1
|
Gijze S, Wasynczuk A, van Leeuwen L, Grobben M, van Gils MJ, Nouta J, Wang W, Dalm VASH, Jolink H, Wuhrer M, Falck D. Simultaneous Protein Quantitation and Glycosylation Profiling of Antigen-Specific Immunoglobulin G1 in Large Clinical Studies. J Proteome Res 2024; 23:5600-5605. [PMID: 39537390 PMCID: PMC11629375 DOI: 10.1021/acs.jproteome.4c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/30/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Antibodies have a key role in the immune system, making their characterization essential to biomedical, biopharmaceutical, and clinical research questions. Antibody effector functions are mainly controlled by quantity, subclass, and Fc glycosylation. We describe an integrated method to measure these three critical dimensions simultaneously. The subclass-specific immunoglobulin G (IgG) Fc glycosylation analysis combines immunosorbance with glycopeptide-centered LC-MS detection. For integrated IgG1-specific quantitation, a commercial, stable isotope labeled IgG1 protein standard was spiked into the immunosorbent eluates. Robust quantitation was achieved, relying on a combination of a proteotypic peptide and the most abundant glycopeptides, generated through proteolytic cleavage from a mixture of natural IgG1 and the recombinant IgG1 standard. Method performance was demonstrated in a large coronavirus vaccination cohort at a throughput of 100 samples/day. LC-MS-derived, anti-SARS-CoV-2 spike protein IgG1 concentrations ranged from 100 to 10000 ng/mL and correlated well with a clinically relevant immunoassay. Technical variation was 200 times lower than biological variation; intermediate precision was 44%. In conclusion, we present a method capable of robustly and simultaneously assessing quantity, subclass, and Fc glycosylation of antigen-specific IgG in large clinical studies. This method will facilitate a broader understanding of immune responses, especially the important interplay among the three dimensions.
Collapse
Affiliation(s)
- Steinar Gijze
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands
| | - Anna Wasynczuk
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands
| | - Leanne van Leeuwen
- Department
of Viroscience, Erasmus University Medical
Center, 3015GD Rotterdam, The Netherlands
| | - Marloes Grobben
- Department
of Medical Microbiology and Infection Prevention, Amsterdam UMC Location AMC University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marit J. van Gils
- Department
of Medical Microbiology and Infection Prevention, Amsterdam UMC Location AMC University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jan Nouta
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands
| | - Wenjun Wang
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands
| | - Virgil ASH Dalm
- Department
of Internal Medicine, Division of Allergy & Clinical Immunology;
Department of Immunology, Erasmus University
Medical Center, 3015GD Rotterdam, The Netherlands
| | - Hetty Jolink
- Department
of Infectious Diseases, Leiden University
Medical Center, 2300 RC Leiden, The Netherlands
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands
| | - David Falck
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
2
|
Angulo J, Ardá A, Bertuzzi S, Canales A, Ereño-Orbea J, Gimeno A, Gomez-Redondo M, Muñoz-García JC, Oquist P, Monaco S, Poveda A, Unione L, Jiménez-Barbero J. NMR investigations of glycan conformation, dynamics, and interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:97-152. [PMID: 39645352 DOI: 10.1016/j.pnmrs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 12/09/2024]
Abstract
Glycans are ubiquitous in nature, decorating our cells and serving as the initial points of contact with any visiting entities. These glycan interactions are fundamental to host-pathogen recognition and are related to various diseases, including inflammation and cancer. Therefore, understanding the conformations and dynamics of glycans, as well as the key features that regulate their interactions with proteins, is crucial for designing new therapeutics. Due to the intrinsic flexibility of glycans, NMR is an essential tool for unravelling these properties. In this review, we describe the key NMR parameters that can be extracted from the different experiments, and which allow us to deduce the necessary geometry and molecular motion information, with a special emphasis on assessing the internal motions of the glycosidic linkages. We specifically address the NMR peculiarities of various natural glycans, from histo-blood group antigens to glycosaminoglycans, and also consider the special characteristics of their synthetic analogues (glycomimetics). Finally, we discuss the application of NMR protocols to study glycan-related molecular recognition events, both from the carbohydrate and receptor perspectives, including the use of stable isotopes and paramagnetic NMR methods to overcome the inherent degeneracy of glycan chemical shifts.
Collapse
Affiliation(s)
- Jesús Angulo
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Ana Ardá
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Sara Bertuzzi
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Angeles Canales
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - June Ereño-Orbea
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ana Gimeno
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Marcos Gomez-Redondo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Juan C Muñoz-García
- Institute for Chemical Research (IIQ), CSIC-University of Seville, 49 Américo Vespucio, 41092 Seville, Spain
| | - Paola Oquist
- Departamento de Química Orgánica, Facultad Ciencias Químicas, Universidad Complutense de Madrid, Avd. Complutense s/n, C.P. 28040 Madrid, Spain
| | - Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR47TJ Norwich, UK
| | - Ana Poveda
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain
| | - Luca Unione
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain; Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain; Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain.
| |
Collapse
|
3
|
Franz AH, Bromley KS, Aung ET, Do SQL, Rosenblatt HM, Watson AJ. NMR Coupling Constants, Karplus Equations, and Adjusted MD Statistics: Detecting Diagnostic Torsion Angles for the Solution Geometry of 6-[α-d-Mannopyranosyl]-d-Mannopyranose (Mannobiose). MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024. [PMID: 39415469 DOI: 10.1002/mrc.5483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/18/2024]
Abstract
The quantitative solution conformations of 2-(hydroxymethyl)-tetrahydropyran, α-methyl-d-mannopyranoside, and 6-[α-d-mannopyranosyl]-d-mannopyranose (mannobiose) are described. Parametrized Karplus equations for redundant spin pairs across the terminal ω-torsion and the glycosidic ω-torsion for mannobiose are developed, including ω/θ-hypersurfaces for the terminal hydroxymethylene group. Experimental NMR data, algorithmic spectral simulation (clustered Hamiltonian method), molecular dynamics (MD) simulations (GLYCAM06), energy minimizations by DFT, and adjusted torsion angle populations weighted over the Karplus-type equations are used. We demonstrate that spectral simulation is a powerful tool in the refinement of initial J values obtained from static GAIO DFT calculations. We also show that only as few as one of multiple redundant torsions can be diagnostic for conformational analysis of the disaccharide.
Collapse
Affiliation(s)
- Andreas H Franz
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Kendall S Bromley
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Ei T Aung
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Stephen Q L Do
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Hana M Rosenblatt
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Amelia J Watson
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| |
Collapse
|
4
|
Subedi GP, Roberts ET, Davis AR, Kremer PG, Amster IJ, Barb AW. A comprehensive assessment of selective amino acid 15N-labeling in human embryonic kidney 293 cells for NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2024; 78:125-132. [PMID: 38407675 PMCID: PMC11178438 DOI: 10.1007/s10858-023-00434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/31/2023] [Indexed: 02/27/2024]
Abstract
A large proportion of human proteins contain post-translational modifications that cannot be synthesized by prokaryotes. Thus, mammalian expression systems are often employed to characterize structure/function relationships using NMR spectroscopy. Here we define the selective isotope labeling of secreted, post-translationally modified proteins using human embryonic kidney (HEK)293 cells. We determined that alpha-[15N]- atoms from 10 amino acids experience minimal metabolic scrambling (C, F, H, K, M, N, R, T, W, Y). Two more interconvert to each other (G, S). Six others experience significant scrambling (A, D, E, I, L, V). We also demonstrate that tuning culture conditions suppressed V and I scrambling. These results define expectations for 15N-labeling in HEK293 cells.
Collapse
Affiliation(s)
- Ganesh P Subedi
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Elijah T Roberts
- Department of Chemistry, University of Georgia, Athens, 30602, GA, USA
| | - Alexander R Davis
- Department of Biochemistry and Molecular Biology, University of Georgia, 120 E. Green St., Athens, GA, 30602, USA
| | - Paul G Kremer
- Department of Biochemistry and Molecular Biology, University of Georgia, 120 E. Green St., Athens, GA, 30602, USA
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, 30602, GA, USA
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA.
- Department of Chemistry, University of Georgia, Athens, 30602, GA, USA.
- Department of Biochemistry and Molecular Biology, University of Georgia, 120 E. Green St., Athens, GA, 30602, USA.
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA.
| |
Collapse
|
5
|
Benavente MCR, Hughes HB, Kremer PG, Subedi GP, Barb AW. Inhibiting N-glycan processing increases the antibody binding affinity and effector function of human natural killer cells. Immunology 2023; 170:202-213. [PMID: 37218360 PMCID: PMC10524233 DOI: 10.1111/imm.13662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Novel approaches are required to improve the efficacy of immunotherapies and increase the proportion of patients who experience a benefit. Antibody-dependent cell-mediated cytotoxicity (ADCC) contributes to the efficacy of many monoclonal antibodies therapies. Natural killer (NK) cells mediate ADCC, though responses are highly variable and depend on prior treatment as well as other factors. Thus, strategies to increase NK cell activity are expected to improve multiple therapies. Both cytokine treatment and NK cell receptor engineering are being explored to increase ADCC. Post-translational modifications, including glycosylation, are widely recognized as mediators of cellular processes but minimally explored as an alternative strategy to increase ADCC. We evaluated the impact of treatment with kifunensine, an inhibitor of asparagine-linked (N-)glycan processing, on ADCC using primary and cultured human NK cells. We also probed affinity using binding assays and CD16a structure with nuclear magnetic resonance spectroscopy. Treating primary human NK cells and cultured YTS-CD16a cells with kifunensine doubled ADCC in a CD16a-dependent manner. Kifunensine treatment also increased the antibody-binding affinity of CD16a on the NK cell surface. Structural interrogation identified a single CD16a region, proximal to the N162 glycan and the antibody-binding interface, perturbed by the N-glycan composition. The observed increase in NK cell activity following kifunensine treatment synergized with afucosylated antibodies, further increasing ADCC by an additional 33%. These results demonstrate native N-glycan processing is an important factor that limits NK cell ADCC. Furthermore, optimal antibody and CD16a glycoforms are defined that provide the greatest ADCC activity.
Collapse
Affiliation(s)
| | - Harrison B. Hughes
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Paul G. Kremer
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Ganesh P. Subedi
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA
| | - Adam W. Barb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA
- Department of Chemistry, University of Georgia, Athens, GA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| |
Collapse
|
6
|
Wang H, Liu YS, Peng Y, Chen W, Dong N, Wu Q, Pan B, Wang B, Guo W. Golgi α-mannosidases regulate cell surface N-glycan type and ectodomain shedding of the transmembrane protease corin. J Biol Chem 2023; 299:105211. [PMID: 37660903 PMCID: PMC10520876 DOI: 10.1016/j.jbc.2023.105211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Corin is a transmembrane protease that activates natriuretic peptides on the cell membrane. Reduced cell surface targeting or increased ectodomain shedding disrupts cell membrane homeostasis of corin, thereby impairing its cell surface expression and enzyme activity. N-glycans are essential in corin ectodomain shedding. Lack of N-glycans promotes corin ectodomain shedding in the juxtamembrane and frizzled-1 domains. The nascent N-glycans, transferred onto the polypeptide of corin, undergo multistep N-glycan processing in the endoplasmic reticulum and Golgi. It remains unclear how trimming by Golgi α-mannosidases, the critical N-glycan processing steps in N-glycan maturation, may regulate corin biosynthesis. In this study, we examined the effects of kifunensine and swainsonine, the inhibitors for α-mannosidases I and II, on corin expression and function. Western analysis of corin proteins in cell lysates and conditioned media from the inhibitor-treated corin-stable HEK293 cells and AC16 cells showed that both α-mannosidases I and II were required to maintain complex N-glycans on cell surface corin and protect corin from ectodomain shedding in the juxtamembrane and frizzled-1 domains. Cell viability analysis revealed that inhibition of α-mannosidase I or II sensitized cardiomyocytes to hydrogen peroxide-induced injury via regulating corin. Moreover, either one of the two coding genes was sufficient to perform Golgi α-mannosidase I trimming of N-glycans on corin. Similarly, this sufficiency was observed in Golgi α-mannosidase II-coding genes. Inhibition of ectodomain shedding restored corin zymogen activation from kifunensine- or swainsonine-induced reduction. Together, our results show the important roles of Golgi α-mannosidases in maintaining cell membrane homeostasis and biological activities of corin.
Collapse
Affiliation(s)
- Hao Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi-Shi Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yingfei Peng
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China; NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China; Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China; Branch of National Clinical Research Center for Laboratory Medicine, Shanghai, China.
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China; Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China; Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China; Branch of National Clinical Research Center for Laboratory Medicine, Shanghai, China.
| |
Collapse
|
7
|
Tolbert WD, Gohain N, Kremer PG, Hederman AP, Nguyen DN, Van V, Sherburn R, Lewis GK, Finzi A, Pollara J, Ackerman ME, Barb AW, Pazgier M. Decoding human-macaque interspecies differences in Fc-effector functions: The structural basis for CD16-dependent effector function in Rhesus macaques. Front Immunol 2022; 13:960411. [PMID: 36131913 PMCID: PMC9484259 DOI: 10.3389/fimmu.2022.960411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Fc mediated effector functions of antibodies play important roles in immunotherapies and vaccine efficacy but assessing those functions in animal models can be challenging due to species differences. Rhesus macaques, Macaca mulatta (Mm) share approximately 93% sequence identity with humans but display important differences in their adaptive immune system that complicates their use in validating therapeutics and vaccines that rely on Fc effector functions. In contrast to humans, macaques only have one low affinity FcγRIII receptor, CD16, which shares a polymorphism at position 158 with human FcγRIIIa with Ile158 and Val158 variants. Here we describe structure-function relationships of the Ile/Val158 polymorphism in Mm FcγRIII. Our data indicate that the affinity of the allelic variants of Mm FcγRIII for the macaque IgG subclasses vary greatly with changes in glycan composition both on the Fc and the receptor. However, unlike the human Phe/Val158 polymorphism in FcγRIIIa, the higher affinity variant corresponds to the larger, more hydrophobic side chain, Ile, even though it is not directly involved in the binding interface. Instead, this side chain appears to modulate glycan-glycan interactions at the Fc/FcγRIII interface. Furthermore, changes in glycan composition on the receptor have a greater effect for the Val158 variant such that with oligomannose type glycans and with glycans only on Asn45 and Asn162, Val158 becomes the variant with higher affinity to Fc. These results have implications not only for the better interpretation of nonhuman primate studies but also for studies performed with human effector cells carrying different FcγRIIIa alleles.
Collapse
Affiliation(s)
- William D. Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Neelakshi Gohain
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Paul G. Kremer
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Andrew P. Hederman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Dung N. Nguyen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Verna Van
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rebekah Sherburn
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - George K. Lewis
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andrés Finzi
- Centre de recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Justin Pollara
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
| | | | - Adam W. Barb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Chemistry, University of Georgia, Athens, GA, United States
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
8
|
Proceedings of workshop: "Neuroglycoproteins in health and disease", INNOGLY cost action. Glycoconj J 2022; 39:579-586. [PMID: 36001187 PMCID: PMC9399589 DOI: 10.1007/s10719-022-10078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022]
Abstract
The Cost Action "Innovation with glycans: new frontiers from synthesis to new biological targets" (INNOGLY) hosted the Workshop "Neuroglycoproteins in health and disease", in Alicante, Spain, on March 2022. This event brought together an european group of scientists that presented novel insights into changes in glycosylation in diseases of the central nervous system and cancer, as well as new techniques to study protein glycosylation. Herein we provide the abstracts of all the presentations.
Collapse
|
9
|
Kremer PG, Barb AW. The weaker-binding Fc γ receptor IIIa F158 allotype retains sensitivity to N-glycan composition and exhibits a destabilized antibody-binding interface. J Biol Chem 2022; 298:102329. [PMID: 35921896 PMCID: PMC9436803 DOI: 10.1016/j.jbc.2022.102329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/27/2022] Open
Abstract
Antibodies engage Fc γ receptors (FcγRs) to elicit healing cellular immune responses following binding to a target antigen. Fc γ receptor IIIa/CD16a triggers natural killer cells to destroy target tissues with cytotoxic proteins and enhances phagocytosis mediated by macrophages. Multiple variables affect CD16a antibody-binding strength and the resulting immune response, including a genetic polymorphism. The predominant CD16a F158 allotype binds antibodies with less affinity than the less common V158 allotype. This polymorphism likewise affects cellular immune responses and clinical efficacy of antibodies relying on CD16a engagement, though it remains unclear how V/F158 affects CD16a structure. Another relevant variable shown to affect affinity is composition of the CD16a asparagine-linked (N)-glycans. It is currently not known how N-glycan composition affects CD16a F158 affinity. Here, we determined N-glycan composition affects the V158 and F158 allotypes similarly, and N-glycan composition does not explain differences in V158 and F158 binding affinity. Our analysis of binding kinetics indicated the N162 glycan slows the binding event, and shortening the N-glycans or removing the N162 glycan increased the speed of binding. F158 displayed a slower binding rate than V158. Surprisingly, we found N-glycan composition had a smaller effect on the dissociation rate. We also identified conformational heterogeneity of CD16a F158 backbone amide and N162 glycan resonances using NMR spectroscopy. Residues exhibiting chemical shift perturbations between V158 and F158 mapped to the antibody-binding interface. These data support a model for CD16a F158 with increased interface conformational heterogeneity, reducing the population of binding-competent forms available and decreasing affinity.
Collapse
|
10
|
Lenza MP, Oyenarte I, Diercks T, Quintana JI, Gimeno A, Coelho H, Diniz A, Peccati F, Delgado S, Bosch A, Valle M, Millet O, Abrescia NGA, Palazón A, Marcelo F, Jiménez‐Osés G, Jiménez‐Barbero J, Ardá A, Ereño‐Orbea J. Structural Characterization of N-Linked Glycans in the Receptor Binding Domain of the SARS-CoV-2 Spike Protein and their Interactions with Human Lectins. Angew Chem Int Ed Engl 2020; 59:23763-23771. [PMID: 32915505 PMCID: PMC7894318 DOI: 10.1002/anie.202011015] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/08/2020] [Indexed: 01/17/2023]
Abstract
The glycan structures of the receptor binding domain of the SARS-CoV2 spike glycoprotein expressed in human HEK293F cells have been studied by using NMR. The different possible interacting epitopes have been deeply analysed and characterized, providing evidence of the presence of glycan structures not found in previous MS-based analyses. The interaction of the RBD 13 C-labelled glycans with different human lectins, which are expressed in different organs and tissues that may be affected during the infection process, has also been evaluated by NMR. In particular, 15 N-labelled galectins (galectins-3, -7 and -8 N-terminal), Siglecs (Siglec-8, Siglec-10), and C-type lectins (DC-SIGN, MGL) have been employed. Complementary experiments from the glycoprotein perspective or from the lectin's point of view have permitted to disentangle the specific interacting epitopes in each case. Based on these findings, 3D models of the interacting complexes have been proposed.
Collapse
Affiliation(s)
- Maria Pia Lenza
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - Iker Oyenarte
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - Tammo Diercks
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - Jon Imanol Quintana
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - Ana Gimeno
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - Helena Coelho
- UCIBIOREQUIMTEDepartamento de QuímicaFaculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516CaparicaPortugal
| | - Ana Diniz
- UCIBIOREQUIMTEDepartamento de QuímicaFaculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516CaparicaPortugal
| | - Francesca Peccati
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - Sandra Delgado
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - Alexandre Bosch
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - Mikel Valle
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - Oscar Millet
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - Nicola G. A. Abrescia
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
- Ikerbasque, Basque Foundation for Science48013BilbaoSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Instituto de Salud Carlos IIIMadridSpain
| | - Asís Palazón
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
- Ikerbasque, Basque Foundation for Science48013BilbaoSpain
| | - Filipa Marcelo
- UCIBIOREQUIMTEDepartamento de QuímicaFaculdade de Ciências e TecnologiaUniversidade NOVA de Lisboa2829-516CaparicaPortugal
| | - Gonzalo Jiménez‐Osés
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - Jesús Jiménez‐Barbero
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
- Ikerbasque, Basque Foundation for Science48013BilbaoSpain
- Department of Organic Chemistry IIUniversity of the Basque CountryUPV/EHU48940LeioaSpain
| | - Ana Ardá
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
| | - June Ereño‐Orbea
- CIC bioGUNEBasque Research and Technology AllianceBRTABizkaia Technology Park48162DerioSpain
- Ikerbasque, Basque Foundation for Science48013BilbaoSpain
| |
Collapse
|
11
|
Jonker HRA, Saxena K, Shcherbakova A, Tiemann B, Bakker H, Schwalbe H. NMR Spectroscopic Characterization of the C-Mannose Conformation in a Thrombospondin Repeat Using a Selective Labeling Approach. Angew Chem Int Ed Engl 2020; 59:20659-20665. [PMID: 32745319 PMCID: PMC7692951 DOI: 10.1002/anie.202009489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 12/24/2022]
Abstract
Despite the great interest in glycoproteins, structural information reporting on conformation and dynamics of the sugar moieties are limited. We present a new biochemical method to express proteins with glycans that are selectively labeled with NMR-active nuclei. We report on the incorporation of 13 C-labeled mannose in the C-mannosylated UNC-5 thrombospondin repeat. The conformational landscape of the C-mannose sugar puckers attached to tryptophan residues of UNC-5 is characterized by interconversion between the canonical 1 C4 state and the B03 / 1 S3 state. This flexibility may be essential for protein folding and stabilization. We foresee that this versatile tool to produce proteins with selectively labeled C-mannose can be applied and adjusted to other systems and modifications and potentially paves a way to advance glycoprotein research by unravelling the dynamical and conformational properties of glycan structures and their interactions.
Collapse
Affiliation(s)
- Hendrik R. A. Jonker
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| | - Aleksandra Shcherbakova
- Institute of Clinical BiochemistryHannover Medical SchoolCarl-Neuberg-Strasse 130625HannoverGermany
| | - Birgit Tiemann
- Institute of Clinical BiochemistryHannover Medical SchoolCarl-Neuberg-Strasse 130625HannoverGermany
| | - Hans Bakker
- Institute of Clinical BiochemistryHannover Medical SchoolCarl-Neuberg-Strasse 130625HannoverGermany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Strasse 760438Frankfurt am MainGermany
| |
Collapse
|
12
|
Unione L, Ardá A, Jiménez-Barbero J, Millet O. NMR of glycoproteins: profiling, structure, conformation and interactions. Curr Opin Struct Biol 2020; 68:9-17. [PMID: 33129067 DOI: 10.1016/j.sbi.2020.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
In glycoproteins, carbohydrates are responsible for the selective interaction and tight regulation of cellular processes, constituting the main information transducer interface in protein-glycoprotein interactions. Increasing experimental and computational evidence suggest that such interactions often induce allosteric changes in the host protein, underlining the importance of studying intact glycoproteins. Technical issues have precluded such studies for years but, nowadays, a promising era is emerging where NMR spectroscopy, among other techniques, allows the characterization of the composition, structure and segmental dynamics of glycoproteins. In this review, we discuss such advances and highlight some selected examples. This novel technology unravels multiple new functional mechanisms, subtly hidden within the sugar code.
Collapse
Affiliation(s)
- Luca Unione
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Ana Ardá
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain
| | - Jesús Jiménez-Barbero
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Bizkaia, Spain
| | - Oscar Millet
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain.
| |
Collapse
|
13
|
Gimeno A, Valverde P, Ardá A, Jiménez-Barbero J. Glycan structures and their interactions with proteins. A NMR view. Curr Opin Struct Biol 2019; 62:22-30. [PMID: 31835069 PMCID: PMC7322516 DOI: 10.1016/j.sbi.2019.11.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/28/2022]
Abstract
Carbohydrate molecules are essential actors in key biological events, being involved as recognition points for cell-cell and cell-matrix interactions related to health and disease. Despite outstanding advances in cryoEM, X-ray crystallography and NMR still remain the most employed techniques to unravel their conformational features and to describe the structural details of their interactions with biomolecular receptors. Given the intrinsic flexibility of saccharides, NMR methods are of paramount importance to deduce the extent of motion around their glycosidic linkages and to explore their receptor-bound conformations. We herein present our particular view on the latest advances in NMR methodologies that are permitting to magnify their applications for deducing glycan conformation and dynamics and understanding the recognition events in which there are involved.
Collapse
Affiliation(s)
- Ana Gimeno
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain
| | - Pablo Valverde
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain
| | - Ana Ardá
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Bizkaia, Spain; Department of Organic Chemistry II, University of the Basque Country, UPV/EHU, 48940 Leioa, Bizkaia, Spain
| |
Collapse
|
14
|
Valverde P, Ardá A, Reichardt NC, Jiménez-Barbero J, Gimeno A. Glycans in drug discovery. MEDCHEMCOMM 2019; 10:1678-1691. [PMID: 31814952 PMCID: PMC6839814 DOI: 10.1039/c9md00292h] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Glycans are key players in many biological processes. They are essential for protein folding and stability and act as recognition elements in cell-cell and cell-matrix interactions. Thus, being at the heart of medically relevant biological processes, glycans have come onto the scene and are considered hot spots for biomedical intervention. The progress in biophysical techniques allowing access to an increasing molecular and structural understanding of these processes has led to the development of effective therapeutics. Indeed, strategies aimed at designing glycomimetics able to block specific lectin-carbohydrate interactions, carbohydrate-based vaccines mimicking self- and non-self-antigens as well as the exploitation of the therapeutic potential of glycosylated antibodies are being pursued. In this mini-review the most prominent contributions concerning recurrent diseases are highlighted, including bacterial and viral infections, cancer or immune-related pathologies, which certainly show the great promise of carbohydrates in drug discovery.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| | - Ana Ardá
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| | | | - Jesús Jiménez-Barbero
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
- Ikerbasque , Basque Foundation for Science , 48013 Bilbao , Bizkaia , Spain
- Department of Organic Chemistry II , University of the Basque Country , UPV/EHU , 48940 Leioa , Bizkaia , Spain
| | - Ana Gimeno
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| |
Collapse
|
15
|
Valverde P, Quintana JI, Santos JI, Ardá A, Jiménez-Barbero J. Novel NMR Avenues to Explore the Conformation and Interactions of Glycans. ACS OMEGA 2019; 4:13618-13630. [PMID: 31497679 PMCID: PMC6714940 DOI: 10.1021/acsomega.9b01901] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/02/2019] [Indexed: 05/12/2023]
Abstract
This perspective article is focused on the presentation of the latest advances in NMR methods and applications that are behind the exciting achievements in the understanding of glycan receptors in molecular recognition events. Different NMR-based methodologies are discussed along with their applications to scrutinize the conformation and dynamics of glycans as well as their interactions with protein receptors.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC
bioGUNE, Bizkaia Technology
Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - Jon I. Quintana
- CIC
bioGUNE, Bizkaia Technology
Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - Jose I. Santos
- SGIker
UPV/EHU, Centro Joxe Mari Korta, Tolosa Hiribidea 72, 20018 Donostia, Spain
| | - Ana Ardá
- CIC
bioGUNE, Bizkaia Technology
Park, Building 800, 48160 Derio, Bizkaia, Spain
- E-mail: (A.A.)
| | - Jesús Jiménez-Barbero
- CIC
bioGUNE, Bizkaia Technology
Park, Building 800, 48160 Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
- Department
Organic Chemistry II, Faculty Science &
Technology, EHU-UPV, 48940 Leioa, Bizkaia, Spain
- E-mail: (J.J.-B.)
| |
Collapse
|