1
|
Perrault JR, Lehner AF, Buchweitz JP, Page-Karjian A. Evidence of accumulation and elimination of inorganic contaminants from the lachrymal salt glands of leatherback sea turtles (Dermochelys coriacea). CHEMOSPHERE 2019; 217:59-67. [PMID: 30408652 DOI: 10.1016/j.chemosphere.2018.10.206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 06/08/2023]
Abstract
Plasma osmolalities of marine vertebrates are generally lower than the surrounding medium; therefore, marine organisms must cope with the osmoregulatory challenges of life in a salty environment. The salt glands serve to maintain osmotic and ionic homeostasis in a number of lower marine vertebrates. One marine reptile, the leatherback sea turtle (Dermochelys coriacea), ingests excessive amounts of salts due to their diet of gelatinous zooplankton. Outside of the normal osmoregulatory function of the salt gland, little research has been conducted on contaminant accumulation and excretion in this organ. Here, we established arsenic, cadmium, lead, mercury, and selenium concentrations in red blood cells (RBCs) and salt gland secretions (SGSs) of nesting leatherbacks. We also collected salt glands from different life stage classes of dead stranded leatherbacks from the western Atlantic Ocean to determine if inorganic contaminants accumulate in this organ. Using non-metric multidimensional scaling and regression analyses, we determined that RBC and SGS inorganic contaminant concentrations were not correlated. Additionally, RBCs showed significantly higher concentrations of these contaminants in comparison to SGSs, likely due to the affinity of inorganic contaminants for the heme group of RBCs. Lastly, we found that salt gland cadmium and mercury concentrations tended to increase with increasing curved carapace length (CCL) in stranded leatherbacks. Our results indicate that different physiological mechanisms determine the distribution of inorganic contaminants in blood and SGSs. Increases in salt gland contaminant concentrations with increasing CCL suggest this organ as a potential target for accumulation.
Collapse
Affiliation(s)
- Justin R Perrault
- Loggerhead Marinelife Center, 14200 U.S. Highway 1, Juno Beach, FL 33408, USA.
| | - Andreas F Lehner
- Veterinary Diagnostic Laboratory, Toxicology Section, Michigan State University, 4125 Beaumont Road, East Lansing, MI 48910, USA
| | - John P Buchweitz
- Veterinary Diagnostic Laboratory, Toxicology Section, Michigan State University, 4125 Beaumont Road, East Lansing, MI 48910, USA
| | - Annie Page-Karjian
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 U.S. Highway 1, Fort Pierce, FL 34946, USA
| |
Collapse
|
2
|
Torres P, Tristão da Cunha R, Rodrigues ADS. Mid-Atlantic elasmobranchs: Suitable metal scouts? MARINE POLLUTION BULLETIN 2017; 117:203-213. [PMID: 28179057 DOI: 10.1016/j.marpolbul.2017.01.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
Heavy metals are a hazard to marine fauna and human health. In this study we assess stable isotopes and metal content in Prionace glauca and Isurus oxyrinchus and analyse these results within and among other species and across regions and geographical areas. Also, we evaluate their suitability, together with Raja clavata and Galeorhinus galeus, as Mid-Atlantic bioindicators. Prionace glauca and I. oxyrinchus shared the same trophic level in a pelagic food web and did not present significant differences between genders or metals, except for As. Arsenic and Hg accumulated while Cd and Pb were not detected. One I. oxyrinchus presented Hg values above regulatory limits. A high Hg exposure was associated with I. oxyrinchus since its maximum weekly intake was exceeded. Elasmobranchs can be used as metal sentinels, each presenting different key features which defines a good marine bioindicator, allowing long-term monitoring at different temporal and spatial scales.
Collapse
Affiliation(s)
- Paulo Torres
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores - Departamento de Biologia, Universidade dos Açores. Rua Mãe de Deus, 58, 9500-801 Ponta Delgada, Azores, Portugal; Faculty of Sciences and Technology, University of the Azores, 9501-801 Ponta Delgada, Azores, Portugal.
| | - Regina Tristão da Cunha
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores - Departamento de Biologia, Universidade dos Açores. Rua Mãe de Deus, 58, 9500-801 Ponta Delgada, Azores, Portugal; Faculty of Sciences and Technology, University of the Azores, 9501-801 Ponta Delgada, Azores, Portugal
| | - Armindo Dos Santos Rodrigues
- IVAR, Instituto de Investigação em Vulcanologia e Avaliação de Riscos, University of the Azores, 9501-801 Ponta Delgada, Azores, Portugal; Faculty of Sciences and Technology, University of the Azores, 9501-801 Ponta Delgada, Azores, Portugal
| |
Collapse
|
3
|
Torres P, Tristão da Cunha R, Micaelo C, Rodrigues ADS. Bioaccumulation of metals and PCBs in Raja clavata. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:1021-1030. [PMID: 27607905 DOI: 10.1016/j.scitotenv.2016.08.187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/08/2016] [Accepted: 08/28/2016] [Indexed: 06/06/2023]
Abstract
The goal of this study was to assess stable isotopes profiles, metals concentration and PCBs in Raja clavata muscle and liver, according to sex and size, and to elucidate its suitability as a Mid-Atlantic biomonitor. The results reflected bioaccumulation and suggested biomagnification processes for As and Hg in muscle tissue. Cd, Cu and Zn were detected in high amounts in liver, Cr, Mn and Rb were relatively stable and low, Pb was not detected and Sr was present in muscle at high levels, decreasing with length. Hg and Se were strongly correlated, suggesting a mitigation role. Both tissues presented low concentrations of PCBs, especially the dioxin-like congeners, although always higher in liver and not correlated with size. None of these contaminants exceed EU legislated limits. However, they need to be monitored given study area's location, volcanic nature and the expected increase of anthropogenic activity related to future prospective mining activities and the establishment of the Transatlantic Trade and Investment Partnership (TTIP) between Europe and the USA.
Collapse
Affiliation(s)
- Paulo Torres
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores - Departamento de Biologia, Universidade dos Açores, Rua Mãe de Deus, 58, 9500-801 Ponta Delgada, Açores, Portugal.
| | - Regina Tristão da Cunha
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores - Departamento de Biologia, Universidade dos Açores, Rua Mãe de Deus, 58, 9500-801 Ponta Delgada, Açores, Portugal
| | - Cristina Micaelo
- IPMA, Portuguese Institute for the Sea and Atmosphere, Avenida Brasília, 1446-009 Lisbon, Portugal
| | - Armindo Dos Santos Rodrigues
- CVARG, Centro de Vulcanologia e Avaliação de Riscos Geológicos, - Departamento de Biologia, Universidade dos Açores, Apartado 1422, 9501-801 Ponta Delgada, Açores, Portugal
| |
Collapse
|
4
|
Shuttleworth TJ, Thompson J, Munger RS, Wood CM. A critical analysis of carbonic anhydrase function, respiratory gas exchange, and the acid-base control of secretion in the rectal gland of Squalus acanthias. ACTA ACUST UNITED AC 2007; 209:4701-16. [PMID: 17114403 DOI: 10.1242/jeb.02564] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We compared in vivo responses of rectal gland secretion to carbonic anhydrase (CA) inhibition (10(-4) mol l(-1) acetazolamide) in volume-loaded dogfish with in vitro responses in an isolated-perfused gland stimulated with 5 x 10(-6) mol l(-1) forskolin and removed from systemic influences. We also measured respiratory gas exchange in the perfused gland, described the acid-base status of the secreted fluid, and determined the relative importance of various extracellular and intracellular acid-base parameters in controlling rectal gland secretion in vitro. In vivo, acetazolamide inhibited Cl(-) secretion and decreased pHi in the rectal gland, but interpretation was confounded by an accompanying systemic respiratory acidosis, which would also have contributed to the inhibition. In the perfused gland, M(CO(2)) and M(O(2)) increased in linear relation to increases in Cl(-) secretion rate. CA inhibition (10(-4) mol l(-1) acetazolamide) had no effect on Cl(-) secretion rate or pHi in the perfused gland, in contrast to in vivo, but caused a transitory 30% inhibition of M(CO(2)) (relative to stable M(O(2))) and elevation in secretion P(CO(2)) effects, which peaked at 2 h and attenuated by 3.5-4 h. Secretion was inhibited by acidosis and stimulated by alkalosis; the relationship between relative Cl(-) secretion rate and pHe was almost identical to that seen in vivo. Experimental manipulations of perfusate pH, P(CO(2)) and HCO(3)(-) concentration, together with measurements of pHi, demonstrated that these responses were most strongly correlated with changes in pHe, and were not related to changes in P(CO(2)), extracellular HCO(3)(-), or intracellular HCO(3)(-) levels, though changes in pHi may also have played a role. The acid-base status of the secreted fluid varied with that of the perfusate, secretion pH remaining about 0.3-0.5 units lower, and changing in concert with pHe rather than pHi; secretion HCO(3)(-) concentrations remained low, even in the face of greatly elevated perfusate HCO(3)(-) concentrations. We conclude that pH effects on rectal gland secretion rate are adaptive, that CA functions to catalyze the hydration of CO(2), thereby maintaining a gradient for diffusive efflux of CO(2) from the working cells, and that differences in response to CA inhibition likely reflect the higher perfusion-to-secretion ratio in vitro than in vivo.
Collapse
Affiliation(s)
- Trevor J Shuttleworth
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
5
|
Wood CM, Munger RS, Thompson J, Shuttleworth TJ. Control of rectal gland secretion by blood acid-base status in the intact dogfish shark (Squalus acanthias). Respir Physiol Neurobiol 2006; 156:220-8. [PMID: 17049933 DOI: 10.1016/j.resp.2006.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 09/12/2006] [Accepted: 09/14/2006] [Indexed: 11/18/2022]
Abstract
In order to address the possible role of blood acid-base status in controlling the rectal gland, dogfish were fitted with indwelling arterial catheters for blood sampling and rectal gland catheters for secretion collection. In intact, unanaesthetized animals, isosmotic volume loading with 500 mmol L-1 NaCl at a rate of 15 mL kg-1 h-1 produced a brisk, stable rectal gland secretion flow of about 4 mL kg-1 h-1. Secretion composition (500 mmol L-1 Na+ and Cl-; 5 mmol L-1 K+; <1 mmol L-1 Ca2+, Mg2+, SO(4)2-, or phosphate) was almost identical to that of the infusate with a pH of about 7.2, HCO3- mmol L-1<1 mmol L-1 and a PCO2 (1 Torr) close to PaCO2. Experimental treatments superimposed on the infusion caused the expected disturbances in systemic acid-base status: respiratory acidosis by exposure to high environmental PCO2, metabolic acidosis by infusion of HCl, and metabolic alkalosis by infusion of NaHCO3. Secretion flow decreased markedly with acidosis and increased with alkalosis, in a linear relationship with extracellular pH. Secretion composition did not change, apart from alterations in its acid-base status, and made negligible contribution to overall acid-base balance. An adaptive control of rectal gland secretion by systemic acid-base status is postulated-stimulation by the "alkaline tide" accompanying the volume load of feeding and inhibition by the metabolic acidosis accompanying the volume contraction of exercise.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada L8S 4K1.
| | | | | | | |
Collapse
|
6
|
Ratner MA, Decker SE, Aller SG, Weber G, Forrest JN. Mercury toxicity in the shark (Squalus acanthias) rectal gland: apical CFTR chloride channels are inhibited by mercuric chloride. ACTA ACUST UNITED AC 2006; 305:259-67. [PMID: 16432888 DOI: 10.1002/jez.a.257] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the shark rectal gland, basolateral membrane proteins have been suggested as targets for mercury. To examine the membrane polarity of mercury toxicity, we performed experiments in three preparations: isolated perfused rectal glands, primary monolayer cultures of rectal gland epithelial cells, and Xenopus oocytes expressing the shark cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In perfused rectal glands we observed: (1) a dose-dependent inhibition by mercury of forskolin/3-isobutyl-1-methylxanthine (IBMX)-stimulated chloride secretion; (2) inhibition was maximal when mercury was added before stimulation with forskolin/IBMX; (3) dithiothrietol (DTT) and glutathione (GSH) completely prevented inhibition of chloride secretion. Short-circuit current (Isc) measurements in monolayers of rectal gland epithelial cells were performed to examine the membrane polarity of this effect. Mercuric chloride inhibited Isc more potently when applied to the solution bathing the apical vs. the basolateral membrane (23 +/- 5% and 68 +/- 5% inhibition at 1 and 10 microM HgCl2 in the apical solution vs. 2 +/- 0.9% and 14 +/- 5% in the basolateral solution). This inhibition was prevented by pre-treatment with apical DTT or GSH; however, only the permeant reducing agent DTT reversed mercury inhibition when added after exposure. When the shark rectal gland CFTR channel was expressed in Xenopus oocytes and chloride conductance was measured by two-electrode voltage clamping, we found that 1 microM HgCl2 inhibited forskolin/IBMX conductance by 69.2 +/- 2.0%. We conclude that in the shark rectal gland, mercury inhibits chloride secretion by interacting with the apical membrane and that CFTR is the likely site of this action.
Collapse
Affiliation(s)
- Martha A Ratner
- Nephrology Division, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
7
|
Weber GJ, Mehr AP, Sirota JC, Aller SG, Decker SE, Dawson DC, Forrest JN. Mercury and zinc differentially inhibit shark and human CFTR orthologues: involvement of shark cysteine 102. Am J Physiol Cell Physiol 2005; 290:C793-801. [PMID: 16236827 DOI: 10.1152/ajpcell.00203.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The apical membrane is an important site of mercury toxicity in shark rectal gland tubular cells. We compared the effects of mercury and other thiol-reacting agents on shark CFTR (sCFTR) and human CFTR (hCFTR) chloride channels using two-electrode voltage clamping of cRNA microinjected Xenopus laevis oocytes. Chloride conductance was stimulated by perfusing with 10 microM forskolin (FOR) and 1 mM IBMX, and then thio-reactive species were added. In oocytes expressing sCFTR, FOR + IBMX mean stimulated Cl(-) conductance was inhibited 69% by 1 microM mercuric chloride and 78% by 5 microM mercuric chloride (IC(50) of 0.8 microM). Despite comparable stimulation of conductance, hCFTR was insensitive to 1 microM HgCl(2) and maximum inhibition was 15% at the highest concentration used (5 microM). Subsequent exposure to glutathione (GSH) did not reverse the inhibition of sCFTR by mercury, but dithiothreitol (DTT) completely reversed this inhibition. Zinc (50-200 microM) also reversibly inhibited sCFTR (40-75%) but did not significantly inhibit hCFTR. Similar inhibition of sCFTR but not hCFTR was observed with an organic mercurial, p-chloromercuriphenylsulfonic acid (pCMBS). The first membrane spanning domain (MSD1) of sCFTR contains two unique cysteines, C102 and C303. A chimeric construct replacing MSD1 of hCFTR with the corresponding sequence of sCFTR was highly sensitive to mercury. Site-specific mutations introducing the first but not the second shark unique cysteine in hCFTR MSD1 resulted in full sensitivity to mercury. These experiments demonstrate a profound difference in the sensitivity of shark vs. human CFTR to inhibition by three thiol-reactive substances, an effect that involves C102 in the shark orthologue.
Collapse
Affiliation(s)
- Gerhard J Weber
- Division of Nephrology, Department of Internal Medicine, Yale Univ. School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Ke Q, Yang Y, Ratner M, Zeind J, Jiang C, Forrest JN, Xiao YF. Intracellular accumulation of mercury enhances P450 CYP1A1 expression and Cl- currents in cultured shark rectal gland cells. Life Sci 2002; 70:2547-66. [PMID: 12173417 DOI: 10.1016/s0024-3205(02)01502-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effects of acute and subchronic exposure to mercury on the Cl- current (ICl) were investigated in cultured shark rectal gland (SRG) cells. The effects of intracellular accumulation of mercury on cytochrome P450 (P450) were also assessed. Bath perfusion of a cocktail solution containing forskolin, 1-isobutyl-3-methylxanthine, and 8-bromoadenosine monophosphate enhanced ICl. Addition of 10 microM HgCl2 significantly inhibited the cAMP-activated ICl (p < 0.05, n = 11). Intracellular dialysis with ATP gamma S did not prevent the inhibitory effect of mercury on ICl. In contrast, incubation of SRG cells with 10 microM HgCl2 for 48 hrs markedly increased ICl (p < 0.01, n = 12). Dephosphorylation of the channel by intracellular dialysis with phosphatase I and II abolished the mercury-incubated increase in ICl. The P450-mediated metabolite of arachidonic acid, 11,12-epoxyeicosatrienoic acid (11,12-EET), significantly increased ICl. However, application of 11,12-dihydroxyeicosatrienoic acid (11,12-DHT) did not alter ICl. Mercury incubation for 48 hrs did not alter the protein expression of Cl- channels, but caused an induction of CYP1A1 in cultured SRG cells. In addition, co-incubation of SRG cells with mercury and the P450 inhibitor clotrimazole prevented the mercury-incubated increase in ICl. Our results demonstrate that acute and subchronic application of mercury has opposing effects on ICl in cultured SRG cells. The acute effect of mercury on ICl may result from mercury blockade of Cl- channels. The subchronic effect of mercury on ICl may be due to an induction of P450 CYP1A1 and its mediated metabolites, but not due to an over-expression of Cl- channels.
Collapse
Affiliation(s)
- Qingen Ke
- Stem Cell Research Laboratory, Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Isenring P, Forbush B. Ion transport and ligand binding by the Na-K-Cl cotransporter, structure-function studies. Comp Biochem Physiol A Mol Integr Physiol 2001; 130:487-97. [PMID: 11913460 DOI: 10.1016/s1095-6433(01)00420-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cation-Cl cotransporters (CCCs) mediate the coupled movement of Na and/or K to that of Cl across the plasmalemma of animal cells. Eight CCCs have been identified to date: two Na-K-Cl cotransporters (NKCC), four K-Cl cotransporters (KCCs), one Na-Cl cotransporter (NCC) and one CCC interacting protein (CIP). All of the NKCCs and KCCs are inhibited by loop diuretics; mercury and other modifying agents are also known to block NKCC-mediated transport. In this work, we have utilized a mutational approach to study the interaction between different substrates and the NKCCs. We relied on the strategy of exchanging domains between functionally distinct carriers (the shark NKCCl and the human NKCCl) to identify residues or group of residues that are involved in the interaction with ions, loop diuretics and Hg. Our results show that the N- and C-termini have no role in determining the species differences in ion transport and bumetanide binding. On the other hand, the interaction between Hg and the NKCCs is found to partially involve the C-terminus through residues that contain available sulfhydryl groups. Within the transmembrane segments, variant residues in the 2nd, 4th and 7th predicted alpha-helices are shown to encode the differences in ion transport between the shark and the human cotransporters. For loop diuretic binding, several regions throughout the central domain appear to be involved. Interestingly, these regions are not the same as those involved in cation or anion transport, and in Hg binding.
Collapse
Affiliation(s)
- P Isenring
- Department of Medicine, Faculty of Medicine, Laval University, Québec, Canada.
| | | |
Collapse
|
10
|
Jacoby SC, Gagnon E, Caron L, Chang J, Isenring P. Inhibition of Na(+)-K(+)-2Cl(-) cotransport by mercury. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C684-92. [PMID: 10516098 DOI: 10.1152/ajpcell.1999.277.4.c684] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mercury alters the function of proteins by reacting with cysteinyl sulfhydryl (SH(-)) groups. The inorganic form (Hg(2+)) is toxic to epithelial tissues and interacts with various transport proteins including the Na(+) pump and Cl(-) channels. In this study, we determined whether the Na(+)-K(+)-Cl(-) cotransporter type 1 (NKCC1), a major ion pathway in secretory tissues, is also affected by mercurial substrates. To characterize the interaction, we measured the effect of Hg(2+) on ion transport by the secretory shark and human cotransporters expressed in HEK-293 cells. Our studies show that Hg(2+) inhibits Na(+)-K(+)-Cl(-) cotransport, with inhibitor constant (K(i)) values of 25 microM for the shark carrier (sNKCC1) and 43 microM for the human carrier. In further studies, we took advantage of species differences in Hg(2+) affinity to identify residues involved in the interaction. An analysis of human-shark chimeras and of an sNKCC1 mutant (Cys-697-->Leu) reveals that transmembrane domain 11 plays an essential role in Hg(2+) binding. We also show that modification of additional SH(-) groups by thiol-reacting compounds brings about inhibition and that the binding sites are not exposed on the extracellular face of the membrane.
Collapse
Affiliation(s)
- S C Jacoby
- Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|