1
|
André C, Guillaume YC. Development of nano Bio LC columns for the search of acethylcholinesterase molecular targets. J Sep Sci 2022; 45:2109-2117. [PMID: 35384306 DOI: 10.1002/jssc.202200047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 11/10/2022]
Abstract
A novel acetylcholinesterase (AChE) Nano LC capillary column (75μm i.d * 50 mm length) was developed for the fast screening of AChE inhibitors and the evaluation of their molecular recognition mechanism. Biotinylated AChE was immobilized on a streptavidin Nano LC capillary column. Because of the very strong streptavidin biotin interaction, the AChE immobilization step performed by frontal analysis is very fast (required less than 10 min) and the amount of immobilized AChE was in the microgram range (1μg). The yellow anion obtained from the enzymatic reaction detected at 412 nm was achieved within 60 s and the immobilized acetylcholinesterase retained 96% of the initial activity beyond 90 days. This column was successfully applied for the discrimination of weak affinity ligands to AChE from non-binders which is the heart of the Fragment Based Drug Design (FBDD). This column was used for the determination of the IC50 values of a series of inhibitor molecules. In addition, it was demonstrated that competitive experiments could be performed with our miniaturized system to confirm the existence and the binding pocket of a ligand to AChE contained in a methanol plant extract. The results revealed that our AChE Nano LC capillary column developed in this work represents a useful tool for the rapid screening of inhibitor candidates and evaluation of action mechanism. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Claire André
- Univ Franche - Comté, Besançon, F-25000, France.,EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), Besançon, F-25000, France
| | - Yves Claude Guillaume
- Univ Franche - Comté, Besançon, F-25000, France.,EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), Besançon, F-25000, France.,CHRU Besançon, Pôle Pharmaceutique, Besançon, F- 25000, France
| |
Collapse
|
2
|
Guillaume YC, André C. Immobilization of the SARS-CoV-2-receptor binding domain onto methacrylate-based monoliths for nano LC at 30 nL min -1 and application for research of its ligands. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:156-164. [PMID: 34927183 DOI: 10.1039/d1ay01913a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
For the design of novel potent molecules against therapeutic protein targets produced in a low quantity or that are very expensive, the development of miniaturized analytical techniques is of crucial importance. One challenging target is the receptor binding domain (RBD) of the SARS-CoV-2-spike protein (S), which mediates the binding of the virus to host cells. In the present study, the RBD protein was thus immobilized on polymethacrylate monoliths prepared in a miniaturized capillary column (25 μm internal diameter; 70 mm length) by in situ polymerization, which could offer low backpressure in Nano LC at 30 nL min-1. The immobilized quantity of the expensive RBD protein on the organic monolith was very low, in the submicrogram range, i.e., 0.060 μg. The immobilization method reduced non-selective interactions between the ligand and the organic monolith matrix and maintained the functionality of RBD due to the high activity rate (96%). The performance of this miniaturized affinity capillary column was demonstrated for the rapid evaluation of a recognition assay induced by 1,2,3,4,6-pentagalloyl glucose (PGG), a known ligand of RBD, and by five other molecules. In addition, it was demonstrated that competitive experiments could be performed with our miniaturized system to reveal the existence of only one type of binding site for three ligands of RBD, namely carbenoxolone, simeprevir and irinotecan. All these results showed the potential of our analytical miniaturized affinity system for the determination of interactions between potential ligands and immobilized RBD of SARS-CoV-2 to aid in the battle against COVID-19.
Collapse
Affiliation(s)
- Yves Claude Guillaume
- Univ Franche - Comté, EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), F-25000 Besançon, France.
| | - Claire André
- Univ Franche - Comté, EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), F-25000 Besançon, France.
- CHRU Besançon, Pôle Pharmaceutique, F-25000 Besançon, France
| |
Collapse
|
3
|
Development of a new nano arginase HPLC capillary column for the fast screening of arginase inhibitors and evaluation of their binding affinity. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1175:122751. [PMID: 33991957 DOI: 10.1016/j.jchromb.2021.122751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022]
Abstract
A simple and rapid Nano LC method has been developed for the screening of arginase inhibitors. The method is based on the immobilization of biotinylated arginase on a neutravidin functionalized nano HPLC capillary column. The arginase immobilization step performed by frontal analysis is very fast and only takes a few minutes. The miniaturized capillary column of 170 nL (length 5 cm, internal diameter 75 μm) significantly decreased the required amount of used enzyme (25 pmol). This was of significance importance when working with less available or expensive purified enzyme. Non-selective adsorption of the organic monolith matrix was reduced (<6%) and the arginase efficient yield was high (92%). The resultant affinity capillary columns showed excellent repeatability and long lifetime. The arginase reaction product was achieved within 60 s and the immobilized arginase retained 97% of the initial activity beyond 90 days. This novel approach can thus be used for the fast evaluation of recognition assay induced bya series of inhibitor molecules (caffeic acid phenylamide, chlorogenic acid, piceatannol, nor-NOHA acetate) and plant extracts.
Collapse
|
4
|
Claire A, Lethier L, Guillaume YC. An organic monolithic capillary column functionalized with human serum albumin and its application for the nano – chromatography study of its binding with universal cancer peptides and its impact on immunogenicity. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1811727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Andre Claire
- EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), Univ Franche – Comté, Besançon, France
- CHRU Besançon, Pôle Pharmaceutique, Besançon, France
| | - Lydie Lethier
- EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), Univ Franche – Comté, Besançon, France
- CHRU Besançon, Pôle Pharmaceutique, Besançon, France
| | - Yves C. Guillaume
- EA481 Neurosciences Intégratives et Cliniques/Pôle Chimie Analytique Bioanalytique et Physique (PCABP), Univ Franche – Comté, Besançon, France
- CHRU Besançon, Pôle Pharmaceutique, Besançon, France
| |
Collapse
|
5
|
Tao P, Poddar S, Sun Z, Hage DS, Chen J. Analysis of solute-protein interactions and solute-solute competition by zonal elution affinity chromatography. Methods 2018; 146:3-11. [PMID: 29409783 PMCID: PMC6072616 DOI: 10.1016/j.ymeth.2018.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022] Open
Abstract
Many biological processes involve solute-protein interactions and solute-solute competition for protein binding. One method that has been developed to examine these interactions is zonal elution affinity chromatography. This review discusses the theory and principles of zonal elution affinity chromatography, along with its general applications. Examples of applications that are examined include the use of this method to estimate the relative extent of solute-protein binding, to examine solute-solute competition and displacement from proteins, and to measure the strength of these interactions. It is also shown how zonal elution affinity chromatography can be used in solvent and temperature studies and to characterize the binding sites for solutes on proteins. In addition, several alternative applications of zonal elution affinity chromatography are discussed, which include the analysis of binding by a solute with a soluble binding agent and studies of allosteric effects. Other recent applications that are considered are the combined use of immunoextraction and zonal elution for drug-protein binding studies, and binding studies that are based on immobilized receptors or small targets.
Collapse
Affiliation(s)
- Pingyang Tao
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - Saumen Poddar
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - Zuchen Sun
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - Jianzhong Chen
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Li Z, Hage DS. Analysis of stereoselective drug interactions with serum proteins by high-performance affinity chromatography: A historical perspective. J Pharm Biomed Anal 2017; 144:12-24. [PMID: 28094095 PMCID: PMC5505820 DOI: 10.1016/j.jpba.2017.01.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 01/09/2023]
Abstract
The interactions of drugs with serum proteins are often stereoselective and can affect the distribution, activity, toxicity and rate of excretion of these drugs in the body. A number of approaches based on affinity chromatography, and particularly high-performance affinity chromatography (HPAC), have been used as tools to study these interactions. This review describes the general principles of affinity chromatography and HPAC as related to their use in drug binding studies. The types of serum agents that have been examined with these methods are also discussed, including human serum albumin, α1-acid glycoprotein, and lipoproteins. This is followed by a description of the various formats based on affinity chromatography and HPAC that have been used to investigate drug interactions with serum proteins and the historical development for each of these formats. Specific techniques that are discussed include zonal elution, frontal analysis, and kinetic methods such as those that make use of band-broadening measurements, peak decay analysis, or ultrafast affinity extraction.
Collapse
Affiliation(s)
- Zhao Li
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
7
|
Singh NS, Habicht KL, Dossou KSS, Shimmo R, Wainer IW, Moaddel R. Multiple protein stationary phases: a review. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 968:64-8. [PMID: 24780640 PMCID: PMC4127356 DOI: 10.1016/j.jchromb.2014.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/28/2014] [Accepted: 04/03/2014] [Indexed: 11/27/2022]
Abstract
Cellular membrane affinity chromatography stationary phases have been extensively used to characterize immobilized proteins and provide a direct measurement of multiple binding sites, including orthosteric and allosteric sites. This review will address the utilization of immobilized cellular and tissue fragments to characterize multiple transmembrane proteins co-immobilized onto a stationary phase. This approach will be illustrated by demonstrating that multiple transmembrane proteins were immobilized from cell lines and tissue fragments. In addition, the immobilization of individual compartments/organelles within a cell will be discussed and the changes in the proteins binding/kinetics based on their location.
Collapse
Affiliation(s)
- N S Singh
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - K-L Habicht
- Department of Natural Sciences, Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt. 29, 10120 Tallinn, Estonia
| | - K S S Dossou
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - R Shimmo
- Department of Natural Sciences, Institute of Mathematics and Natural Sciences, Tallinn University, Narva mnt. 29, 10120 Tallinn, Estonia
| | - I W Wainer
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - R Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
8
|
Takaku T, Mikata K, Nagahori H, Sogame Y. Identification of metabolites of propyrisulfuron in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 955-956:64-71. [PMID: 24631812 DOI: 10.1016/j.jchromb.2014.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/12/2014] [Accepted: 02/16/2014] [Indexed: 11/26/2022]
Abstract
The metabolites found in the urine, feces and bile of male and female rats administered with (14)C-labeled herbicide, propyrisulfuron [1-(2-chloro-6-propylimidazo[1,2-b]pyridazin-3-ylsulfonyl)-3- (4,6-dimethoxypyrimidin-2-yl)urea] were identified by high-performance liquid chromatography (HPLC) with the ultraviolet (UV) and radioisotope (RI) detectors, tandem mass spectrometry and nuclear magnetic resonance (NMR). Administered (14)C was excreted into the urine (5.7-29.8%) and feces (64.6-97.4%). Urine and bile samples were concentrated and purified using a solid-phase extraction cartridge, and fecal homogenates were extracted using acetonitrile. Conjugates were hydrolyzed with enzyme or hydrochloric acid solution for identification. The proposed major metabolic reactions of propyrisulfuron are as follows: (1) hydroxylation of the pyrimidine ring, propyl group, and imidazopyridazine ring, (2) O-demethylation, (3) cleavage of the pyrimidine ring, and (4) glucuronic acid and sulfate conjugation. The metabolic patterns found are not different among sulfonylurea herbicides.
Collapse
Affiliation(s)
- Tomoyuki Takaku
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-Chome, Kasugade-Naka, Konohana-Ku, Osaka 554-8558, Japan.
| | - Kazuki Mikata
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-Chome, Kasugade-Naka, Konohana-Ku, Osaka 554-8558, Japan
| | - Hirohisa Nagahori
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-Chome, Kasugade-Naka, Konohana-Ku, Osaka 554-8558, Japan
| | - Yoshihisa Sogame
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-Chome, Kasugade-Naka, Konohana-Ku, Osaka 554-8558, Japan
| |
Collapse
|
9
|
Hage DS, Anguizola JA, Bi C, Li R, Matsuda R, Papastavros E, Pfaunmiller E, Vargas J, Zheng X. Pharmaceutical and biomedical applications of affinity chromatography: recent trends and developments. J Pharm Biomed Anal 2012; 69:93-105. [PMID: 22305083 DOI: 10.1016/j.jpba.2012.01.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 10/14/2022]
Abstract
Affinity chromatography is a separation technique that has become increasingly important in work with biological samples and pharmaceutical agents. This method is based on the use of a biologically related agent as a stationary phase to selectively retain analytes or to study biological interactions. This review discusses the basic principles behind affinity chromatography and examines recent developments that have occurred in the use of this method for biomedical and pharmaceutical analysis. Techniques based on traditional affinity supports are discussed, but an emphasis is placed on methods in which affinity columns are used as part of HPLC systems or in combination with other analytical methods. General formats for affinity chromatography that are considered include step elution schemes, weak affinity chromatography, affinity extraction and affinity depletion. Specific separation techniques that are examined include lectin affinity chromatography, boronate affinity chromatography, immunoaffinity chromatography, and immobilized metal ion affinity chromatography. Approaches for the study of biological interactions by affinity chromatography are also presented, such as the measurement of equilibrium constants, rate constants, or competition and displacement effects. In addition, related developments in the use of immobilized enzyme reactors, molecularly imprinted polymers, dye ligands and aptamers are briefly considered.
Collapse
Affiliation(s)
- David S Hage
- Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hage DS, Anguizola JA, Jackson AJ, Matsuda R, Papastavros E, Pfaunmiller E, Tong Z, Vargas-Badilla J, Yoo MJ, Zheng X. CHROMATOGRAPHIC ANALYSIS OF DRUG INTERACTIONS IN THE SERUM PROTEOME. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2011; 3:10.1039/C1AY05068K. [PMID: 24223625 PMCID: PMC3820373 DOI: 10.1039/c1ay05068k] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The binding of drugs with serum proteins and binding agents such as human serum albumin, α1-acid glycoprotein, and lipoproteins is an important process in determining the activity and fate of many pharmaceuticals in the body. A variety of techniques have been used to study drug interactions with serum proteins, but there is still a need for faster or better methods for such work. High-performance liquid chromatography (HPLC) is one tool that has been utilized in many formats for these types of measurements. Advantages of using HPLC for this application include its speed and precision, its ability to be automated, its good limits of detection, and its compatibility with a wide range of assay formats and detectors. This review will discuss various approaches in which HPLC can be employed for the study of drug-protein interactions. These techniques include the use of soluble proteins in zonal elution and frontal analysis methods or vacancy techniques such as the Hummel-Dreyer method. Zonal elution and frontal analysis methods that make use of immobilized proteins and high-performance affinity chromatography will also be presented. A variety of applications will be examined, ranging from the determination of free drug fractions to the measurement of the strength or rate of a drug-protein interaction. Newer developments that will be discussed include recent work in the creation of novel mathematical approaches for HPLC studies of drug-protein binding, the use of HPLC methods for the high-throughput screening of drug-protein binding, and the creation and use of affinity monoliths or affinity microcolumns for examining drug-protein systems.
Collapse
Affiliation(s)
- David S. Hage
- Chemistry Department, University of Nebraska, Lincoln, NE USA
| | | | - Abby J. Jackson
- Chemistry Department, University of Nebraska, Lincoln, NE USA
| | - Ryan Matsuda
- Chemistry Department, University of Nebraska, Lincoln, NE USA
| | | | | | - Zenghan Tong
- Chemistry Department, University of Nebraska, Lincoln, NE USA
| | | | - Michelle J. Yoo
- Chemistry Department, University of Nebraska, Lincoln, NE USA
| | - Xiwei Zheng
- Chemistry Department, University of Nebraska, Lincoln, NE USA
| |
Collapse
|
11
|
Ibrahim F, Guillaume YC, André C. Chromatographic Framework to Determine the Memantine Binding Mechanism on Human Serum Albumin Surface. Chromatographia 2008. [DOI: 10.1365/s10337-008-0675-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Jin D, Kumar AP, Song GC, Lee YI. Determination of thyroxine enantiomers in pharmaceutical formulation by high-performance liquid chromatography–mass spectrometry with precolumn derivatization. Microchem J 2008. [DOI: 10.1016/j.microc.2007.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Kim HS, Mallik R, Hage DS. Chromatographic analysis of carbamazepine binding to human serum albumin. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 837:138-46. [PMID: 16687257 DOI: 10.1016/j.jchromb.2006.03.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 02/24/2006] [Accepted: 03/31/2006] [Indexed: 11/18/2022]
Abstract
Recent studies with carbamazepine on human serum albumin (HSA) columns have noted an appreciable degree of non-specific binding on supports prepared by the Schiff base immobilization method. This work examines an alternative immobilization method for HSA based on N-hydroxysuccinimide (NHS)-activated silica. This support was prepared by reacting HPLC-grade silica directly with disuccinimidyl carbonate. The resulting material was compared to an HSA support prepared by the Schiff base method in terms of its activity for carbamazepine and non-specific interactions with this drug. When examined by frontal analysis, both supports gave comparable association equilibrium constants for carbamazepine interactions with HSA ((0.53-0.55) x 10(4)M(-1) at 37 degrees C). However, columns prepared by the Schiff base method gave greater non-specific binding. These columns, as well as control columns prepared using the carbonyldiimidazole (CDI) immobilization method, were also evaluated for their non-specific binding to a variety of other solutes known to interact with HSA. From these results it was concluded that the NHS method was an attractive alternative to the Schiff base technique in the preparation of immobilized HSA for HPLC-based binding studies for carbamazepine. However, it was also noted that non-specific binding varies from one drug to the next in these immobilization methods, indicating that such properties should be evaluated on a case-by-case basis in the use and development of HSA columns for binding studies.
Collapse
Affiliation(s)
- Hee Seung Kim
- 704 Hamilton Hall, Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304, USA
| | | | | |
Collapse
|
14
|
Kim HS, Hage DS. Chromatographic analysis of carbamazepine binding to human serum albumin. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 816:57-66. [PMID: 15664334 DOI: 10.1016/j.jchromb.2004.11.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 11/04/2004] [Indexed: 10/26/2022]
Abstract
In this study, high-performance affinity chromatography was used to characterize the binding of carbamazepine to an immobilized human serum albumin (HSA) column. Frontal analysis was first used to determine the association equilibrium constant and binding capacity for carbamazepine on this column at various temperatures. The non-specific binding of carbamazepine within the column was also considered. The results indicated that carbamazepine had a single binding site on HSA with an association equilibrium constant of 5.3 x 10(3)M(-1) at pH 7.4 and 37 degrees C. This was confirmed through zonal elution self-competition studies. The value of DeltaG for this reaction was -5.35 kcal/mol at 37 degrees C, with an associated change in enthalpy (DeltaH) of -6.45 kcal/mol and a change in entropy (DeltaS) of -3.56 cal/molK. The location of this binding region was examined by competitive zonal elution experiments using probe compounds with known sites on HSA. It was found that carbamazepine had direct competition with l-tryptophan, a probe for the indole-benzodiazepine site of HSA, but allosteric interactions with probes for the warfarin, tamoxifen and digitoxin sites. Changes in the pH, ionic strength, and organic modifier content of the mobile phase were used to identify the predominant forces in the carbamazepine-HSA interaction.
Collapse
Affiliation(s)
- Hee Seung Kim
- Chemistry Department, University of Nebraska, Lincoln, NE 68588-0304, USA
| | | |
Collapse
|
15
|
André C, Jacquot Y, Truong TT, Thomassin M, Robert JF, Guillaume YC. Analysis of the progesterone displacement of its human serum albumin binding site by beta-estradiol using biochromatographic approaches: effect of two salt modifiers. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 796:267-81. [PMID: 14581067 DOI: 10.1016/s1570-0232(03)00563-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mechanisms of (i) the binding of two sex-hormones (i.e. progesterone and beta-estradiol) to human serum albumin (HSA) and (ii) the progesterone displacement of its HSA binding cavity by beta-estradiol were studied by biochromatography using three different methods. In the first time, zonal elution method was used to prove the direct competition effect between the two sex-hormone. In the second time, the competition effect between beta-estradiol and progesterone to bound on the same HSA site was analysed by the competitive bi-Langmuir approach. Finally, the thermodynamic data of these two binding processes were studied. The Gibbs free energy value (Delta(approximately)G degrees) of the displacement equilibrium was negative demonstrating that beta-estradiol displaced progesterone of its HSA binding cavity. Moreover, the effect of two chloride modifiers (i.e. Na(+), Mg(2+)) on these two binding processes were analysed. Results showed that in the salt biological concentration ranges, the Mg(2+) cation enhanced strongly the bioavailable progesterone, whereas the Na(+) cation interacted slowly on the progesterone displacement of its HSA binding site by beta-estradiol. This study showed that it must be useful to carry out more in vivo test on the magnesium supplementation effect for women who suffer from estrogen dominance syndrome.
Collapse
Affiliation(s)
- C André
- Equipe des Sciences Séparatives et Biopharmaceutiques (2SB), Laboratoire de Chimie Analytique, Place Saint-Jacques, 25030 Besançon Cedex, France
| | | | | | | | | | | |
Collapse
|
16
|
André C, Robert JF, Thomassin M, Guillaume YC. Sucrose dependence on the human serum albumin–dehydroepiandrosterone binding. Anal Chim Acta 2004. [DOI: 10.1016/j.aca.2003.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Gika H, Lämmerhofer M, Papadoyannis I, Lindner W. Direct separation and quantitative analysis of thyroxine and triiodothyronine enantiomers in pharmaceuticals by high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 800:193-201. [PMID: 14698255 DOI: 10.1016/j.jchromb.2003.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A rapid reversed-phase type HPLC method for the simultaneous separation and analysis of D- and L-thyroxine (D- and L-T(4)) and triiodothyronine (T(3)) was developed using a quinine-derived chiral stationary phase and applied for a quantitative assay of the enantiomeric impurity of the drugs in pharmaceutical formulations of levothyroxine. The influence of operating parameters has been studied for the optimization of the separation and also in order to gain an insight into the retention mechanism. Validation of the method included linearity, precision and accuracy which revealed R.S.D. values of <3.3% for intra-assay precision and percent error ranging from -6 to +2.1% for various defined validation samples, proving satisfactory accuracy. Quantitation was performed over the range of 0.5-500 microg ml(-1) with limits of detection and quantitation lower than 0.1 and 0.5 microg ml(-1), respectively, for both analytes. Further, the determination of 0.1% impurity, of D-T(4) as well as L- and D-T(3) in levothyroxine sodium tablets proved to be feasible.
Collapse
Affiliation(s)
- Helen Gika
- Institute of Analytical Chemistry, University of Vienna, Währinger Strasse 38, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
18
|
Millot MC. Separation of drug enantiomers by liquid chromatography and capillary electrophoresis, using immobilized proteins as chiral selectors. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 797:131-59. [PMID: 14630147 DOI: 10.1016/j.jchromb.2003.08.035] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Proteins display interesting chiral discrimination properties owing to multiple possibilities of intermolecular interactions with chiral compounds. This review deals with proteins which have been used as immobilized chiral selectors for the enantioseparation of drugs in liquid chromatography and capillary electrophoresis. The main procedures allowing the immobilization of proteins onto matrices, such as silica and zirconia particles, membranes and capillaries are first presented. Then the factors affecting the enantioseparation of drugs in liquid chromatography, using various protein-based chiral stationary phases (CSPs), are reviewed and discussed. Last, chiral separations already achieved using immobilized protein selectors in affinity capillary electrochromatography (ACEC) are presented and compared in terms of efficiency, stability and reproducibility.
Collapse
Affiliation(s)
- M C Millot
- Laboratoire de Recherche sur les Polymères, CNRS-Université Paris 12, UMR 7581, 2 à 8 rue Henri Dunant, Thiais 94320, France.
| |
Collapse
|
19
|
Clarke W, Hage DS. Clinical Applications of Affinity Chromatography. SEPARATION AND PURIFICATION REVIEWS 2003. [DOI: 10.1081/spm-120025025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Aboul-Enein HV, Stefan RI, Litescu S, Radu GL. Biosensor for the enantioselective analysis of the thyroid hormones (+)-3,3',5-triiodo-L-thyronine (T3) and (+)-3,3',5,5'-tetraiodo-L-thyronine (T4). J Immunoassay Immunochem 2002; 23:181-90. [PMID: 12033642 DOI: 10.1081/ias-120003660] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An amperometric biosensor based on L-aminoacid oxidase is proposed for enantioselective assay of (+)-3,3',5-triiodo-L-thyronine (L-T3) and (+)-3,3',5,5'-tetraiodo-L-thyronine (L-T4), due to the fact that only the L enantiomer has the hormonal activity. The construction of the amperometric biosensor is simple and reproducible. The analytical information obtained from enantioselective analysis are reliable. The RSD <1% assured by using the amperometric biosensors for L enantiomers assay as raw materials, and from tablets, demonstrated their suitability for the analysis of T3 and T4 at ppb concentration levels.
Collapse
Affiliation(s)
- Hassan V Aboul-Enein
- Pharmaceutical Analysis Laboratory, Biological and Medical Research Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Stephen Curry
- Biophysics Section, Department of Biological Sciences, Blackett Laboratory, Imperial College of Science, Technology and Medicine, London, United Kingdom.
| |
Collapse
|
22
|
Hage DS. High-performance affinity chromatography: a powerful tool for studying serum protein binding. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 768:3-30. [PMID: 11939555 DOI: 10.1016/s0378-4347(01)00482-0] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
High-performance affinity chromatography (HPAC) is a method in which a biologically-related ligand is used as a stationary phase in an HPLC system. This approach is a powerful means for selectively isolating or quantitating agents in complex samples, but it can also be employed to study the interactions of biological systems. In recent years there have been numerous reports in which HPAC has been used to examine the interactions of drugs, hormones and other substances with serum proteins. This review discusses how HPAC has been used in such work. Particular attention is given to the techniques of zonal elution and frontal analysis. Various applications are provided for these techniques, along with a list of factors that need to be considered in their optimization and use. New approaches based on band-broadening studies and rapid immunoextraction are also discussed.
Collapse
Affiliation(s)
- David S Hage
- University of Nebraska-Lincoln, Department of Chemistry, 68588-0304, USA.
| |
Collapse
|
23
|
Abstract
Protein interactions are important in determining the transport, metabolism and/or activity of many chiral compounds within the body. This review examines data that have been obtained on these interactions by various chromatographic and electrophoretic methods, especially those based on either high-performance liquid chromatography or capillary electrophoresis. Zonal elution, frontal analysis and vacancy methods are each considered, as are approaches that employ either soluble or immobilized proteins. There are a variety of different items that can be learned about a solute-protein system through these techniques. This includes information on the binding constants and number of binding sites for a solute-protein system, as well as the thermodynamic parameters, rate constants, interaction forces and binding site structure for the protein and solute. Numerous examples are provided throughout this review, as taken from the literature and from work performed within the author's laboratory.
Collapse
Affiliation(s)
- D S Hage
- Department of Chemistry, University of Nebraska--Lincoln, 68588-0304, USA.
| |
Collapse
|
24
|
Applications of immobilized stationary-phase liquid chromatography: a potential in vitro technique. PHARMACEUTICAL SCIENCE & TECHNOLOGY TODAY 2000; 3:406-416. [PMID: 11116200 DOI: 10.1016/s1461-5347(00)00315-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Immobilized artificial-membrane chromatography is a potential in vitro technique for determining lipophilicity and studying drug transport and membrane interactions. It is reproducible, efficient and simple. Several other and newer applications of immobilized stationary-phase liquid chromatography have been reported, including the purification of membrane proteins, the synthesis of biomolecules and the simultaneous determination of enzyme activity and enantioselectivity. This article describes the immobilized artificial-membrane concept and provides an overview of the applications, advantages and limitations, in general, of immobilized stationary-phase chromatography.
Collapse
|
25
|
Hage DS, Austin J. High-performance affinity chromatography and immobilized serum albumin as probes for drug- and hormone-protein binding. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 739:39-54. [PMID: 10744312 DOI: 10.1016/s0378-4347(99)00445-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding of drugs and hormones to proteins within the blood is an important process in determining the transport, excretion, metabolism and activity of such agents. This paper discusses the combined use of immobilized serum albumin and high-performance affinity chromatography (HPAC) as tools for the study of such binding processes. The general approaches that are used in such work and are illustrated by several examples taken from previous work in the author's laboratory. The type of qualitative and quantitative information that can be obtained by such work is described, including the comparison of relative binding affinities, competitive displacement by other agents or the measurement of equilibrium and rate constants based on immobilized albumin columns. A comparison is also provided between the results that are obtained by these methods and those that are provided by solution-phase albumin. Some newer advances that are highlighted include use of HPAC to examine the binding of non-polar compounds to albumin, the effects of binding site heterogeneity on HPAC measurements and the use of chemically-modified albumin as a tool to examined the site-specific interactions of solutes with albumin.
Collapse
Affiliation(s)
- D S Hage
- Department of Chemistry, University of Nebraska-Lincoln, 68588-0304, USA
| | | |
Collapse
|
26
|
Abstract
AbstractAffinity chromatography is a type of liquid chromatography that makes use of biological-like interactions for the separation and specific analysis of sample components. This review describes the basic principles of affinity chromatography and examines its use in the testing of clinical samples, with an emphasis on HPLC-based methods. Some traditional applications of this approach include the use of boronate, lectin, protein A or protein G, and immunoaffinity supports for the direct quantification of solutes. Newer techniques that use antibody-based columns for on- or off-line sample extraction are examined in detail, as are methods that use affinity chromatography in combination with other analytical methods, such as reversed-phase liquid chromatography, gas chromatography, and capillary electrophoresis. Indirect analyte detection methods are also described in which immunoaffinity chromatography is used to perform flow-based immunoassays. Other applications that are reviewed include affinity-based chiral separations and the use of affinity chromatography for the study of drug or hormone interactions with binding proteins. Some areas of possible future developments are then considered, such as tandem affinity methods and the use of synthetic dyes, immobilized metal ions, molecular imprints, or aptamers as affinity ligands for clinical analytes.
Collapse
Affiliation(s)
- David S Hage
- Department of Chemistry, 738 Hamilton Hall, University of Nebraska, Lincoln, NE 68588-0304. Fax 402-472-9402; e-mail
| |
Collapse
|
27
|
Hage DS, Tweed SA. Recent advances in chromatographic and electrophoretic methods for the study of drug-protein interactions. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1997; 699:499-525. [PMID: 9392390 DOI: 10.1016/s0378-4347(97)00178-3] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Drug-protein binding is an important process in determining the activity and fate of a pharmaceutical agent once it has entered the body. This review examines various chromatographic and electrophoretic methods that have been developed to study such interactions. An overview of each technique is presented along with a discussion of its strengths, weaknesses and potential applications. Formats that are discussed include the use of both soluble and immobilized drugs or proteins, and approaches based on zonal elution, frontal analysis or vacancy peak measurements. Furthermore, examples are provided that illustrate the use of these methods in determining the overall extent of drug-protein binding, in examining the displacement of a drug by other agents and in measuring the equilibrium or rate constants for drug-protein interactions. Examples are also given demonstrating how the same methods, particularly when used in high-performance liquid chromatography or capillary electrophoresis systems, can be employed as rapid screening tools for investigating the binding of different forms of a chiral drug to a protein or the binding of different proteins and peptides to a given pharmaceutical agent.
Collapse
Affiliation(s)
- D S Hage
- Department of Chemistry, University of Nebraska-Lincoln, 68588-0304, USA
| | | |
Collapse
|
28
|
Andre M, Domanig R, Riemer E, Moser H, Groeppelin A. Identification of the thermal degradation products of g-triiodothyronine sodium (liothyronine sodium) by reversed-phase high-performance liquid chromatography with photodiode-array UV and mass spectrometric detection. J Chromatogr A 1996. [DOI: 10.1016/0021-9673(95)01007-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Abou-Basha LI, Aboul-Enein HY. Enantiomeric separation and optical purity determination of thyroxine enantiomers in bulk and pharmaceutical formulations. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0031-6865(95)00024-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Aboul-Enein HY, Serignese V. Optical purity determination of thyroxine enantiomers in bulk materials by chiral thin layer chromatography. Biomed Chromatogr 1994; 8:317-8. [PMID: 7888739 DOI: 10.1002/bmc.1130080616] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
L-thyroxine and D-thyroxine were separated on ligand exchange chiral thin layer chromatographic plates, using a solvent system consisting of acetonitrile:methanol:water 60:15:15 v/v, at a wavelength of 254 nm. The methodology, chiral recognition mechanism(s) involved and its application are discussed.
Collapse
Affiliation(s)
- H Y Aboul-Enein
- Biological and Medical Research Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | |
Collapse
|
31
|
Allenmark SG, Andersson S. Proteins and peptides as chiral selectors in liquid chromatography. J Chromatogr A 1994. [DOI: 10.1016/0021-9673(94)80379-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Chosson E, Uzan S, Gimenez F, Wainer IW, Farinotti R. Influence of specific albumin ligand markers used as modifiers on the separation of benzodiazepine enantiomers by chiral liquid chromatography on a human serum albumin column. Chirality 1993; 5:71-7. [PMID: 8102067 DOI: 10.1002/chir.530050206] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Specific ligand markers for the various binding sites of human serum albumin (HSA) have been described in the literature. Some of these markers (medium chain fatty acids, warfarin, digoxin, and bilirubin) were used as mobile phase modifiers. Using a high performance liquid chromatographic (HPLC) column containing HSA as stationary phase, their influence was investigated on the separation in this phase of the enantiomers of three benzodiazepines (temazepam, oxazepam, and lorazepam). Displacement effects were observed with medium chain fatty acids. This influence was proportional to the chain length and to the concentration of acid. Allosteric cooperative effects were noted with digoxin for the three benzodiazepines. Both displacement and cooperative effects were observed with warfarin. Stereoselectivity was decreased for temazepam and oxazepam and increased for lorazepam.
Collapse
Affiliation(s)
- E Chosson
- Unité de Dosage de Médicaments, Hôpital Pitié Salpetriere, Paris, France
| | | | | | | | | |
Collapse
|
33
|
Domenici E, Bertucci C, Salvadori P, Motellier S, Wainer IW. Immobilized serum albumin: rapid HPLC probe of stereoselective protein-binding interactions. Chirality 1990; 2:263-8. [PMID: 2083149 DOI: 10.1002/chir.530020412] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A human serum albumin-based HPLC chiral stationary phase (HSA-CSP) has been examined as a tool to investigate binding of chiral drugs to HSA and drug-drug protein-binding interactions. Rac-oxazepam hemisuccinate (OXH) was used as a model compound and the chromatographic retention (k') of its enantiomers was determined after addition of displacers to the mobile phase. Compounds known to bind at the same site as OXH and at different sites were tested for their displacing capacities. Competitive binding interactions between the OXH enantiomers and displacers in the mobile phase were reflected by decreases in the k's of (R)- and (S)-OXH. The results indicate that retention on the HSA-CSP accurately reflects binding to native HSA and the technique can determine enantioselective and competitive binding interactions at specific sites on HSA. The HSA-CSP was also able to recognize separate binding areas for (S)- and (R)-OXH.
Collapse
Affiliation(s)
- E Domenici
- Dipartimento di Chimica e Chimica Industriale, Universita di Pisa, Italy
| | | | | | | | | |
Collapse
|
34
|
Berthod A, Jin HL, Beesley TE, Duncan JD, Armstrong DW. Cyclodextrin chiral stationary phases for liquid chromatographic separations of drug stereoisomers. J Pharm Biomed Anal 1990; 8:123-30. [PMID: 2094413 DOI: 10.1016/0731-7085(90)80018-k] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many active drugs are racemic mixtures. Because the two enantiomers of a racemate often cause different pharmacological responses, the use of optically pure isomers is desirable and may be soon required. Cyclodextrin-bonded silica gel can be used as chiral stationary phase (CSP) in liquid chromatography. The enantiomers of 25 different racemic drugs were separated on such CSPs in the reversed-phase mode. The principal features of the cyclodextrin chiral recognition mechanism are recalled and some information on future trends for cyclodextrin CSPs is provided.
Collapse
Affiliation(s)
- A Berthod
- Department of Chemistry, University of Missouri-Rolla 65401
| | | | | | | | | |
Collapse
|