular matrix of the sense organ for hearing, the organ of Corti. This report examines the expression of marshalin, a minus-end binding protein, during this process of cochlear development. We discovered that marshalin is abundantly expressed in both sensory hair cells and supporting cells. In the adult, prominent marshalin expression is observed in the cuticular plates of hair cells and in the noncentrosomal MT organization centers (MTOC) of Deiters' and pillar cells. Based upon differences in marshalin expression patterns seen in the organ of Corti, we identified eight isoforms ranging from 863 to 1280 amino acids. mRNAs/proteins associated with marshalin's isoforms are detected at different times during development. These isoforms carry various protein-protein interacting domains, including coiled-coil (CC), calponin homology (CH), proline-rich (PR), and MT-binding domains, referred to as CKK. We, therefore, examined membranous organelles and structural changes in the cytoskeleton induced by expressing two of these marshalin isoforms in vitro. Long forms containing CC and PR domains induce thick, spindle-shaped bundles, whereas short isoforms lacking CC and PR induce more slender variants that develop into densely woven networks. Together, these data suggest that marshalin is closely associated with noncentrosomal MTOCs, and may be involved in MT bundle formation in supporting cells. As a scaffolding protein with multiple isoforms, marshalin is capable of modifying cytoskeletal networks, and consequently organelle positioning, through interactions with various protein partners present in different cells.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University , Chicago, IL 60611 , USA ; Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University , Evanston, IL 60208 , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cao H, Yin X, Cao Y, Jin Y, Wang S, Kong Y, Chen Y, Gao J, Heller S, Xu Z. FCHSD1 and FCHSD2 are expressed in hair cell stereocilia and cuticular plate and regulate actin polymerization in vitro. PLoS One 2013; 8:e56516. [PMID: 23437151 PMCID: PMC3577914 DOI: 10.1371/journal.pone.0056516] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/10/2013] [Indexed: 12/03/2022] Open
Abstract
Mammalian FCHSD1 and FCHSD2 are homologous proteins containing an amino-terminal F-BAR domain and two SH3 domains near their carboxyl-termini. We report here that FCHSD1 and FCHSD2 are expressed in mouse cochlear sensory hair cells. FCHSD1 mainly localizes to the cuticular plate, whereas FCHSD2 mainly localizes along the stereocilia in a punctuate pattern. Nervous Wreck (Nwk), the Drosophila ortholog of FCHSD1 and FCHSD2, has been shown to bind Wsp and play an important role in F-actin assembly. We show that, like its Drosophila counterpart, FCHSD2 interacts with WASP and N-WASP, the mammalian orthologs of Drosophila Wsp, and stimulates F-actin assembly in vitro. In contrast, FCHSD1 doesn’t bind WASP or N-WASP, and can’t stimulate F-actin assembly when tested in vitro. We found, however, that FCHSD1 binds via its F-BAR domain to the SH3 domain of Sorting Nexin 9 (SNX9), a well characterized BAR protein that has been shown to promote WASP-Arp2/3-dependent F-actin polymerization. FCHSD1 greatly enhances SNX9’s WASP-Arp2/3-dependent F-actin polymerization activity. In hair cells, SNX9 was detected in the cuticular plate, where it colocalizes with FCHSD1. Our results suggest that FCHSD1 and FCHSD2 could modulate F-actin assembly or maintenance in hair cell stereocilia and cuticular plate.
Collapse
Affiliation(s)
- Huiren Cao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Xiaolei Yin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yujie Cao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yecheng Jin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Shan Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yanhui Kong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yuexing Chen
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Jiangang Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Stefan Heller
- Departments of Otolaryngology – Head & Neck Surgery and Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, People’s Republic of China
- * E-mail:
| |
Collapse
|
18
|
Szarama KB, Gavara N, Petralia RS, Kelley MW, Chadwick RS. Cytoskeletal changes in actin and microtubules underlie the developing surface mechanical properties of sensory and supporting cells in the mouse cochlea. Development 2012; 139:2187-97. [PMID: 22573615 DOI: 10.1242/dev.073734] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Correct patterning of the inner ear sensory epithelium is essential for the conversion of sound waves into auditory stimuli. Although much is known about the impact of the developing cytoskeleton on cellular growth and cell shape, considerably less is known about the role of cytoskeletal structures on cell surface mechanical properties. In this study, atomic force microscopy (AFM) was combined with fluorescence imaging to show that developing inner ear hair cells and supporting cells have different cell surface mechanical properties with different developmental time courses. We also explored the cytoskeletal organization of developing sensory and non-sensory cells, and used pharmacological modulation of cytoskeletal elements to show that the developmental increase of hair cell stiffness is a direct result of actin filaments, whereas the development of supporting cell surface mechanical properties depends on the extent of microtubule acetylation. Finally, this study found that the fibroblast growth factor signaling pathway is necessary for the developmental time course of cell surface mechanical properties, in part owing to the effects on microtubule structure.
Collapse
Affiliation(s)
- Katherine B Szarama
- Section on Auditory Mechanics, Laboratory of Cellular Biology, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
19
|
Striated organelle, a cytoskeletal structure positioned to modulate hair-cell transduction. Proc Natl Acad Sci U S A 2012; 109:4473-8. [PMID: 22396594 DOI: 10.1073/pnas.1101003109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The striated organelle (SO), a cytoskeletal structure located in the apical region of cochlear and vestibular hair cells, consists of alternating, cross-linked, thick and thin filamentous bundles. In the vestibular periphery, the SO is well developed in both type I and type II hair cells. We studied the 3D structure of the SO with intermediate-voltage electron microscopy and electron microscope tomography. We also used antibodies to α-2 spectrin, one protein component, to trace development of the SO in vestibular hair cells over the first postnatal week. In type I cells, the SO forms an inverted open-ended cone attached to the cell membrane along both its upper and lower circumferences and separated from the cuticular plate by a dense cluster of exceptionally large mitochondria. In addition to contacts with the membrane and adjacent mitochondria, the SO is connected both directly and indirectly, via microtubules, to some stereociliary rootlets. The overall architecture of the apical region in type I hair cells--a striated structure restricting a cluster of large mitochondria between its filaments, the cuticular plate, and plasma membrane--suggests that the SO might serve two functions: to maintain hair-cell shape and to alter transduction by changing the geometry and mechanical properties of hair bundles.
Collapse
|
20
|
Auditory and vestibular hair cell stereocilia: relationship between functionality and inner ear disease. The Journal of Laryngology & Otology 2011; 125:991-1003. [PMID: 21774850 DOI: 10.1017/s0022215111001459] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The stereocilia of the inner ear are unique cellular structures which correlate anatomically with distinct cochlear functions, including mechanoelectrical transduction, cochlear amplification, adaptation, frequency selectivity and tuning. Their function is impaired by inner ear stressors, by various types of hereditary deafness, syndromic hearing loss and inner ear disease (e.g. Ménière's disease). The anatomical and physiological characteristics of stereocilia are discussed in relation to inner ear malfunctions.
Collapse
|
21
|
Simmons DD, Tong B, Schrader AD, Hornak AJ. Oncomodulin identifies different hair cell types in the mammalian inner ear. J Comp Neurol 2010; 518:3785-802. [PMID: 20653034 DOI: 10.1002/cne.22424] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The tight regulation of Ca(2+) is essential for inner ear function, and yet the role of Ca(2+) binding proteins (CaBPs) remains elusive. By using immunofluorescence and reverse transcriptase-polymerase chain reaction (RT-PCR), we investigated the expression of oncomodulin (Ocm), a member of the parvalbumin family, relative to other EF-hand CaBPs in cochlear and vestibular organs in the mouse. In the mouse cochlea, Ocm is found only in outer hair cells and is localized preferentially to the basolateral outer hair cell membrane and to the base of the hair bundle. Developmentally, Ocm immunoreactivity begins as early as postnatal day (P) 2 and shows preferential localization to the basolateral membrane and hair bundle after P8. Unlike the cochlea, Ocm expression is substantially reduced in vestibular tissues at older adult ages. In vestibular organs, Ocm is found in type I striolar or central hair cells, and has a more diffuse subcellular localization throughout the hair cell body. Additionally, Ocm immunoreactivity in vestibular hair cells is present as early as E18 and is not obviously affected by mutations that cause a disruption of hair bundle polarity. We also find Ocm expression in striolar hair cells across mammalian species. These data suggest that Ocm may have distinct functional roles in cochlear and vestibular hair cells.
Collapse
Affiliation(s)
- Dwayne D Simmons
- Department of Integrative Biology and Physiology and the Brain Research Institute, University of California Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
22
|
Morín M, Bryan KE, Mayo-Merino F, Goodyear R, Mencía A, Modamio-Høybjør S, del Castillo I, Cabalka JM, Richardson G, Moreno F, Rubenstein PA, Moreno-Pelayo MA. In vivo and in vitro effects of two novel gamma-actin (ACTG1) mutations that cause DFNA20/26 hearing impairment. Hum Mol Genet 2009; 18:3075-89. [PMID: 19477959 DOI: 10.1093/hmg/ddp249] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Here we report the functional assessment of two novel deafness-associated gamma-actin mutants, K118N and E241K, in a spectrum of different situations with increasing biological complexity by combining biochemical and cell biological analysis in yeast and mammalian cells. Our in vivo experiments showed that while the K118N had a very mild effect on yeast behaviour, the phenotype caused by the E241K mutation was very severe and characterized by a highly compromised ability to grow on glycerol as a carbon source, an aberrant multi-vacuolar pattern and the deposition of thick F-actin bundles randomly in the cell. The latter feature is consistent with the highly unusual spontaneous tendency of the E241K mutant to form bundles in vitro, although this propensity to bundle was neutralized by tropomyosin and the E241K filament bundles were hypersensitive to severing in the presence of cofilin. In transiently transfected NIH3T3 cells both mutant actins were normally incorporated into cytoskeleton structures, although cytoplasmic aggregates were also observed indicating an element of abnormality caused by the mutations in vivo. Interestingly, gene-gun mediated expression of these mutants in cochlear hair cells results in no gross alteration in cytoskeletal structures or the morphology of stereocilia. Our results provide a more complete picture of the biological consequences of deafness-associated gamma-actin mutants and support the hypothesis that the post-lingual and progressive nature of the DFNA20/26 hearing loss is the result of a progressive deterioration of the hair cell cytoskeleton over time.
Collapse
Affiliation(s)
- Matías Morín
- Unidad de Genética Molecular, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Alves-Silva J, Hahn I, Huber O, Mende M, Reissaus A, Prokop A. Prominent actin fiber arrays in Drosophila tendon cells represent architectural elements different from stress fibers. Mol Biol Cell 2008; 19:4287-97. [PMID: 18667532 PMCID: PMC2555930 DOI: 10.1091/mbc.e08-02-0182] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tendon cells are specialized cells of the insect epidermis that connect basally attached muscle tips to the cuticle on their apical surface via prominent arrays of microtubules. Tendon cells of Drosophila have become a useful genetic model system to address questions with relevance to cell and developmental biology. Here, we use light, confocal, and electron microscopy to present a refined model of the subcellular organization of tendon cells. We show that prominent arrays of F-actin exist in tendon cells that fully overlap with the microtubule arrays, and that type II myosin accumulates in the same area. The F-actin arrays in tendon cells seem to represent a new kind of actin structure, clearly distinct from stress fibers. They are highly resistant to F-actin-destabilizing drugs, to the application of myosin blockers, and to loss of integrin, Rho1, or mechanical force. They seem to represent an important architectural element of tendon cells, because they maintain a connection between apical and basal surfaces even when microtubule arrays of tendon cells are dysfunctional. Features reported here and elsewhere for tendon cells are reminiscent of the structural and molecular features of support cells in the inner ear of vertebrates, and they might have potential translational value.
Collapse
Affiliation(s)
- Juliana Alves-Silva
- Faculty of Life Sciences, Wellcome Trust Centre of Cell-Matrix Research, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
The dimensions and composition of stereociliary rootlets in mammalian cochlear hair cells: comparison between high- and low-frequency cells and evidence for a connection to the lateral membrane. J Neurosci 2008; 28:6342-53. [PMID: 18562604 DOI: 10.1523/jneurosci.1154-08.2008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The sensory bundle of vertebrate cochlear hair cells consists of actin-containing stereocilia that are thought to bend at their ankle during mechanical stimulation. Stereocilia have dense rootlets that extend through the ankle region to anchor them into the cuticular plate. Because this region may be important in bundle stiffness and durability during prolonged stimulation at high frequencies, we investigated the structure and dimensions of rootlets relative to the stereocilia in apical (low-frequency) and basal (high-frequency) regions of rodent cochleae using light and electron microscopy. Their composition was investigated using postembedding immunogold labeling of tropomyosin, spectrin, beta-actin, gamma-actin, espin, and prestin. The rootlets have a thick central core that widens at the ankle, and are embedded in a filamentous meshwork in the cuticular plate. Within a particular frequency region, rootlet length correlates with stereociliary height but between regions it changes disproportionately; apical stereocilia are, thus, approximately twice the height of basal stereocilia in equivalent rows, but rootlet lengths increase much less. Some rootlets contact the tight junctions that underlie the ends of the bundle. Rootlets contain spectrin, tropomyosin, and beta- and gamma-actin, but espin was not detected; spectrin is also evident near the apical and junctional membranes, whereas prestin is confined to the basolateral membrane below the junctions. These data suggest that rootlets strengthen the ankle region to provide durability and may contact with the lateral wall either to give additional anchoring of the stereocilia or to provide a route for interactions between the bundle and the lateral wall.
Collapse
|
25
|
Avallone B, Fascio U, Balsamo G, Marmo F. Gentamicin ototoxicity in the saccule of the lizard Podarcis Sicula induces hair cell recovery and regeneration. Hear Res 2008; 235:15-22. [DOI: 10.1016/j.heares.2007.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 09/06/2007] [Accepted: 09/14/2007] [Indexed: 10/22/2022]
|
26
|
Li GQ, Kevetter GA, Leonard RB, Prusak DJ, Wood TG, Correia MJ. Muscarinic acetylcholine receptor subtype expression in avian vestibular hair cells, nerve terminals and ganglion cells. Neuroscience 2007; 146:384-402. [PMID: 17391855 PMCID: PMC1986736 DOI: 10.1016/j.neuroscience.2007.02.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 01/31/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
Abstract
Muscarinic acetylcholine receptors (mAChRs) are widely expressed in the CNS and peripheral nervous system and play an important role in modulating the cell activity and function. We have shown that the cholinergic agonist carbachol reduces the pigeon's inwardly rectifying potassium channel (pKir2.1) ionic currents in native vestibular hair cells. We have cloned and sequenced pigeon mAChR subtypes M2-M5 and we have studied the expression of all five mAChR subtypes (M1-M5) in the pigeon vestibular end organs (semicircular canal ampullary cristae and utricular maculae), vestibular nerve fibers and the vestibular (Scarpa's) ganglion using tissue immunohistochemistry (IH), dissociated single cell immunocytochemistry (IC) and Western blotting (WB). We found that vestibular hair cells, nerve fibers and ganglion cells each expressed all five (M1-M5) mAChR subtypes. Two of the three odd-numbered mAChRs (M1, M5) were present on the hair cell cilia, supporting cells and nerve terminals. And all three odd numbered mAChRs (M1, M3 and M5) were expressed on cuticular plates, myelin sheaths and Schwann cells. Even-numbered mAChRs were seen on the nerve terminals. M2 was also shown on the cuticular plates and supporting cells. Vestibular efferent fibers and terminals were not identified in our studies. Results from WB of the dissociated vestibular epithelia, nerve fibers and vestibular ganglia were consistent with the results from IH and IC. Our findings suggest that there is considerable co-expression of the subtypes on the neural elements of the labyrinth. Further electrophysiological and pharmacological studies should delineate the mechanisms of action of muscarinic acetylcholine receptors on structures in the labyrinth.
Collapse
Affiliation(s)
- Gang Q. Li
- Department of Otolaryngologyy, University of Texas Medical Branch at Galveston, Galveston Texas, 77550-1063 U.S.A
- Department of Neuroscience and Cell Biologyy, University of Texas Medical Branch at Galveston, Galveston Texas, 77550-1063 U.S.A
| | - Golda A. Kevetter
- Department of Otolaryngologyy, University of Texas Medical Branch at Galveston, Galveston Texas, 77550-1063 U.S.A
- Department of Neuroscience and Cell Biologyy, University of Texas Medical Branch at Galveston, Galveston Texas, 77550-1063 U.S.A
| | - Robert B. Leonard
- Department of Otolaryngologyy, University of Texas Medical Branch at Galveston, Galveston Texas, 77550-1063 U.S.A
- Department of Neuroscience and Cell Biologyy, University of Texas Medical Branch at Galveston, Galveston Texas, 77550-1063 U.S.A
| | - Deborah J Prusak
- Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston Texas, 77550-1063 U.S.A
| | - Thomas G. Wood
- Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston Texas, 77550-1063 U.S.A
- Department of Molecular Biology and Biochemistry, University of Texas Medical Branch at Galveston, Galveston Texas, 77550-1063 U.S.A
| | - Manning J. Correia
- Department of Otolaryngologyy, University of Texas Medical Branch at Galveston, Galveston Texas, 77550-1063 U.S.A
- Department of Neuroscience and Cell Biologyy, University of Texas Medical Branch at Galveston, Galveston Texas, 77550-1063 U.S.A
| |
Collapse
|
27
|
Abstract
Cochlear hair cells respond with phenomenal speed and sensitivity to sound vibrations that cause submicron deflections of their hair bundle. Outer hair cells are not only detectors, but also generate force to augment auditory sensitivity and frequency selectivity. Two mechanisms of force production have been proposed: contractions of the cell body or active motion of the hair bundle. Here, we describe recently identified proteins involved in the sensory and motor functions of auditory hair cells and present evidence for each force generator. Both motor mechanisms are probably needed to provide the high sensitivity and frequency discrimination of the mammalian cochlea.
Collapse
Affiliation(s)
- Robert Fettiplace
- Department of Physiology, University of Wisconsin Medical School, 185 Medical Sciences Building, 1300 University Avenue, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
28
|
Furness DN, Katori Y, Mahendrasingam S, Hackney CM. Differential distribution of beta- and gamma-actin in guinea-pig cochlear sensory and supporting cells. Hear Res 2006; 207:22-34. [PMID: 16024192 DOI: 10.1016/j.heares.2005.05.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 05/12/2005] [Indexed: 11/15/2022]
Abstract
Sensory and supporting cells of the mammalian organ of Corti have cytoskeletons containing beta- and gamma-actin isoforms which have been described as having differing intracellular distributions in chick cochlear hair cells. Here, we have used post-embedding immunogold labelling for beta- and gamma-actin to investigate semiquantitatively how they are distributed in the guinea-pig cochlea and to compare different frequency locations. Amounts of beta-actin decrease and gamma-actin increase in the order, outer pillar cells, inner pillar cells, Deiters' cells and hair cells. There is also more beta-actin and less gamma-actin in outer pillar cells in higher than lower frequency regions. In hair cells, beta-actin is present in the cuticular plate but is more concentrated in the stereocilia, especially in the rootlets and towards the periphery of their shafts; labelling densities for gamma-actin differ less between these locations and it is the predominant isoform of the hair-cell lateral wall. Alignments of immunogold particles suggest beta-actin and gamma-actin form homomeric filaments. These data confirm differential distribution of these actin isoforms in the mammalian cochlea and reveal systematic differences between sensory and supporting cells. Increased expression of beta-actin in outer pillar cells towards the cochlear base may contribute to the greater stiffness of this region.
Collapse
Affiliation(s)
- D N Furness
- MacKay Institute of Communication and Neuroscience, School of Life Sciences, Keele University, Staffordshire ST5 5BG, United Kingdom.
| | | | | | | |
Collapse
|
29
|
Delanote V, Vandekerckhove J, Gettemans J. Plastins: versatile modulators of actin organization in (patho)physiological cellular processes. Acta Pharmacol Sin 2005; 26:769-79. [PMID: 15960882 DOI: 10.1111/j.1745-7254.2005.00145.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Many actin-binding proteins are expressed in eukaryotic cells. These polypeptides assist in stabilizing and rearranging the organization of the actin cytoskeleton in response to external stimuli, or during cell migration and adhesion. Here we review a particular set of actin-binding proteins called plastins. Plastins (also called fimbrins) belong to a subclass of actin-binding proteins known as actin bundling proteins. Three isoforms have been characterized in mammals: T-plastin is expressed in cells from solid tissue, whereas L-plastin occurs predominantly in hematopoietic cells. The third isoform, I-plastin, is specifically expressed in the small intestine, colon and kidney. These proteins share the unique property of cross-linking actin filaments into tight bundles. Although plastins are primarily involved in regulation of the actin cytoskeleton, they possess some unique features. For instance, they are implicated in invasion by pathogenic bacteria such as Shigella flexneri and Salmonella typhimurium. Also, L-plastin plays an important role in leukocyte function. T-plastin, on the other hand, is possibly involved in DNA repair. Finally, both T- and L-plastin are implicated in several diseases, and L-plastin is considered to be a valuable marker for cancer.
Collapse
Affiliation(s)
- Veerle Delanote
- Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Faculty of Medicine and Health Sciences, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
30
|
Daudet N, Lebart MC. Transient expression of the t-isoform of plastins/fimbrin in the stereocilia of developing auditory hair cells. CELL MOTILITY AND THE CYTOSKELETON 2002; 53:326-36. [PMID: 12378542 DOI: 10.1002/cm.10092] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The transduction of auditory signals by cochlear hair cells depends upon the integrity of hair cell stereociliary bundles. Stereocilia contain a central core of actin filaments, cross-linked by actin bundling proteins. In the cochlea, the two proteins described to date as responsible for the spatial arrangement of actin filaments in sterocilia are fimbrin and the recently discovered espin. Fimbrin (the chick homolog of human I-plastin) belongs to the plastins/fimbrin family that includes two additional isoforms of plastins, T- and L-plastin. In the present study, we used isoform specific antibodies to investigate the presence of the T- and L-isoforms of plastin/fimbrin in the adult and developing rat cochlea. We found that T-plastin, but not L-plastin, is expressed in the rat cochlea. During postnatal development of the rat organ of Corti, T-plastin can be detected in the core of stereocilia from early stages of hair cell differentiation, and its expression gradually increases in stereocilia as hair cells mature. However, as opposed to other actin-binding proteins expressed in stereocilia, T-plastin is absent from the stereocilia of mature hair cells. Such temporally restricted expression strengthens the idea of functional differences between plastins isoforms, and suggests that T-plastin could have a specific role in stereocilia formation.
Collapse
Affiliation(s)
- Nicolas Daudet
- INSERM UR 254, Laboratoire de Neurobiologie de l'Audition-Plasticité Synaptique, Montpellier, France.
| | | |
Collapse
|
31
|
Furness DN, Karkanevatos A, West B, Hackney CM. An immunogold investigation of the distribution of calmodulin in the apex of cochlear hair cells. Hear Res 2002; 173:10-20. [PMID: 12372631 DOI: 10.1016/s0378-5955(02)00584-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Calmodulin is found in the mechanosensitive stereociliary bundle of hair cells where it plays a role in various calcium-sensitive events associated with mechanoelectrical transduction. In this study, we have investigated the ultrastructural distribution of calmodulin in the apex of guinea-pig cochlear hair cells, using post-embedding immunogold labelling, in order to determine in more detail where calmodulin-dependent processes may be occurring. Labelling was found in the cuticular plate as well as the hair bundle, the rootlets of the stereocilia being more densely labelled than the surrounding filamentous matrix. In the bundle, labelling was found almost exclusively at the periphery rather than over the centre of the actin core of the stereocilia, and was clearly associated with the attachments of the lateral links that connect them to their nearest neighbours. It was also found to be denser towards the tips of stereocilia compared to other stereociliary regions and occurred consistently at either end of the tip link that connects stereocilia of adjacent rows. The contact region between stereocilia that is found just below the tip link was also clearly labelled. These concentrations of labelling in the bundle are likely to indicate sites where calmodulin is associated with calcium/calmodulin-sensitive proteins such as the various myosin isoforms and the plasma membrane ATPase (PMCA2a) that are known to occur there, and possibly with the transduction channels themselves. At least one of the myosin isoforms, myosin 1c, is thought to be associated with slow adaptation, and PMCA2a with control of calcium levels in the bundle. The concentration of calmodulin in the contact region further supports the suggestion that this is a functionally distinct region rather than a simple geometrical association between adjacent stereocilia.
Collapse
Affiliation(s)
- D N Furness
- MacKay Institute of Communication and Neuroscience, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK
| | | | | | | |
Collapse
|
32
|
Ladrech S, Lenoir M. Changes in MAP2 and tyrosinated alpha-tubulin expression in cochlear inner hair cells after amikacin treatment in the rat. J Comp Neurol 2002; 451:70-8. [PMID: 12209842 DOI: 10.1002/cne.10334] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The expression of MAP2 (microtubule-associated protein 2) and of tyrosinated alpha-tubulin was investigated immunocytochemically in the cochleas of normal and amikacin-treated rats. For MAP2, two different antibodies were used: anti-MAP2ab, against the high molecular weight forms, and anti-MAP2abc, additionally against the embryonic form c. In the cochlea of the normal rat, the outer (OHCs) and inner (IHCs) hair cells were labeled for MAP2abc. The labeling was weaker in IHCs than in OHCs. The hair cells were rarely labeled for MAPab. Both OHCs and IHCs were labeled for tyrosinated alpha-tubulin. In the cochlea of the amikacin-treated rat, aggregates of anti-MAP2abc and anti-tyrosinated alpha-tubulin antibodies were seen in the apical region of the IHCs as early as the end of the antibiotic treatment. In rats investigated during the following week, the cell body of most of the surviving IHCs were not labeled for MAP2abc and tyrosinated alpha-tubulin. Then, labeling for these two antibodies reappeared in the surviving IHCs, including their giant stereocilia. Fewer surviving IHCs were labeled for tyrosinated alpha-tubulin than for MAP2abc. The amikacin-poisoned IHCs were rarely labeled for MAP2ab. These results suggest that cochlear hair cells essentially express form c of MAP2. In the amikacin-damaged cochlea, the apical aggregation of MAP2c and tyrosinated alpha-tubulin within the poisoned IHCs could be implicated in a cell degenerative process. By contrast, the extinction and recovery of MAP2c and tyrosinated alpha-tubulin labeling in the remaining IHCs suggest the occurrence of a limited repair process. A possible role of MAP2 and tubulin in hair cell survival is discussed.
Collapse
MESH Headings
- Amikacin/toxicity
- Animals
- Anti-Bacterial Agents/toxicity
- Cell Survival/drug effects
- Cytoskeleton/metabolism
- Fluorescent Dyes
- Hair Cells, Auditory, Inner/drug effects
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/ultrastructure
- Microscopy, Electron
- Microscopy, Electron, Scanning
- Microtubule-Associated Proteins/metabolism
- Models, Animal
- Rats
- Tubulin/metabolism
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Sabine Ladrech
- INSERM U254, Université Montpellier I, Faculté de Médecine, Montpellier, France
| | | |
Collapse
|
33
|
Gato A, Martin C, Alonso MI, Martinez-Alvarez C, Moro JA. Chondroitin sulphate proteoglycan is involved in lens vesicle morphogenesis in chick embryos. Exp Eye Res 2001; 73:469-78. [PMID: 11825019 DOI: 10.1006/exer.2001.1060] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteoglycans have been implicated in the invagination and formation of various embryonal cavitied primordia. In this paper the expression of chondroitin sulphate proteoglycan (CSPG) is analysed in the lens primordium during lens vesicle formation, and demonstrate that this proteoglycan has a specific distribution pattern with regard to invagination and fusion processes in the transformation of placode into lens vesicle. More specifically, CSPG was detected in: (1) the apical surface of lens epithelial cells, where early CSPG expression was observed in the whole of the lens placode whilst in the vesicle phase it was restricted to the posterior epithelium; (2) intense CSPG expression in the basal lamina, which remained constant for the entire period under study; (3) CSPG expression in the intercellular spaces of the lens primordium epithelium, which increased during the invagination of the primordium and which at the vesicle stage was more evident in the posterior epithelium; and (4) CSPG expression on the edges of the lens placode both prior to and during fusion. Treatment with beta- D -xyloside causes significant CSPG depletion in the lens primordium together with severe alterations in the invagination and fusion of the lens vesicle; this leads to the formation of lens primordia which in some cases remain practically flat or show partial invagination defects or fusion disruption. Similar results were obtained by enzyme digestion with chondroitinase AC but not with type II heparinase, which indicates that alterations induced by beta- D -xyloside were due to interference in CSPG synthesis. The findings demonstrate that CSPG is a common component of the lens primordium at the earliest developmental stages during which it undergoes specific modifications. It also includes experimental evidence to show that 'in vivo' CSPG plays an important role in the invagination and fusion processes of the lens primordium.
Collapse
Affiliation(s)
- A Gato
- Departamento de Anatomía Humana, Facultad de Medicina, Universidad de Valladolid, Spain.
| | | | | | | | | |
Collapse
|
34
|
Stacey DJ, McLean WG. Cytoskeletal protein mRNA expression in the chick utricle after treatment in vitro with aminoglycoside antibiotics: effects of insulin, iron chelators and cyclic nucleotides. Brain Res 2000; 871:319-32. [PMID: 10899298 DOI: 10.1016/s0006-8993(00)02488-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In birds, spontaneous recovery of the hair cells of the inner ear can occur after damage induced by aminoglycoside antibiotics. The factors that influence this recovery and the process of hair cell regeneration itself have until recently been investigated largely by morphological and histological methods. The aim of this work was to use a molecular biological approach to the analysis of hair cell regeneration by measuring the changes that occur in expression of mRNA for hair cell-specific cytoskeletal proteins fimbrin and class III beta-tubulin, along with that for beta-actin, in the utricle of chicks after hair cell damage both in vitro and in vivo. Utricles were removed from 1-day-old chicks and incubated with the aminoglycoside antibiotics gentamicin or neomycin (both 1 mM), or chicks were injected intraperitoneally with 100 mg/kg gentamicin or neomycin for 4 consecutive days. At the end of the treatment periods, total RNA was extracted from single utricles, reverse transcribed to cDNA and the cDNA amplified by PCR with primers for beta-actin, fimbrin and class III beta-tubulin. Co-amplification allowed quantitative comparison of mRNA between fimbrin, or class III beta-tubulin and beta-actin from the same utricle. Both aminoglycosides, either after 48 h in vitro or immediately after treatment in vivo, caused a significant decrease in the expression of fimbrin mRNA and class III beta-tubulin mRNA, relative to beta-actin mRNA, which itself increased. Light and electron microscopy confirmed that this corresponded to loss of, and damage to, hair cells. The relative expression of fimbrin and class III beta-tubulin mRNAs was partly restored almost to control levels 4 days after cessation of treatment in vivo and fully normalised by 4 weeks, by which time hair cells appeared normal. However, their relative expression remained depressed 4 days after removal of antibiotic in vitro. The iron chelator desferrioxamine (100 microM) in vitro prevented the aminoglycoside-induced reduction in relative expression of mRNA for both fimbrin and class III beta-tubulin. Neither insulin (5 microM) nor a combination of dibutyryl cyclic AMP (5 mM) and the phosphodiesterase inhibitor IBMX (0.5 mM) prevented the decrease in relative expression of the mRNAs for the hair cell-specific proteins, but both treatments allowed their partial recovery in vitro during the 4-day-period after removal of aminoglycoside. It is concluded that the cells of the sensory epithelium of the chick utricle subjected to aminoglycoside-induced damage undergo a process in which mRNA expression is switched away from the production of functional proteins and towards proteins necessary for structural re-organisation. The restoration of mRNA expression to a normal pattern is promoted by the growth factor insulin and by cyclic AMP.
Collapse
MESH Headings
- Actins/metabolism
- Aminoglycosides
- Animals
- Animals, Newborn
- Anti-Bacterial Agents/adverse effects
- Cell Death/drug effects
- Cell Death/physiology
- Cell Survival/drug effects
- Cell Survival/physiology
- Chelating Agents/pharmacology
- Chickens/anatomy & histology
- Chickens/metabolism
- Cytoskeletal Proteins/drug effects
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/pathology
- Hair Cells, Auditory/physiopathology
- Hair Cells, Auditory/ultrastructure
- Insulin/metabolism
- Insulin/pharmacology
- Iron/metabolism
- Membrane Glycoproteins/drug effects
- Membrane Glycoproteins/metabolism
- Microfilament Proteins
- Microscopy, Electron
- Nucleotides, Cyclic/metabolism
- Nucleotides, Cyclic/pharmacology
- Polymerase Chain Reaction
- RNA, Messenger/drug effects
- RNA, Messenger/isolation & purification
- RNA, Messenger/metabolism
- Regeneration/drug effects
- Regeneration/physiology
- Saccule and Utricle/drug effects
- Saccule and Utricle/pathology
- Saccule and Utricle/physiopathology
- Saccule and Utricle/ultrastructure
- Tubulin/drug effects
- Tubulin/metabolism
Collapse
Affiliation(s)
- D J Stacey
- Department of Pharmacology and Therapeutics, University of Liverpool, L69 3BX, Liverpool, UK
| | | |
Collapse
|
35
|
Tannenbaum J, Slepecky NB. Localization of microtubules containing posttranslationally modified tubulin in cochlear epithelial cells during development. CELL MOTILITY AND THE CYTOSKELETON 2000; 38:146-62. [PMID: 9331219 DOI: 10.1002/(sici)1097-0169(1997)38:2<146::aid-cm4>3.0.co;2-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the adult gerbil inner ear, hair cell microtubules contain predominantly tyrosinated tubulin while supporting cell microtubules contain almost exclusively other isoforms. This cell-type specific segregation of tubulin isoforms is unusual, and in this respect the sensory and supporting cells in this sensory organ differ from other cells observed both in vivo and in vitro. Thus, we hypothesized there must be a shift in the presence and location of tubulin isoforms during development, directly associated with the onset of specialized functions of the cells. We describe the appearance and/or disappearance of tubulin isoforms in sensory hair cells and five different supporting cells (inner and outer pillar cells, Deiters cells, cells of Kölliker's organ, and cells of the tympanic covering layer) during development of the gerbil organ of Corti from birth to 14 days after birth. Tyrosinated tubulin was initially present in all cells and remained predominant in cells that decrease in number (Kölliker's organ and tympanic covering layer) and exhibit active processes such as secretion and motility (sensory cells). Posttranslational modifications occurred in the supporting cells in a time-dependent manner as the number and length of microtubules increased and development proceeded, but the establishment of elongated cell shape and polarity occurred prior to the appearance of acetylation, detyrosination, and polyglutamylation of tubulin. In the pillar and Deiters cells, posttranslational modifications progressed from cell apex to base in the same direction as microtubule elongation. In the pillar cells, posttranslational modifications occurred first at the apical surfaces. In the pillar cells, the appearance of acetylated tubulin was rapidly followed by the appearance of detyrosinated tubulin. In Deiters cells, the appearance of acetylated tubulin preceded the appearance of detyrosinated tubulin by one or more days. At onset of cochlear function, detyrosinated tubulin and acetylated tubulin had achieved their adult-like pattern, but polyglutamylated tubulin had not.
Collapse
Affiliation(s)
- J Tannenbaum
- Department of Bioengineering and Neuroscience, Institute for Sensory Research, Syracuse University, New York 13244-5290, USA
| | | |
Collapse
|
36
|
Ogata Y, Slepecky NB, Takahashi M. Study of the gerbil utricular macula following treatment with gentamicin, by use of bromodeoxyuridine and calmodulin immunohistochemical labelling. Hear Res 1999; 133:53-60. [PMID: 10416864 DOI: 10.1016/s0378-5955(99)00057-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Effects of ototoxic drugs on the gerbil vestibular sensory epithelium were probed by use of immunocytochemical labelling with antibodies to both a mitogenic marker (bromodeoxyuridine) and a hair cell specific protein (calmodulin). Nine animals had gentamicin administered once daily for 5 days, as a transtympanic injection into the right middle ear. They additionally were given a daily intraperitoneal injection of bromodeoxyuridine, starting on the same day as the gentamicin injection and continuing until the day of sacrifice. Nine other animals, serving as controls for bromodeoxyuridine incorporation, received only the intraperitoneal injections of bromodeoxyuridine. The inner ears from three gerbils were obtained at 1, 2 or 4 weeks following the last gentamicin injection and utricles from the injected ears were processed for immunohistochemical analysis. In specimens where gentamicin was administered, we found evidence of bromodeoxyuridine incorporation in 17 cells (10 single cells and 7 pairs of cells) in a total of 216 sections taken from the central regions of the 9 utricles. However, in control specimens, no bromodeoxyuridine labelling was found in any cells of the 216 sections examined. Of 10 single cells labelled with bromodeoxyuridine, two cells in the hair cell layer were labelled with antibodies against calmodulin. One had a faint labelling in the nucleus and the other in the stereocilia, but not in the cell bodies. Of 7 pairs of cells, two pairs with nuclei localized in the hair cell layer had faint labelling for calmodulin in the nuclei, but no labelling in any other part of the cell. The other 13 cells labelled with antibodies to bromodeoxyuridine were not labelled with antibodies to calmodulin. Our results suggest that the bromodeoxyuridine-labelled cells could not be positively identified as hair cells based on immunohistochemical labelling for calmodulin.
Collapse
Affiliation(s)
- Y Ogata
- Department of Otolaryngology, Yamaguchi University School of Medicine, Ube, Japan.
| | | | | |
Collapse
|
37
|
Leonova EV, Raphael Y. Application of a platinum replica method to the study of the cytoskeleton of isolated hair cells, supporting cells and whole mounts of the organ of Corti. Hear Res 1999; 130:137-54. [PMID: 10320105 DOI: 10.1016/s0378-5955(99)00004-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We adapted a method of platinum replica to study the cytoskeleton of isolated cells of the guinea pig organ of Corti. This technique combined high image resolution with the ability to visualize the three-dimensional organization of the cytoskeleton of a whole cell. The procedure includes: isolation of hair cells and supporting cells using collagenase digestion, attachment of the cells to a coverslip, detergent extraction, chemical fixation, critical point drying, platinum/carbon coating, and transmission electron microscopy analysis. By using the method of platinum replica, we confirmed the existence of structural domains in the cortical lattice of outer hair cells. Based on the analysis of the partly destroyed cortical lattice, we propose that circumferential filaments are underlined with a thin flexible network. In addition, we established that the base of each stereocilium had a cone-like expansion of actin filaments and was surrounded by a thin bundle of filaments. We also produced replicas of the protrusion of the cuticular plate into the cytoplasm (infracuticular network) and the reticular lamina cytoskeleton. Our data indicated that the platinum replica method is useful for studying structural interactions among different cytoskeletal elements in the reticular lamina, as well as the cortex of outer hair cells and the cytoskeleton of supporting cells.
Collapse
Affiliation(s)
- E V Leonova
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor 48109-0506, USA.
| | | |
Collapse
|
38
|
Adler HJ, Winnicki RS, Gong TW, Lomax MI. A gene upregulated in the acoustically damaged chick basilar papilla encodes a novel WD40 repeat protein. Genomics 1999; 56:59-69. [PMID: 10036186 DOI: 10.1006/geno.1998.5672] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chick WDR1 gene is expressed at higher levels in the chick basilar papilla after acoustic overstimulation. The 3.3-kb WDR1 cDNA encodes a novel 67-kDa protein containing nine WD40 repeats, motifs that mediate protein-protein interactions. The predicted WDR1 protein has high sequence identity to WD40-repeat proteins in budding yeast (Saccharomyces cerevisiae), two slime molds (Dictyostelium discoideum and Physarum polycephalum), and the roundworm (Caenorhabditis elegans). The yeast and P. polycephalum proteins bind actin, suggesting that the novel chick protein may be an actin-binding protein. Sequence database comparisons identified mouse and human cDNAs with high sequence identity to the chick WDR1 cDNA. The mouse Wdr1 and human WDR1 proteins showed 95% sequence identity to each other and 86% identity to the chick WDR1 protein. Northern blot analysis of total RNA from the chick basilar papilla after noise trauma revealed increased levels of a 3.1-kb transcript in the lesioned area. The WDR1 gene was mapped to human chromosome 4, between 22 and 24 cM from the telomere of 4p.
Collapse
Affiliation(s)
- H J Adler
- Department of Otolaryngology/Head-Neck Surgery, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | | | | |
Collapse
|
39
|
Daudet N, Vago P, Ripoll C, Humbert G, Pujol R, Lenoir M. Characterization of atypical cells in the juvenile rat organ of corti after aminoglycoside ototoxicity. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981116)401:2<145::aid-cne1>3.0.co;2-c] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Dodé C, Weil D, Levilliers J, Crozet F, Chaïb H, Levi-Acobas F, Guilford P, Petit C. Sequence characterization of a newly identified human alpha-tubulin gene (TUBA2). Genomics 1998; 47:125-30. [PMID: 9465305 DOI: 10.1006/geno.1997.5081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report on the isolation and initial characterization of a human alpha-tubulin gene named TUBA2. This gene is located in the 13q11 region and has been considered a candidate gene for two nonsyndromic deafnesses, DFNB1 and DFNA3. The gene, with a minimum size of 6.5 kb, contains five exons and four introns starting at codon positions 1, 76, 125, and 352, one of which is inserted between the initiation methionine codon and the codon specifying the second amino acid, arginine 2. Neither rearrangement nor point mutation was found in the coding region of the gene in DFNB1- and DFNA3-affected patients. The gene was therefore unlikely to be responsible for either of these deafnesses. During the characterization of TUBA2, the gene encoding connexin 26 was proven to be responsible for both DFNB1 and DFNA3 (D. P. Kelsell et al., 1997, Nature 387: 80-83). However, the present data offer the possibility of testing the involvement of the TUBA2 gene in the Clouston hidrotic ectodermal dysplasia and the Kabuki syndrome, two genetic diseases that have recently been mapped to the 13q11 region.
Collapse
Affiliation(s)
- C Dodé
- Unité de Génétique des Déficits Sensoriels, CNRS URA 1968, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Gil-Loyzaga P. Histochemistry of glycoconjugates of the auditory receptor-functional implications. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1997; 32:1-80. [PMID: 9304696 DOI: 10.1016/s0079-6336(97)80008-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- P Gil-Loyzaga
- Center for Cell Culture, Faculty of Medicine, Complutense University of Madrid, Spain
| |
Collapse
|
42
|
Soto-Prior A, Lavigne-Rebillard M, Lenoir M, Ripoll C, Rebillard G, Vago P, Pujol R, Hamel CP. Identification of preferentially expressed cochlear genes by systematic sequencing of a rat cochlea cDNA library. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 47:1-10. [PMID: 9221896 DOI: 10.1016/s0169-328x(97)00033-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
107 expressed sequence tags (ESTs) from a rat cochlea cDNA library were identified by systematic sequencing coupled to database selection and RT-PCR analysis of novel sequences. This approach led us to select a clone, pCO8, showing no significant homology with any database sequence, that corresponds to a mRNA whose expression is restricted to the cochlea, except for traces detected in brain. Additional clones with novel sequences enriched in the cochlea were also found. ESTs bearing significant homologies with database sequences (63 out of 107) were classified according to the putatively encoded protein. They include tissue-specific genes not previously described in the cochlea as well as known genes from other species. We performed in situ hybridization in cochlear tissues to localize the pCO8 mRNA and that of clone pCO6 which is 100% homologous to the delayed rectifier potassium channel drk1. We found that both mRNAs were exclusively expressed in the cellular body of the primary auditory neurons from the spiral ganglion of the cochlea. These results indicate that this approach is an efficient way to identify novel genes that could be of importance in cochlear function.
Collapse
Affiliation(s)
- A Soto-Prior
- INSERM U254 and Universités de Montpellier 1 et 2, CHU Hôpital Saint Charles, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Abstract
Ultrastructural variation in some cytoplasmic organelles and synaptic structures is one characteristic distinguishing the types of hair cells in the teleost ear. In this study, we explored differences in mitochondria by analyzing mitochondrial reactivity for cytochrome oxidase (COX) in hair cells of the teleost utricle. The reactivity for COX within mitochondria in the subcuticular compartment directly beneath the cuticular plate differentiated among hair cells in utricles of three teleost species, Carassius auratus, Pantodon buchholzi, and Astronotus ocellatus. Mitochondria in the subcuticular region of hair cells in the striola reacted intensely. Within juxtastriola and extrastriolar hair cells near the striola, mitochondria reacted at a lowered intensity than in striolar hair cells. Subcuticular mitochondria of extrastriolar hair cells located distant from the striola reacted negligibly. The reactivity of mitochondria in other cytoplasmic compartments did not provide similar evidence for distinguishing among teleost hair cells. Mitochondria within intraepithelial branches of the eighth nerve terminals in the different utricular regions reacted to COX histochemistry commensurate with their respective presynaptic hair cells. Branches of sensory afferent neurons innervating striolar hair cells displayed a dense COX reaction. Sensory afferents innervating the extrastriolar hair cells did not display many mitochondria at synapses nor, when present, was the staining as dense. The presynaptic side of the hair cell-afferent nerve synapse usually, but not always, contained reactive mitochondria. The presynaptic side of the efferent nerve-hair cell synapse did not necessarily contain mitochondria. Mitochondria filling the cytoplasm in a type of juxtamacula cell revealed uniformly dense COX reactivity.
Collapse
Affiliation(s)
- W M Saidel
- Department of Biology, Rutgers University, Camden, NJ 08102, USA.
| | | |
Collapse
|
45
|
Hasson T, Gillespie PG, Garcia JA, MacDonald RB, Zhao Y, Yee AG, Mooseker MS, Corey DP. Unconventional myosins in inner-ear sensory epithelia. J Cell Biol 1997; 137:1287-307. [PMID: 9182663 PMCID: PMC2132524 DOI: 10.1083/jcb.137.6.1287] [Citation(s) in RCA: 428] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/1996] [Revised: 03/19/1997] [Indexed: 02/04/2023] Open
Abstract
To understand how cells differentially use the dozens of myosin isozymes present in each genome, we examined the distribution of four unconventional myosin isozymes in the inner ear, a tissue that is particularly reliant on actin-rich structures and unconventional myosin isozymes. Of the four isozymes, each from a different class, three are expressed in the hair cells of amphibia and mammals. In stereocilia, constructed of cross-linked F-actin filaments, myosin-Ibeta is found mostly near stereociliary tips, myosin-VI is largely absent, and myosin-VIIa colocalizes with crosslinks that connect adjacent stereocilia. In the cuticular plate, a meshwork of actin filaments, myosin-Ibeta is excluded, myosin-VI is concentrated, and modest amounts of myosin-VIIa are present. These three myosin isozymes are excluded from other actin-rich domains, including the circumferential actin belt and the cortical actin network. A member of a fourth class, myosin-V, is not expressed in hair cells but is present at high levels in afferent nerve cells that innervate hair cells. Substantial amounts of myosins-Ibeta, -VI, and -VIIa are located in a pericuticular necklace that is largely free of F-actin, squeezed between (but not associated with) actin of the cuticular plate and the circumferential belt. Our localization results suggest specific functions for three hair-cell myosin isozymes. As suggested previously, myosin-Ibeta probably plays a role in adaptation; concentration of myosin-VI in cuticular plates and association with stereociliary rootlets suggest that this isozyme participates in rigidly anchoring stereocilia; and finally, colocalization with cross-links between adjacent stereocilia indicates that myosin-VIIa is required for the structural integrity of hair bundles.
Collapse
Affiliation(s)
- T Hasson
- Department of Biology, Department of Cell Biology, Department of Pathology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kempf HG, Zimmermann U, Zenner HP. Preservation of the non-rectangular cuticular plate/cell axis angle of outer hair cells. Eur Arch Otorhinolaryngol 1996; 253:5-10. [PMID: 8932421 DOI: 10.1007/bf00176694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Motile properties of outer hair cells (OHCs) may contribute to sharp tuning and amplification in the mammalian cochlea. Shape changes of isolated OHCs in response to various physical and chemical influences have been investigated intensively. However, determinations of shape may have been influenced by unanticipated effects of preparation and preservation of the OHCs investigated. Thus, in a first step, lengths of freshly isolated OHCs from the guinea pig cochlea were determined using a video-enhancing magnification system. The cuticular plate/cell axis angle (CP/CA angle) was then measured in native cells and under the influence of potassium chloride and potassium gluconate incubation. To show the influence of glutaraldehyde (GA) fixation on the isolated OHCs, fixative-dependent changes on cell length and CP/CA angle were recorded in native and preincubated OHCs. In these experiments, the cell length of vital isolated OHCs was between 41.5 micrometers, in the basal turn, and 103.7 micrometers, in the apical turn. The average CP/CA angle was 106 degrees +/- 4.2 degrees (n = 324 cells, turns 1-4) with no statistically significant differences for the four turns. Under the influence of potassium chloride, cell length was reduced by 8.1%. Potassium gluconate incubation led to a shortening of cell length, followed by a 5.3% increase after 5 min. The CP/CA angle under potassium chloride was decreased (97.0 degrees) and was then increased under the influence of potassium gluconate (110.7 degrees) as a result of cuticular plate tilting. Cell shrinkage after fixation depended on the fixative's osmolarity and on the GA concentration. Increased GA levels amplified cell shrinkage from 34% for hypo-osmolar solutions to 15% in iso-osmolar and 29% in hyperosmolar solutions. The CP/CA angle of native and incubated OHCs was not different from those fixed with GA. The present data provide a rational basis for isolated OHC shape parameters. Moreover, functionally induced changes can be better interpreted when OHCs are influenced by fixatives, as shown in the GA experiments.
Collapse
Affiliation(s)
- H G Kempf
- Department of Otolaryngology, Medizinische Hochschule Hannover, Germany
| | | | | |
Collapse
|
47
|
|
48
|
Holley MC, Nishida Y. Monoclonal antibody markers for early development of the stereociliary bundles of mammalian hair cells. JOURNAL OF NEUROCYTOLOGY 1995; 24:853-64. [PMID: 8576714 DOI: 10.1007/bf01179984] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two monoclonal antibodies, SC1 and SC2, were raised in vitro against antigens from the stereocilia of guinea-pig hair cells. They both labelled stereociliary antigens that were not detected in any other cell within the cochlear duct or the vestibular epithelial. SC1 cross-reacted with the tectorial membrane in the cochlea and labelled both cochlear and vestibular hair cells from both the mouse and the rat. In the mouse the SC1 antigen was labelled from embryonic days 16-18, coincident with the development of the stereociliary bundles. SC1 cross-reacted with neuromuscular junctions from striated muscle and with basal keratinocytes in skin. SC2 did not cross-react cleanly with hair cells from the mouse or the rat but it cross-reacted with proximal tubules of the guinea-pig kidney. Both antibodies can be used as cellular markers within the guinea-pig cochlea and SC1 should be particularly useful for studies of hair cell differentiation in the mouse.
Collapse
Affiliation(s)
- M C Holley
- Department of Physiology, School of Medical Sciences, University Walk, Bristol, UK
| | | |
Collapse
|
49
|
Pack AK, Slepecky NB. Cytoskeletal and calcium-binding proteins in the mammalian organ of Corti: cell type-specific proteins displaying longitudinal and radial gradients. Hear Res 1995; 91:119-35. [PMID: 8647714 DOI: 10.1016/0378-5955(95)00173-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Whole mounts and tissue sections of the organ of Corti from two representative mammalian species, the Mongolian gerbil (Meriones unguiculatus) and the guinea pig (Cavea porcellus) were probed with antibodies to cytoskeletal and calcium-binding proteins (actin, tubulin, including post-translational modifications, spectrin, fimbrin, calmodulin, parvalbumin, calbindin, S-100 and calretinin). All of the proteins tested were expressed in both species. New findings include the following. Actin is present in large accumulations in cell bodies of the Deiters cells under the outer hair cells (OHC), as well as in the filament networks previously described. These accumulations are more prominent in the apical turns. Tubulin is present in sensory cells in the tyrosinated (more dynamic) form, while tubulin in the supporting cells is post-translationally modified, indicating greater stability. Fimbrin, present in the stereocilia of both IHCs and OHCs, is similar to the isoform of fimbrin found in the epithelial cells of the intestine (fimbrin-I), which implies that actin bundling by fimbrin is reduced in the presence of increased calcium. Parvalbumin appears to be an IHC-specific calcium-binding protein in the gerbil as well as in the guinea pig; labeling displays a longitudinal gradient, with hair cells at the apex staining intensely and hair cells at the base staining weakly. Calbindin displays a similar longitudinal gradient, with staining intense in the IHCs and OHCs at the apex and weak to absent in the base. In the middle turns of the guinea pig cochlea, OHCs in the first row near the pillar cells lose immunoreactivity to calbindin before those in the second and third rows. Calmodulin is found throughout the whole cochlea in the IHCs and OHCs in the stereocilia, cuticular plate, and cell body. Calretinin is present in IHCs and Deiters cells in both species, as well as the tectal cell (modified Hensen cell) in the gerbil. S-100 is a supporting cell-specific calcium-binding protein which has not been localized in the sensory cells of these two species. The supporting cells containing S-100 include the inner border, inner phalangeal, pillar, Deiters, tectal (in gerbil) and Hensen cells, where labeling displays a longitudinal gradient decreasing in intensity towards the apex (opposite to what has been seen with labeling for other proteins in the cochlea).
Collapse
Affiliation(s)
- A K Pack
- Department of Bioengineering and Neuroscience, Syracuse University, NY 13244-5290, USA
| | | |
Collapse
|
50
|
Slepecky NB, Henderson CG, Saha S. Post-translational modifications of tubulin suggest that dynamic microtubules are present in sensory cells and stable microtubules are present in supporting cells of the mammalian cochlea. Hear Res 1995; 91:136-47. [PMID: 8647715 DOI: 10.1016/0378-5955(95)00184-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Post-translational modifications to tubulin in the sensory and supporting cells of the cochlea were studied using antibodies specific to the tyrosinated, detyrosinated, acetylated and polyglutamylated isoforms. In the sensory cells, microtubules which label intensely with antibodies to tyrosinated tubulin are found in networks within the cytoplasm. Microtubules which label with antibodies to detyrosinated tubulin and polyglutamylated tubulin, but not acetylated tubulin, form a small component of the microtubules found in the cytoplasm only in the region below the cuticular plate. Microtubules in the supporting cells (inner and outer pillar cells and Deiters cells) are arranged in bundles and contain little tyrosinated tubulin. They are composed instead of predominantly post-translationally modified isoforms which include detyrosinated, acetylated and polyglutamylated tubulin. The findings suggest that microtubules in the sensory cells form dynamic structures, since microtubules that undergo cyclic polymerization and depolymerization predominantly contain tubulin that has not yet had its carboxy-terminal tyrosine residue removed. The presence of microtubules in the supporting cells in which the tubulin has been polymerized into microtubules long enough to be post-translationally modified, provides evidence that these microtubules are stable, long-lived and could contribute to the structural support of the sensory organ of Corti.
Collapse
MESH Headings
- Acetylation
- Animals
- Antibodies, Monoclonal/metabolism
- Antibody Specificity
- Cerebellum/metabolism
- Cochlea/cytology
- Cochlea/metabolism
- Cochlea/ultrastructure
- Cytoplasm/metabolism
- Gerbillinae
- Glutamic Acid/chemistry
- Guinea Pigs
- Hair Cells, Auditory, Inner/cytology
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Outer/cytology
- Hair Cells, Auditory, Outer/metabolism
- Immunoblotting
- Microtubules/metabolism
- Polymers
- Protein Processing, Post-Translational
- Tubulin/genetics
- Tubulin/metabolism
- Tyrosine/chemistry
- Vestibular Nucleus, Lateral/cytology
- Vestibular Nucleus, Lateral/metabolism
Collapse
Affiliation(s)
- N B Slepecky
- Department of Bioengineering and Neuroscience, Syracuse University, NY 13244-5290, USA.
| | | | | |
Collapse
|