1
|
Nunan E, Wright CL, Semola OA, Subramanian M, Balasubramanian P, Lovern PC, Fancher IS, Butcher JT. Obesity as a premature aging phenotype - implications for sarcopenic obesity. GeroScience 2022; 44:1393-1405. [PMID: 35471692 PMCID: PMC9213608 DOI: 10.1007/s11357-022-00567-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/10/2022] [Indexed: 12/15/2022] Open
Abstract
Obesity and aging have both seen dramatic increases in prevalence throughout society. This review seeks to highlight common pathologies that present with obesity, along with the underlying risk factors, that have remarkable similarity to what is observed in the aged. These include skeletal muscle dysfunction (loss of quantity and quality), significant increases in adiposity, systemic alterations to autonomic dysfunction, reduction in nitric oxide bioavailability, increases in oxidant stress and inflammation, dysregulation of glucose homeostasis, and mitochondrial dysfunction. This review is organized by the aforementioned indices and succinctly highlights literature that demonstrates similarities between the aged and obese phenotypes in both human and animal models. As aging is an inevitability and obesity prevalence is unlikely to significantly decrease in the near future, these two phenotypes will ultimately combine as a multidimensional syndrome (a pathology termed sarcopenic obesity). Whether the pre-mature aging indices accompanying obesity are additive or synergistic upon entering aging is not yet well defined, but the goal of this review is to illustrate the potential consequences of a double aged phenotype in sarcopenic obesity. Clinically, the modifiable risk factors could be targeted specifically in obesity to allow for increased health span in the aged and sarcopenic obese populations.
Collapse
Affiliation(s)
- Emily Nunan
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Carson L Wright
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Oluwayemisi A Semola
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Madhan Subramanian
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Priya Balasubramanian
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Pamela C Lovern
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Ibra S Fancher
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - Joshua T Butcher
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA.
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
2
|
Barcena ML, Aslam M, Pozdniakova S, Norman K, Ladilov Y. Cardiovascular Inflammaging: Mechanisms and Translational Aspects. Cells 2022; 11:cells11061010. [PMID: 35326461 PMCID: PMC8946971 DOI: 10.3390/cells11061010] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/07/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Aging is one of the major non-reversible risk factors for several chronic diseases, including cancer, type 2 diabetes, dementia, and cardiovascular diseases (CVD), and it is a key cause of multimorbidity, disability, and frailty (decreased physical activity, fatigue, and weight loss). The underlying cellular mechanisms are complex and consist of multifactorial processes, such as telomere shortening, chronic low-grade inflammation, oxidative stress, mitochondrial dysfunction, accumulation of senescent cells, and reduced autophagy. In this review, we focused on the molecular mechanisms and translational aspects of cardiovascular aging-related inflammation, i.e., inflammaging.
Collapse
Affiliation(s)
- Maria Luisa Barcena
- Department of Geriatrics and Medical Gerontology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (S.P.); (K.N.); (Y.L.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-525-359
| | - Muhammad Aslam
- Experimental Cardiology, Department of Internal Medicine I, Justus Liebig University, Aulweg 129, 35392 Giessen, Germany;
- Department of Cardiology, Kerckhoff Clinic GmbH, 61231 Bad Nauheim, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Rhein-Main, 61231 Bad Nauheim, Germany
| | - Sofya Pozdniakova
- Department of Geriatrics and Medical Gerontology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (S.P.); (K.N.); (Y.L.)
- Barcelona Biomedical Research Park (PRBB), Barcelona Institute for Global Health (ISGlobal), Doctor Aiguader, 88, 08003 Barcelona, Spain
| | - Kristina Norman
- Department of Geriatrics and Medical Gerontology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (S.P.); (K.N.); (Y.L.)
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- Department of Nutrition & Gerontology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Yury Ladilov
- Department of Geriatrics and Medical Gerontology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany; (S.P.); (K.N.); (Y.L.)
- Department of Cardiovascular Surgery, Heart Center Brandenburg, Brandenburg Medical School Theodor Fontane, University Hospital, Ladeburger Str. 17, 16321 Bernau, Germany
| |
Collapse
|
3
|
Fagiani F, Vlachou M, Di Marino D, Canobbio I, Romagnoli A, Racchi M, Govoni S, Lanni C. Pin1 as Molecular Switch in Vascular Endothelium: Notes on Its Putative Role in Age-Associated Vascular Diseases. Cells 2021; 10:cells10123287. [PMID: 34943794 PMCID: PMC8699654 DOI: 10.3390/cells10123287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 01/04/2023] Open
Abstract
By controlling the change of the backbones of several cellular substrates, the peptidyl-prolyl cis-trans isomerase Pin1 acts as key fine-tuner and amplifier of multiple signaling pathways, thereby inducing several biological consequences, both in physiological and pathological conditions. Data from the literature indicate a prominent role of Pin1 in the regulating of vascular homeostasis. In this review, we will critically dissect Pin1’s role as conformational switch regulating the homeostasis of vascular endothelium, by specifically modulating nitric oxide (NO) bioavailability. In this regard, Pin1 has been reported to directly control NO production by interacting with bovine endothelial nitric oxide synthase (eNOS) at Ser116-Pro117 (human equivalent is Ser114-Pro115) in a phosphorylation-dependent manner, regulating its catalytic activity, as well as by regulating other intracellular players, such as VEGF and TGF-β, thereby impinging upon NO release. Furthermore, since Pin1 has been found to act as a critical driver of vascular cell proliferation, apoptosis, and inflammation, with implication in many vascular diseases (e.g., diabetes, atherosclerosis, hypertension, and cardiac hypertrophy), evidence indicating that Pin1 may serve a pivotal role in vascular endothelium will be discussed. Understanding the role of Pin1 in vascular homeostasis is crucial in terms of finding a new possible therapeutic player and target in vascular pathologies, including those affecting the elderly (such as small and large vessel diseases and vascular dementia) or those promoting the full expression of neurodegenerative dementing diseases.
Collapse
Affiliation(s)
- Francesca Fagiani
- Pharmacology Section, Department of Drug Sciences, University of Pavia, V.le Taramelli 14, 27100 Pavia, Italy; (F.F.); (M.V.); (M.R.); (C.L.)
| | - Marieva Vlachou
- Pharmacology Section, Department of Drug Sciences, University of Pavia, V.le Taramelli 14, 27100 Pavia, Italy; (F.F.); (M.V.); (M.R.); (C.L.)
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (D.D.M.); (A.R.)
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, V.le Taramelli 14, 27100 Pavia, Italy;
| | - Alice Romagnoli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (D.D.M.); (A.R.)
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Marco Racchi
- Pharmacology Section, Department of Drug Sciences, University of Pavia, V.le Taramelli 14, 27100 Pavia, Italy; (F.F.); (M.V.); (M.R.); (C.L.)
| | - Stefano Govoni
- Pharmacology Section, Department of Drug Sciences, University of Pavia, V.le Taramelli 14, 27100 Pavia, Italy; (F.F.); (M.V.); (M.R.); (C.L.)
- Correspondence:
| | - Cristina Lanni
- Pharmacology Section, Department of Drug Sciences, University of Pavia, V.le Taramelli 14, 27100 Pavia, Italy; (F.F.); (M.V.); (M.R.); (C.L.)
| |
Collapse
|
4
|
Protective Effects of Curcumin on Endothelium: An Updated Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34331686 DOI: 10.1007/978-3-030-56153-6_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Endothelial dysfunction is the common early stage of most cardiovascular afflictions. The endothelium is considered the main mediator of vascular homeostasis via its vasodilator, anti-inflammatory and anticoagulant properties. Among the different endothelial-derived mediators, nitric oxide is produced by nitric oxide synthase and has a critical role in regulating endothelial function. Physiological and pathological processes such as aging and diabetes mellitus are associated with disturbances of endothelial function which, at least at the earliest stage, can be reversed by lifestyle and pharmacological intervention to reduce the risk of incident cardiovascular diseases. Among dietary strategies, curcumin is a cheap and safe nutraceutical polyphenol with proven antioxidant and anti-inflammatory properties. Given the important role of such processes in the development of endothelium dysfunction, a role for curcumin in the prevention or treatment of this condition has been hypothesized. This review summarizes the available literature on the beneficial role of curcumin on vascular endothelial function.
Collapse
|
5
|
Abstract
Endothelial dysfunction (ED) plays a substantial role in the pathogenesis of atherosclerosis and some other vascular diseases. ED has been demonstrated in patients with hypercholesterolemia, diabetes, smoking, hypertension, and in patients with atherosclerotic disease. Besides classical risk factors, ED is affected by chronic inflammatory diseases and acute infections, particularly viral diseases. Causes of ED include oxidative stress, inflammation, and shear stress, which decrease the bioavailability of nitric oxide. Markers of ED have been sought, particularly circulating markers. Using these tests, it is possible to evaluate the response to harmful effects of risk factors and the effects of treatment on vessel wall function. Endothelial dysfunction is significantly and directly correlated with the occurrence of cardiac events and the risk of cardiac events increase as ED worsens. Because endothelial function plays a central role in atherogenesis it became a therapeutic target. Endothelial dysfunction is reversible and its improvement may be achieved by elimination of risk factors, inhibitors of endothelium-derived contracting factors (angiotensin-converting enzyme), smoking cessation, lipid-lowering drugs, diet, and physical exercise. By reversing ED, it is possible to restore vascular function.
Collapse
Affiliation(s)
- Pavel Poredos
- Department of Vascular Disease, 37663University Medical Centre Ljubljana, Slovenia.,Department of Advanced Cardiopulmonary Therapies and Transplantation, 7067The University of Texas Health Science Centre at Houston, TX, USA
| | | | - Igor Gregoric
- Department of Advanced Cardiopulmonary Therapies and Transplantation, 7067The University of Texas Health Science Centre at Houston, TX, USA
| |
Collapse
|
6
|
Luttrell M, Kim H, Shin SY, Holly D, Massett MP, Woodman CR. Heterogeneous effect of aging on vasorelaxation responses in large and small arteries. Physiol Rep 2020; 8:e14341. [PMID: 31960593 PMCID: PMC6971410 DOI: 10.14814/phy2.14341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aging is associated with impaired vascular function characterized in part by attenuated vasorelaxation to acetylcholine (ACh) and sodium nitroprusside (SNP). Due to structural and functional differences between conduit and resistance arteries, the effect of aging on vasorelaxation responses may vary along the arterial tree. Our purpose was to determine age-related differences in vasorelaxation responses in large and small arteries. Responses to the endothelium-dependent vasodilator acetylcholine (ACh) and the endothelium-independent vasodilator sodium nitroprusside (SNP) were assessed in abdominal aorta (AA), iliac arteries (IA), femoral arteries (FA), and gastrocnemius feed arteries (GFA) from young and old male rats. ACh-mediated vasorelaxation was significantly impaired in old AA and IA. SNP-mediated vasorelaxation was impaired in old AA. To investigate a potential mechanism for impaired relaxation responses in AA and IA, we assessed eNOS protein content and interactions with caveolin-1 (Cav-1), and calmodulin (CaM) via immunoprecipitation and immunoblot analysis. We found no age differences in eNOS content or interactions with Cav1 and CaM. Combined data from all rats revealed that eNOS content was higher in IA compared to AA and FA (p < .001), and was higher in GFA than AA (p < .05). Cav1:eNOS interaction was greater in FA than in AA and IA (p < .01), and in GFA compared to IA (p < .05). No differences in CaM:eNOS were detected. In conclusion, age-related impairment of vasorelaxation responses occurred in the large conduit, but not small conduit or resistance arteries. These detrimental effects of age were not associated with changes in eNOS or its interactions with Cav-1 or CaM.
Collapse
Affiliation(s)
- Meredith Luttrell
- Department of Health & KinesiologyTexas A&M UniversityCollege StationTexas
| | - Hyoseon Kim
- Department of Health & KinesiologyTexas A&M UniversityCollege StationTexas
- Present address:
Department of Kinesiology and Sport ManagementTexas Tech UniversityLubbockTexas
| | - Song Yi Shin
- Department of Health & KinesiologyTexas A&M UniversityCollege StationTexas
| | - Dylan Holly
- Department of Health & KinesiologyTexas A&M UniversityCollege StationTexas
| | - Michael P. Massett
- Department of Health & KinesiologyTexas A&M UniversityCollege StationTexas
- Present address:
Department of Kinesiology and Sport ManagementTexas Tech UniversityLubbockTexas
| | - Christopher R. Woodman
- Department of Health & KinesiologyTexas A&M UniversityCollege StationTexas
- Department of Veterinary Physiology & PharmacologyTexas A&M UniversityCollege StationTexas
| |
Collapse
|
7
|
Woodman CR, Seawright JW, Luttrell MJ, Shin SY, Trache A. Importance of mechanical signals in promoting exercise-induced improvements in vasomotor function of aged skeletal muscle resistance arteries. Am J Physiol Heart Circ Physiol 2018; 315:H602-H609. [PMID: 29906226 DOI: 10.1152/ajpheart.00732.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Current research indicates that vasomotor responses are altered with aging in skeletal muscle resistance arteries. The changes in vasomotor function are characterized by impaired vasodilator and vasoconstrictor responses. The detrimental effects of aging on vasomotor function are attenuated in some vascular beds after a program of endurance exercise training. The signals associated with exercise responsible for inducing improvements in vasomotor function have been proposed to involve short-duration increases in intraluminal shear stress and/or pressure during individual bouts of exercise. Here, we review evidence that increases in shear stress and pressure, within a range believed to present in these arteries during exercise, promote healthy vasomotor function in aged resistance arteries. We conclude that available research is consistent with the interpretation that short-duration mechanical stimulation, through increases in shear stress and pressure, contributes to the beneficial effects of exercise on vasomotor function in aged skeletal muscle resistance arteries.
Collapse
Affiliation(s)
- Christopher R Woodman
- Department of Health and Kinesiology, Texas A&M University , College Station, Texas.,Department of Veterinary Physiology and Pharmacology, Texas A&M University , College Station, Texas
| | - John W Seawright
- Department of Health and Kinesiology, Texas A&M University , College Station, Texas
| | | | - Song Yi Shin
- Department of Health and Kinesiology, Texas A&M University , College Station, Texas
| | - Andreea Trache
- Department of Medical Physiology, Texas A&M University , College Station, Texas.,Department of Biomedical Engineering, Texas A&M University , College Station, Texas
| |
Collapse
|
8
|
Han S, Aydin MM, Akansel S, Usanmaz SE, Akçali C, Uludağ MO, Demirel Yilmaz E. Age- and sex-dependent alteration of functions and epigenetic modifications of vessel and endothelium related biomarkers. Turk J Biol 2018; 42:286-296. [PMID: 30814892 DOI: 10.3906/biy-1803-59] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Aging is a main risk factor for development of cardiovascular diseases associated with the impairment of endothelial function in both sexes. In the present study, age-related changes in vascular responsiveness, epigenetic modifications of vessel wall, and blood biomarkers related to endothelial functions were examined in an age- and sex-dependent manner. Acetylcholine (ACh)-induced relaxations of the aorta were decreased in 3-, 6-, and 12-month-old rats compared to those in 1-month-old female rats. In males, maximum relaxations related to ACh were higher in 1- and 6-month-old rats than in 3- and 12-month-old rats. Plasma levels of nitric oxide (NO) and asymmetric dimethylarginine (ADMA) decreased with age in female rats, and total antioxidant capacity (TAC) and hydrogen sulfide (H 2S) levels displayed biphasic alterations. In male rats, plasma levels of NO, TAC, and ADMA decreased with age, and H2S levels increased. Aging also caused a sex-dependent alteration in epigenetic modification of vessels. Expressions of H3K27me2, H3K27me3, H3K36me2, and H3K36me3 were much higher in vessels of 12-month-old female rats compared to those in younger age groups. These results indicate that vascular functions, epigenetic modifications of vessels, and plasma levels of endothelium-related biomarkers are affected by age and sex. These findings could be important for the assessment of vascular status over the course of the life span.
Collapse
Affiliation(s)
- Sevtap Han
- Department of Pharmacology, Faculty of Pharmacy, Gazi University , Ankara , Turkey
| | - Muammer Merve Aydin
- Department of Biophysics, Faculty of Medicine, Ankara University , Ankara , Turkey
| | - Serdar Akansel
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University , Turkey
| | - Suzan Emel Usanmaz
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University , Turkey
| | - Can Akçali
- Department of Biophysics, Faculty of Medicine, Ankara University , Ankara , Turkey
| | - Mecit Orhan Uludağ
- Department of Pharmacology, Faculty of Pharmacy, Gazi University , Ankara , Turkey
| | - Emine Demirel Yilmaz
- Department of Medical Pharmacology, Faculty of Medicine, Ankara University , Turkey
| |
Collapse
|
9
|
The cytoskeleton in ‘couch potato-ism’: Insights from a murine model of impaired actin dynamics. Exp Neurol 2018; 306:34-44. [DOI: 10.1016/j.expneurol.2018.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 03/19/2018] [Accepted: 04/06/2018] [Indexed: 01/22/2023]
|
10
|
Han S, Bal NB, Sadi G, Usanmaz SE, Uludag MO, Demirel-Yilmaz E. The effects of resveratrol and exercise on age and gender-dependent alterations of vascular functions and biomarkers. Exp Gerontol 2018; 110:191-201. [PMID: 29908346 DOI: 10.1016/j.exger.2018.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/25/2018] [Accepted: 06/11/2018] [Indexed: 01/18/2023]
Abstract
The purpose of this study was to determine the effects of resveratrol and regular aerobic exercise on vascular functions and biomarkers related to vessel responsiveness in an age and gender-dependent manner. The study used young (3 months) and old (12 months) male and female Wistar albino rats. Resveratrol was given in the drinking water (0.05 mg/ml; approximately 7.5 mg/kg) for 6 weeks. In the exercise group, all rats performed treadmill running at 20 m/min on a 0° incline, 40 min/day, 3 times a week, for 6 weeks. Acetylcholine-induced, endothelium-dependent and sodium nitroprusside-mediated, endothelium-independent relaxations of rat thoracic aorta and blood levels of biomarkers were separately changed by resveratrol intake and exercise-training in an age and gender-dependent manner. Antioxidant enzymes and eNOS expressions in vessels were elevated by resveratrol and exercise. Resveratrol and exercise enhanced gene expressions of non-selective PDE1, 2, 3 and cAMP selective PDE4 but not cGMP selective PDE5 in the aorta. In addition, the aortic mRNA expression of inflammation markers were altered by resveratrol and exercise-training. The results of the study demonstrated that vessel responsiveness and biomarkers related to vascular functions were altered by resveratrol consumption and exercise-training in an age and gender-dependent manner.
Collapse
Affiliation(s)
- Sevtap Han
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey.
| | - Nur Banu Bal
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey
| | - Gökhan Sadi
- Karamanoglu Mehmed Bey University, Faculty of Arts and Sciences, Department of Biological Sciences, Turkey
| | - Suzan E Usanmaz
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Sihhiye, 06100 Ankara, Turkey
| | - M Orhan Uludag
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey
| | - Emine Demirel-Yilmaz
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Sihhiye, 06100 Ankara, Turkey
| |
Collapse
|
11
|
Sörensen BM, Houben AJHM, Berendschot TTJM, Schouten JSAG, Kroon AA, van der Kallen CJH, Henry RMA, Koster A, Dagnelie PC, Schaper NC, Schram MT, Stehouwer CDA. Cardiovascular risk factors as determinants of retinal and skin microvascular function: The Maastricht Study. PLoS One 2017; 12:e0187324. [PMID: 29077770 PMCID: PMC5659678 DOI: 10.1371/journal.pone.0187324] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022] Open
Abstract
Objective Microvascular dysfunction is an important underlying mechanism of microvascular diseases. Determinants (age, sex, hypertension, dyslipidemia, hyperglycemia, obesity, and smoking) of macrovascular diseases affect large-artery endothelial function. These risk factors also associate with microvascular diseases. We hypothesized that they are also determinants of microvascular (endothelial) function. Methods In The Maastricht Study, a type 2 diabetes-enriched population-based cohort study (n = 1991, 51% men, aged 59.7±8.2 years), we determined microvascular function as flicker light-induced retinal arteriolar %-dilation and heat-induced skin %-hyperemia. Multiple linear regression analyses were used to assess the associations of cardiovascular risk factors (age, sex, waist circumference, total-to-high-density lipoprotein (HDL) cholesterol ratio, fasting plasma glucose (FPG), 24-h systolic blood pressure, and cigarette smoking) with retinal and skin microvascular function. Results In multivariate analyses, age and FPG were inversely associated with retinal and skin microvascular function (regression coefficients per standard deviation (SD) were -0.11SD (95%CI: -0.15;-0.06) and -0.12SD (-0.17;-0.07) for retinal arteriolar %-dilation and -0.10SD (-0.16;-0.05) and -0.11SD (-0.17;-0.06) for skin %-hyperemia, respectively. Men and current smokers had -0.43SD (-0.58;-0.27) and -0.32SD (-0.49;-0.15) lower skin %-hyperemia, respectively. 24-h systolic blood pressure, waist circumference, and total-to-HDL cholesterol ratio were not statistically significantly associated with these microvascular functions. Conclusions Associations between cardiovascular risk factors and retinal and skin microvascular function show a pattern that is partly similar to the associations between cardiovascular risk factors and macrovascular function. Impairment of microvascular function may constitute a pathway through which an adverse cardiovascular risk factor pattern may increase risk of diseases that are partly or wholly of microvascular origin.
Collapse
Affiliation(s)
- Ben M. Sörensen
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Alfons J. H. M. Houben
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Tos T. J. M. Berendschot
- University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Jan S. A. G. Schouten
- University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Abraham A. Kroon
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Carla J. H. van der Kallen
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Ronald M. A. Henry
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
- Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Annemarie Koster
- CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
- Department of Social Medicine, Maastricht University, Maastricht, the Netherlands
| | - Pieter C. Dagnelie
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
- Department of Epidemiology, Maastricht University, Maastricht, the Netherlands
| | - Nicolaas C. Schaper
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
- CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Miranda T. Schram
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
- Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Coen D. A. Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
- * E-mail:
| |
Collapse
|
12
|
Ghasemi A, Jeddi S. Anti-obesity and anti-diabetic effects of nitrate and nitrite. Nitric Oxide 2017; 70:9-24. [PMID: 28804022 DOI: 10.1016/j.niox.2017.08.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/02/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023]
Abstract
Prevalence of obesity is increasing worldwide and type 2 diabetes to date is the most devastating complication of obesity. Decreased nitric oxide bioavailability is a feature of obesity and diabetes that links these two pathologies. Nitric oxide is synthesized both by nitric oxide synthase enzymes from l-arginine and nitric oxide synthase-independent from nitrate/nitrite. Nitric oxide production from nitrate/nitrite could potentially be used for nutrition-based therapy in obesity and diabetes. Nitric oxide deficiency also contributes to pathogeneses of cardiovascular disease and hypertension, which are associated with obesity and diabetes. This review summarizes pathways for nitric oxide production and focuses on the anti-diabetic and anti-obesity effects of the nitrate-nitrite-nitric oxide pathway. In addition to increasing nitric oxide production, nitrate and nitrite reduce oxidative stress, increase adipose tissue browning, have favorable effects on nitric oxide synthase expression, and increase insulin secretion, all effects that are potentially promising for management of obesity and diabetes. Based on current data, it could be suggested that amplifying the nitrate-nitrite-nitric oxide pathway is a diet-based strategy for increasing nitric oxide bioavailability and the management of these two interlinked conditions. Adding nitrate/nitrite to drugs that are currently used for managing diabetes (e.g. metformin) and possibly anti-obesity drugs may also enhance their efficacy.
Collapse
Affiliation(s)
- Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
The Nutraceutical Dehydrozingerone and Its Dimer Counteract Inflammation- and Oxidative Stress-Induced Dysfunction of In Vitro Cultured Human Endothelial Cells: A Novel Perspective for the Prevention and Therapy of Atherosclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1246485. [PMID: 28050226 PMCID: PMC5165227 DOI: 10.1155/2016/1246485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/19/2016] [Indexed: 12/18/2022]
Abstract
Atherosclerosis is characterized by endothelial dysfunction, mainly induced by inflammation and oxidative stress. Increased reactive oxygen species (ROS) production together with increased adhesion molecules and thrombogenic tissue factor (TF) expression on endothelial cells has a key role in proatherogenic mechanisms. Therefore downmodulation of these molecules could be useful for reducing the severity of inflammation and atherosclerosis progression. Dehydrozingerone (DHZ) is a nutraceutical compound with anti-inflammatory and antioxidant activities. In this study we evaluated the ability of DHZ and its symmetric dimer to modulate hydrogen peroxide- (H2O2-) induced ROS production in human umbilical vein endothelial cells (HUVEC). We also evaluated intercellular adhesion molecule- (ICAM-) 1, vascular cell adhesion molecule- (VCAM-) 1, and TF expression in HUVEC activated by tumor necrosis factor- (TNF-) α. HUVEC pretreatment with DHZ and DHZ dimer reduced H2O2-induced ROS production and inhibited adhesion molecule expression and secretion. Of note, only DHZ dimer was able to reduce TF expression. DHZ effects were in part mediated by the inhibition of the nuclear factor- (NF-) κB activation. Overall, our findings demonstrate that the DHZ dimer exerts a potent anti-inflammatory, antioxidant, and antithrombotic activity on endothelial cells and suggest potential usefulness of this compound to contrast the pathogenic mechanisms involved in atherosclerosis progression.
Collapse
|
14
|
Tomé-Carneiro J, Visioli F. Polyphenol-based nutraceuticals for the prevention and treatment of cardiovascular disease: Review of human evidence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1145-1174. [PMID: 26776959 DOI: 10.1016/j.phymed.2015.10.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND In addition to prescription drugs, nutraceuticals/functional foods/medical foods are being increasingly added as adjunct treatment of cardiovascular disease (CVD), even though most of them have been exclusively studied in vitro. HYPOTHESIS/PURPOSE We review the available evidence (focusing on when the amount of polyphenols' intake was measured) coming from randomized controlled trials (RCTs) of (poly)phenol-based supplements. CONCLUSION We conclude that (poly)phenol-based nutraceuticals and functional foods might be indeed used as adjunct therapy of CVD, but additional long-term RCTs with adequate numerosity and with clinically relevant end points are needed to provide unequivocal evidence of their clinical usefulness.
Collapse
Affiliation(s)
- Joao Tomé-Carneiro
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA) - Food, CEI UAM+CSIC, Madrid, Spain
| | - Francesco Visioli
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA) - Food, CEI UAM+CSIC, Madrid, Spain; Department of Molecular Medicine, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy .
| |
Collapse
|
15
|
Affiliation(s)
- Elena Bernardini
- Biblioteca del Polo centrale di Medicina e Chirurgia; Università degli studi di Milano; Milan Italy
| | - Francesco Visioli
- Department of Molecular Medicine; University of Padova; Padova Italy
- IMDEA-Food; CEI UAM + CSIC; Madrid Spain
| |
Collapse
|
16
|
Gocmez SS, Scarpace PJ, Whidden MA, Erdos B, Kirichenko N, Sakarya Y, Utkan T, Tumer N. Age Impaired endothelium-dependent vasodilation is improved by resveratrol in rat mesenteric arteries. J Exerc Nutrition Biochem 2016; 20:41-8. [PMID: 27298812 PMCID: PMC4899900 DOI: 10.20463/jenb.2016.03.20.1.2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 11/22/2022] Open
Abstract
[Purpose] To determine whether resveratrol improves the adverse effects age on vascular function in mesenteric arteries (MAs), and diminishes the hyperactivity in adrenal gland with age. [Methods] Male F344 x Brown Norway rats were assigned to 6-month control (YC), 6-month resveratrol (YR), 24-month control (OC) and 24-month resveratrol (OR). Resveratrol (15 mg/kg) was provided to resveratrol groups in drinking water for 14 days. [Results] Concentration response curves to phenylephrine (PE, 10-9-10-5M), acetylcholine (Ach, 10-9-10-5M) and resveratrol (10-8-10-4M) were evaluated in pressurized isolated MAs. The Ach concentration-response curve was right shifted with maximal response diminished in OC compared with YC rats. These effects were reversed by resveratrol treatment. The resveratrol-mediated relaxant responses were unchanged with age or resveratrol suggesting an endothelium-independent mechanism. Resveratrol tended to increase endothelial nitric oxide synthase; caused no effect on copper-zinc superoxide dismutase; and normalized the age-related elevatation in DβH and NPY levels in adrenal medulla, two indicators of sympathetic activity [Conclusion] These data indicate that resveratrol reverses age-related dysfunction in endothelium-dependent vasodilation in MAs and partially reverses hyperactivity of adrenomedullary function with age. This treatment may have a therapeuticpotential in the treatment of cardiovascular diseases or hypertension in the elderly.
Collapse
Affiliation(s)
- Semil S Gocmez
- Department of Pharmacology, Kocaeli University, Kocaeli, 41380 Turkey
| | - Philip J Scarpace
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610 United States
| | - Melissa A Whidden
- Department of Kinesiology, West Chester University, West Chester, PA 19383 United States
| | - Benedek Erdos
- Department of Pharmacology, University of Vermont, Burlington, VT 05405 United States
| | - Nataliya Kirichenko
- Geriatric Research, Education, and Clinical Center, North Florida/ South Georgia Veterans Health System, Gainesville, FL 32608United States; Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610United States
| | - Yasemin Sakarya
- Geriatric Research, Education, and Clinical Center, North Florida/ South Georgia Veterans Health System, Gainesville, FL 32608United States; Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610United States
| | - Tijen Utkan
- Department of Pharmacology, Kocaeli University, Kocaeli, 41380 Turkey
| | - Nihal Tumer
- Geriatric Research, Education, and Clinical Center, North Florida/ South Georgia Veterans Health System, Gainesville, FL 32608United States; Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610United States
| |
Collapse
|
17
|
Park KH, Park WJ. Endothelial Dysfunction: Clinical Implications in Cardiovascular Disease and Therapeutic Approaches. J Korean Med Sci 2015; 30:1213-25. [PMID: 26339159 PMCID: PMC4553666 DOI: 10.3346/jkms.2015.30.9.1213] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/29/2015] [Indexed: 12/17/2022] Open
Abstract
Atherosclerosis is a chronic progressive vascular disease. It starts early in life, has a long asymptomatic phase, and a progression accelerated by various cardiovascular risk factors. The endothelium is an active inner layer of the blood vessel. It generates many factors that regulate vascular tone, the adhesion of circulating blood cells, smooth muscle proliferation, and inflammation, which are the key mechanisms of atherosclerosis and can contribute to the development of cardiovascular events. There is growing evidence that functional impairment of the endothelium is one of the first recognizable signs of development of atherosclerosis and is present long before the occurrence of atherosclerotic cardiovascular disease. Therefore, understanding the endothelium's central role provides not only insights into pathophysiology, but also a possible clinical opportunity to detect early disease, stratify cardiovascular risk, and assess response to treatments. In the present review, we will discuss the clinical implications of endothelial function as well as the therapeutic issues for endothelial dysfunction in cardiovascular disease as primary and secondary endothelial therapy.
Collapse
Affiliation(s)
- Kyoung-Ha Park
- Cardiovascular Division, Department of Internal Medicine, Hallym University Medical Center, Anyang, Korea
| | - Woo Jung Park
- Cardiovascular Division, Department of Internal Medicine, Hallym University Medical Center, Anyang, Korea
| |
Collapse
|
18
|
|
19
|
Chen HJC, Spiers JG, Sernia C, Lavidis NA. Response of the nitrergic system to activation of the neuroendocrine stress axis. Front Neurosci 2015; 9:3. [PMID: 25653586 PMCID: PMC4300918 DOI: 10.3389/fnins.2015.00003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/05/2015] [Indexed: 12/19/2022] Open
Abstract
Exposure to stressful stimuli causes activation of the hypothalamic-pituitary-adrenal axis which rapidly releases high concentrations of glucocorticoid stress hormones, resulting in increased cellular metabolism and spontaneous oxygen and nitrogen radical formation. High concentrations of nitrogen radicals, including nitric oxide, cause damage to cellular proteins in addition to inhibiting components of the mitochondrial transport chain, leading to cellular energy deficiency. During stress exposure, pharmacological inhibition of nitric oxide production reduces indicators of anxiety- and depressive-like behavior in animal models. Therefore, the purpose of this review is to present an overview of the current literature on stress-evoked changes in the nitrergic system, particularly within neural tissue.
Collapse
Affiliation(s)
| | - Jereme G Spiers
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | - Conrad Sernia
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| | - Nickolas A Lavidis
- School of Biomedical Sciences, The University of Queensland Brisbane, QLD, Australia
| |
Collapse
|
20
|
Rusting the pipes: Ingestion of oxidized lipids and vascular disease. Vascul Pharmacol 2014; 62:47-8. [DOI: 10.1016/j.vph.2014.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 03/26/2014] [Accepted: 03/29/2014] [Indexed: 11/24/2022]
|
21
|
Tomada I, Negrão R, Almeida H, Neves D. Long-term high-fat consumption leads to downregulation of Akt phosphorylation of eNOS at Ser1177 and upregulation of Sirtuin-1 expression in rat cavernous tissue. AGE (DORDRECHT, NETHERLANDS) 2014; 36:597-611. [PMID: 24105250 PMCID: PMC4039277 DOI: 10.1007/s11357-013-9591-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 09/26/2013] [Indexed: 06/02/2023]
Abstract
Long-term consumption of high-fat diets negatively interferes with metabolic status and promotes endothelial dysfunction and inflammation. In the cavernous tissue, these outcomes become conspicuous in the elderly and strongly affect penile erection, a vascular process highly dependent on local nitric oxide bioavailability. Although epidemiological data links erectile dysfunction to nutritional patterns, the underlying molecular mechanisms remain unclear. Therefore, we investigated the effects of long-term high-fat diet on endothelial nitric oxide synthase (eNOS)-Sirtuin-1 axis and Akt/eNOS phosphorylation in the cavernous tissue of Sprague-Dawley rats, and compared with energy-restricted animals. We demonstrated that high-fat diet intake led to a noteworthy decrease in eNOS phosphorylation at Ser1177 residue through the Akt pathway, which seems to be compensated by upregulation of phosphorylation at Ser615, but without an increment in nitric oxide production. These results are accompanied by an increase of systemic inflammatory markers and upregulation of the inducible NOS and of the deacetylase Sirtuin-1 in the cavernous tissue to levels apparently detrimental to cells and to metabolic homeostasis. Conversely, in long-term energy-restricted animals, the rate of phosphorylation of eNOS at Ser1177 diminished, but the activation of the enzyme increased through phosphorylation of eNOS at Ser615, resulting in an enhancement in nitric oxide bioavailability. Taken together, our results demonstrate that long-term nutritional conditions override the influence of age on the eNOS expression and activation in rat cavernous tissue.
Collapse
Affiliation(s)
- I Tomada
- Department of Experimental Biology of Faculty of Medicine, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal,
| | | | | | | |
Collapse
|
22
|
Effect of age and exercise training on protein:protein interactions among eNOS and its regulatory proteins in rat aortas. Eur J Appl Physiol 2013; 113:2761-8. [DOI: 10.1007/s00421-013-2715-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
|
23
|
Developmental programming of eNOS uncoupling and enhanced vascular oxidative stress in adult rats after transient neonatal oxygen exposure. J Cardiovasc Pharmacol 2013; 61:8-16. [PMID: 23011469 DOI: 10.1097/fjc.0b013e318274d1c4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The authors have previously shown that neonatal hyperoxic stress leads to high blood pressure, impaired endothelium-mediated vasodilatation, and increased vascular production of superoxide anion by NAD(P)H oxidase in adulthood. However, it is unknown whether changes in nitric oxide (NO) production and/or bioinactivation prevail and whether NO synthase (NOS) is also a source of superoxide. The purpose of this study was to evaluate whether adult animals exposed to neonatal hyperoxic stress have impaired vascular NO production associated with NOS uncoupling participating to vascular superoxide production and vascular dysfunction. In adult male rats exposed to 80% oxygen from day 3 to 10 of life (H, n = 6) versus room air controls (CTRL, n = 6), vascular (aorta) NO production is decreased at baseline (CTRL: 21 ± 1 vs. H: 16 ± 2 4,5-diaminofluorescein diacetate fluorescence intensity arbitrary units; P < 0.05) and after carbachol stimulation (acetylcholine analog; CTRL: 26 ± 2 vs. H: 18±2; P < 0.05). Pretreatment with L-arginine (CTRL: 32 ± 4 vs. H: 31 ± 5) and L-sepiapterine [analog of key NOS cofactor tetrahydro-L-biopterin (BH4)] (CTRL: 30 ± 3 vs. H: 29 ± 3) normalizes NO production after carbachol. L-Sepiapterine also normalizes impaired vasodilatation to carbachol. Vascular endothelial NO synthase (eNOS) immunostaining is reduced, whereas total eNOS protein expression is increased in H (CTRL: 0.76 ± 0.08 vs. H: 1.76± 0.21; P < 0.01). The significantly higher superoxide generation (CTRL: 20 ± 2 vs. H: 28 ± 3 hydroethidine fluorescence intensity arbitrary units; P < 0.05) is prevented by pretreatment with the eNOS inhibitor N-nitro-L-arginine methyl ester (CTRL: 21 ± 4 vs. H: 22 ± 4). Taken together, the current data indicate a role for eNOS uncoupling in enhanced vascular superoxide, impaired endothelium-mediated vasodilatation, and decreased NO production in adult animals with programmed elevated blood pressure after a brief neonatal oxygen exposure.
Collapse
|
24
|
Trott DW, Luttrell MJ, Seawright JW, Woodman CR. Aging impairs PI3K/Akt signaling and NO-mediated dilation in soleus muscle feed arteries. Eur J Appl Physiol 2013; 113:2039-46. [DOI: 10.1007/s00421-013-2639-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 03/31/2013] [Indexed: 10/27/2022]
|
25
|
Zarzuelo MJ, López-Sepúlveda R, Sánchez M, Romero M, Gómez-Guzmán M, Ungvary Z, Pérez-Vizcaíno F, Jiménez R, Duarte J. SIRT1 inhibits NADPH oxidase activation and protects endothelial function in the rat aorta: implications for vascular aging. Biochem Pharmacol 2013; 85:1288-96. [PMID: 23422569 DOI: 10.1016/j.bcp.2013.02.015] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 01/15/2023]
Abstract
Vascular aging is characterized by up-regulation of NADPH oxidase, oxidative stress and endothelial dysfunction. Previous studies demonstrate that the activity of the evolutionarily conserved NAD(+)-dependent deacetylase SIRT1 declines with age and that pharmacological activators of SIRT1 confer significant anti-aging cardiovascular effects. To determine whether dysregulation of SIRT1 promotes NADPH oxidase-dependent production of reactive oxygen species (ROS) and impairs endothelial function we assessed the effects of three structurally different inhibitors of SIRT1 (nicotinamide, sirtinol, EX527) in aorta segments isolated from young Wistar rats. Inhibition of SIRT1 induced endothelial dysfunction, as shown by the significantly reduced relaxation to the endothelium-dependent vasodilators acetylcholine and the calcium ionophore A23187. Endothelial dysfunction induced by SIRT1 inhibition was prevented by treatment of the vessels with the NADPH oxidase inhibitor apocynin or superoxide dismutase. Inhibition of SIRT1 significantly increased vascular superoxide production, enhanced NADPH oxidase activity, and mRNA expression of its subunits p22(phox) and NOX4, which were prevented by resveratrol. Peroxisome proliferator-activated receptor-α (PPARα) activation mimicked the effects of resveratrol while PPARα inhibition prevented the effects of this SIRT1 activator. SIRT1 co-precipitated with PPARα and nicotinamide increased the acetylation of the PPARα coactivator PGC-1α, which was suppressed by resveratrol. In conclusion, impaired activity of SIRT1 induces endothelial dysfunction and up-regulates NADPH oxidase-derived ROS production in the vascular wall, mimicking the vascular aging phenotype. Moreover, a new mechanism for controlling endothelial function after SIRT1 activation involves a decreased PGC-1α acetylation and the subsequent PPARα activation, resulting in both decreased NADPH oxidase-driven ROS production and NO inactivation.
Collapse
Affiliation(s)
- María José Zarzuelo
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
van Langen J, Fransen P, Van Hove CE, Schrijvers DM, Martinet W, De Meyer GR, Bult H. Selective loss of basal but not receptor-stimulated relaxation by endothelial nitric oxide synthase after isolation of the mouse aorta. Eur J Pharmacol 2012; 696:111-9. [DOI: 10.1016/j.ejphar.2012.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/05/2012] [Accepted: 09/17/2012] [Indexed: 12/21/2022]
|
27
|
Gombos RB, Brown JC, Teefy J, Gibeault RL, Conn KL, Schang LM, Hemmings DG. Vascular dysfunction in young, mid-aged and aged mice with latent cytomegalovirus infections. Am J Physiol Heart Circ Physiol 2012; 304:H183-94. [PMID: 23125213 DOI: 10.1152/ajpheart.00461.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human cytomegalovirus (HCMV) is associated with vascular diseases in both immunosuppressed and immunocompetent individuals. CMV infections cycle between active and latent phases throughout life. We and others have shown vascular dysfunction during active mouse CMV (mCMV) infections. Few studies have examined changes in physiology during latent CMV infections, particularly vascular responses or whether the negative effects of aging on vascular function and fertility will be exacerbated under these conditions. We measured vascular responses in intact mesenteric and uterine arteries dissected from young, mid-aged, and aged latently mCMV-infected (mCMV genomes are present but infectious virus is undetectable) and age-matched uninfected mice using a pressure myograph. We tested responses to the α(1)-adrenergic agonist phenylephrine, the nitric oxide donor sodium nitroprusside, and the endothelium-dependent vasodilator methacholine. In young latently mCMV-infected mice, vasoconstriction was increased and vasodilation was decreased in mesenteric arteries, whereas both vasoconstriction and vasodilation were increased in uterine arteries compared with those in age-matched uninfected mice. In reproductively active mid-aged latently infected mice, mesenteric arteries showed little change, whereas uterine arteries showed greatly increased vasoconstriction. These vascular effects may have contributed to the decreased reproductive success observed in mid-aged latently mCMV-infected compared with age-matched uninfected mice (16.7 vs. 46.7%, respectively). In aged latently infected mice, vasodilation is increased in mesenteric and uterine arteries likely to compensate for increased vasoconstriction to mediators other than phenylephrine. The novel results of this study show that even when active mCMV infections become undetectable, vascular dysfunction continues and differs with age and artery origin.
Collapse
Affiliation(s)
- R B Gombos
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Cau SBA, Carneiro FS, Tostes RC. Differential modulation of nitric oxide synthases in aging: therapeutic opportunities. Front Physiol 2012; 3:218. [PMID: 22737132 PMCID: PMC3382417 DOI: 10.3389/fphys.2012.00218] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 05/31/2012] [Indexed: 12/24/2022] Open
Abstract
Vascular aging is the term that describes the structural and functional disturbances of the vasculature with advancing aging. The molecular mechanisms of aging-associated endothelial dysfunction are complex, but reduced nitric oxide (NO) bioavailability and altered vascular expression and activity of NO synthase (NOS) enzymes have been implicated as major players. Impaired vascular relaxation in aging has been attributed to reduced endothelial NOS (eNOS)-derived NO, while increased inducible NOS (iNOS) expression seems to account for nitrosative stress and disrupted vascular homeostasis. Although eNOS is considered the main source of NO in the vascular endothelium, neuronal NOS (nNOS) also contributes to endothelial cells-derived NO, a mechanism that is reduced in aging. Pharmacological modulation of NO generation and expression/activity of NOS isoforms may represent a therapeutic alternative to prevent the progression of cardiovascular diseases. Accordingly, this review will focus on drugs that modulate NO bioavailability, such as nitrite anions and NO-releasing non-steroidal anti-inflammatory drugs, hormones (dehydroepiandrosterone and estrogen), statins, resveratrol, and folic acid, since they may be useful to treat/to prevent aging-associated vascular dysfunction. The impact of these therapies on life quality in elderly and longevity will be discussed.
Collapse
Affiliation(s)
- Stefany B A Cau
- Department of Pharmacology, Medical School of Ribeirao Preto Ribeirao Preto, Brazil
| | | | | |
Collapse
|
29
|
Visioli F, Hagen TM. Antioxidants to enhance fertility: role of eNOS and potential benefits. Pharmacol Res 2011; 64:431-7. [PMID: 21745572 DOI: 10.1016/j.phrs.2011.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 06/27/2011] [Indexed: 01/23/2023]
Abstract
The use of antioxidants is now often used as a pharmacological adjunct to limit infertility. Indeed, the lay public rightly perceives oxidative stress and, thus, antioxidant treatment as important modulators of infertility. While the direct effects of antioxidant treatment on the quality of semen and oocytes are still under investigation, a significant body of evidence points to loss of vascular tone as a root-cause of erectile dysfunction and, possibly, alterations to female reproduction. In this article, we will critically review the often neglected link between vascular dysfunction and infertility. A particular emphasis will be on the potential use of antioxidants to increase fertility and promote conception.
Collapse
|
30
|
Trott DW, Seawright JW, Luttrell MJ, Woodman CR. NAD(P)H oxidase-derived reactive oxygen species contribute to age-related impairments of endothelium-dependent dilation in rat soleus feed arteries. J Appl Physiol (1985) 2011; 110:1171-80. [PMID: 21233343 DOI: 10.1152/japplphysiol.01037.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We tested the hypothesis that age-related endothelial dysfunction in rat soleus muscle feed arteries (SFA) is mediated in part by NAD(P)H oxidase-derived reactive oxygen species (ROS). SFA from young (4 mo) and old (24 mo) Fischer 344 rats were isolated and cannulated for examination of vasodilator responses to flow and acetylcholine (ACh) in the absence or presence of a superoxide anion (O(2)(-)) scavenger (Tempol; 100 μM) or an NAD(P)H oxidase inhibitor (apocynin; 100 μM). In the absence of inhibitors, flow- and ACh-induced dilations were attenuated in SFA from old rats compared with young rats. Tempol and apocynin improved flow- and ACh-induced dilation in SFA from old rats. In SFA from young rats, Tempol and apocynin had no effect on flow-induced dilation, and apocynin attenuated ACh-induced dilation. To determine the role of hydrogen peroxide (H(2)O(2)), dilator responses were assessed in the absence and presence of catalase (100 U/ml) or PEG-catalase (200 U/ml). Neither H(2)O(2) scavenger altered flow-induced dilation, whereas both H(2)O(2) scavengers blunted ACh-induced dilation in SFA from young rats. In old SFA, catalase improved flow-induced dilation whereas PEG-catalase improved ACh-induced dilation. Compared with young SFA, in response to exogenous H(2)O(2) and NADPH, old rats exhibited blunted dilation and constriction, respectively. Immunoblot analysis revealed that the NAD(P)H oxidase subunit gp91phox protein content was greater in old SFA compared with young. These results suggest that NAD(P)H oxidase-derived reactive oxygen species contribute to impaired endothelium-dependent dilation in old SFA.
Collapse
Affiliation(s)
- Daniel W Trott
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843-4243, USA
| | | | | | | |
Collapse
|
31
|
Herrera MD, Mingorance C, Rodríguez-Rodríguez R, Alvarez de Sotomayor M. Endothelial dysfunction and aging: an update. Ageing Res Rev 2010; 9:142-52. [PMID: 19619671 DOI: 10.1016/j.arr.2009.07.002] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 12/19/2022]
Abstract
Aging is an important risk factor for the development of many cardiovascular diseases as atherosclerosis and hypertension with a common underlying circumstance: the progressive decline of endothelial function. Vascular endothelial dysfunction occurs during the human aging process and is accompanied by deterioration in the balance between vasodilator and vasoconstriction substances produced by the endothelium. This imbalance is mainly characterized by a progressive reduction of the bioavailability of nitric oxide (NO) and an increase in the production of cyclooxygenase (COX)-derived vasoconstrictor factors. Both circumstances are in turn related to an increased production of reactive oxygen and nitrogen species. The aim of this review is to describe the pathophysiological mechanisms involved in the endothelial function declination that accompanies the multifactorial aging process, including alterations related to oxidative stress and pro-inflammatory cytokines, senescence of endothelial cells and genetic factors.
Collapse
Affiliation(s)
- María Dolores Herrera
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, C/Profesor García González 2, 41012 Seville, Spain.
| | | | | | | |
Collapse
|
32
|
Alterations in the activity and expression of endothelial NO synthase in aged human endothelial cells. Mech Ageing Dev 2010; 131:119-23. [PMID: 20064546 DOI: 10.1016/j.mad.2009.12.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 11/30/2009] [Accepted: 12/29/2009] [Indexed: 11/21/2022]
Abstract
This study was to investigate factors underlying the age-related decrease in NO production in vascular endothelial cells. The age-related changes in NO production, the activity and expression level of eNOS, and eNOS binding proteins, were studied in HUVECs. NO production in HUVECs significantly decreased in an age-dependent manner. The potentiation of NO production by L-Arg was significantly suppressed by L-NIO (eNOS-specific inhibitor) in young HUVECs and was suppressed by 1400W (iNOS-specific inhibitor) in aged HUVECs. The aged HUVECs had lower eNOS protein levels than young cells. eNOS phosphorylation at Ser-1177 (active) decreased gradually from PDL 23 through 40, and eNOS phosphorylation at Thr-495 (inactive) increased in aged cells. Changes of intracellular eNOS binding proteins, such as caveolin-1, pAkt, and Hsp90, as well as interaction between eNOS and eNOS binding proteins, indicated decreasing enzyme activity in aged HUVECs. Aging might decrease the activity as well as expression level of eNOS in HUVECs. And the decrease in eNOS activity probably implicated to the alterations in the regulatory binding proteins. For further study, it needs to be confirmed that the age-related change in the intracellular distribution of eNOS and the relative contribution of eNOS and iNOS on vascular dysfunction in aged endothelial cells.
Collapse
|
33
|
Harris MB, Slack KN, Prestosa DT, Hryvniak DJ. Resistance training improves femoral artery endothelial dysfunction in aged rats. Eur J Appl Physiol 2009; 108:533-40. [PMID: 19859729 DOI: 10.1007/s00421-009-1250-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2009] [Indexed: 02/03/2023]
Abstract
Although endurance exercise improves age-associated endothelial dysfunction, few studies have examined the effects of resistance training and the potential molecular mechanisms involved in altering vascular reactivity with age. Young (9 months) and aged (20 months) male, Fisher 344 rats were divided into four groups: Young Sedentary (YS, n = 14), Young Trained (YT, n = 10), Aged Sedentary (AS, n = 12), and Aged Trained (AT, n = 10). Resistance training consisted of climbing a 1 m wire ladder, at an 85 degrees angle, 3 days/week for 6 weeks with increasing weight added to the tail. Endothelial function in femoral arteries was determined by constructing acetylcholine dose-response curves on a wire myograph. Femoral artery phospho-Ser1179-eNOS, eNOS and Hsp90 expression were evaluated by Western blot. Acetylcholine-induced vasorelaxation was significantly (P < 0.05) impaired in AS compared to YS and YT but not AT compared to YS and YT. Phospho-Ser1179-eNOS and eNOS were elevated (P < 0.05) in aged animals but not changed with resistance training. Resistance training increased Hsp90 levels in both young and old animals. Therefore, resistance training improves age-associated endothelial dysfunction in femoral arteries without changes in eNOS phosphorylation and expression. Increased Hsp90 expression, a regulator of eNOS activity and coupling, suggests a potential mechanism for this improvement.
Collapse
Affiliation(s)
- M Brennan Harris
- Department of Kinesiology & Health Sciences, The College of William & Mary, Williamsburg, VA 23187-8795, USA.
| | | | | | | |
Collapse
|
34
|
Kim JH, Bugaj LJ, Oh YJ, Bivalacqua TJ, Ryoo S, Soucy KG, Santhanam L, Webb A, Camara A, Sikka G, Nyhan D, Shoukas AA, Ilies M, Christianson DW, Champion HC, Berkowitz DE. Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats. J Appl Physiol (1985) 2009; 107:1249-57. [PMID: 19661445 PMCID: PMC2763842 DOI: 10.1152/japplphysiol.91393.2008] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 07/28/2009] [Indexed: 01/01/2023] Open
Abstract
There is increasing evidence that upregulation of arginase contributes to impaired endothelial function in aging. In this study, we demonstrate that arginase upregulation leads to endothelial nitric oxide synthase (eNOS) uncoupling and that in vivo chronic inhibition of arginase restores nitroso-redox balance, improves endothelial function, and increases vascular compliance in old rats. Arginase activity in old rats was significantly increased compared with that shown in young rats. Old rats had significantly lower nitric oxide (NO) and higher superoxide (O2(-)) production than young. Acute inhibition of both NOS, with N(G)-nitro-l-arginine methyl ester, and arginase, with 2S-amino- 6-boronohexanoic acid (ABH), significantly reduced O2(-) production in old rats but not in young. In addition, the ratio of eNOS dimer to monomer in old rats was significantly decreased compared with that shown in young rats. These results suggest that eNOS was uncoupled in old rats. Although the expression of arginase 1 and eNOS was similar in young and old rats, inducible NOS (iNOS) was significantly upregulated. Furthermore, S-nitrosylation of arginase 1 was significantly elevated in old rats. These findings support our previously published finding that iNOS nitrosylates and activates arginase 1 (Santhanam et al., Circ Res 101: 692-702, 2007). Chronic arginase inhibition in old rats preserved eNOS dimer-to-monomer ratio and significantly reduced O2(-) production and enhanced endothelial-dependent vasorelaxation to ACh. In addition, ABH significantly reduced vascular stiffness in old rats. These data indicate that iNOS-dependent S-nitrosylation of arginase 1 and the increase in arginase activity lead to eNOS uncoupling, contributing to the nitroso-redox imbalance, endothelial dysfunction, and vascular stiffness observed in vascular aging. We suggest that arginase is a viable target for therapy in age-dependent vascular stiffness.
Collapse
Affiliation(s)
- Jae Hyung Kim
- Anesthesiology, Tower 711, Johns Hopkins Hospital, 600 N. Wolfe St., Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhou X, Bohlen HG, Unthank JL, Miller SJ. Abnormal nitric oxide production in aged rat mesenteric arteries is mediated by NAD(P)H oxidase-derived peroxide. Am J Physiol Heart Circ Physiol 2009; 297:H2227-33. [PMID: 19783779 DOI: 10.1152/ajpheart.00325.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previous work in our laboratory showed increased basal periarterial nitric oxide (NO) and H2O2 concentrations in the spontaneously hypertensive rat, characterized by oxidant stress, as well as impaired flow-mediated NO production that was corrected by a reduction of periarterial H2O2. Aging is also associated with an increase in vascular reactive oxygen species and results in abnormal vascular function. The current study was designed to assess the role of H2O2 in regulating NO production during vascular aging. In vivo, real-time NO and H2O2 concentrations were measured by microelectrodes in mesenteric arteries of retired breeder (aged; 8-12 mo) and young (2 to 3 mo) Wistar-Kyoto rats under conditions of altered flow. The results in aged rats revealed elevated basal NO (1,611+/-286 vs. 793+/-112 nM, P<0.05) and H2O2 concentrations (16+/-2 vs. 9+/-1 microM, P<0.05) and a flow-mediated increase in H2O2 but not NO production. Pretreatment of aged rats with the antioxidant apocynin lowered both basal H2O2 (8+/-1 microM) and NO (760+/-102 nM) to young levels and restored flow-mediated NO production. Similar results were obtained with the NAD(P)H oxidase inhibitor gp91ds-tat. In addition, acute incubation with topical polyethylene-glycolated catalase lowered the baseline NO concentration and restored flow-mediated NO production. Taken together, the data indicate that elevated baseline and suppressed flow-mediated NO production in aged Wistar-Kyoto rats are mediated by NAD(P)H oxidase-derived H2O2.
Collapse
Affiliation(s)
- Xiaosun Zhou
- Department of Surgery, Indiana University School of Medicine, 1001 W. 10th St., WD OPW 425F, Indianapolis, IN 46202-2879, USA
| | | | | | | |
Collapse
|
36
|
Visioli F, Bernaert H, Corti R, Ferri C, Heptinstall S, Molinari E, Poli A, Serafini M, Smit HJ, Vinson JA, Violi F, Paoletti R. Chocolate, lifestyle, and health. Crit Rev Food Sci Nutr 2009; 49:299-312. [PMID: 19234942 DOI: 10.1080/10408390802066805] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Interest in the biological activities of cocoa polyphenols is increasing steadily. In fact, the high polyphenol content of cocoa, coupled with its widespread presence in many food items, render this food of particular interest from the nutritional and "pharmacological" viewpoints. This paper summarizes the new findings and developments regarding the effects of cocoa and chocolate consumption on human health as presented at the International Conference "Chocolate, Lifestyle, and Health" (Milan, Italy, March 2, 2007) regarding the effects of cocoa and chocolate consumption on human health.
Collapse
Affiliation(s)
- Francesco Visioli
- Laboratory of Micronutrients and Cardiovascular Disease, UR7079, Université Pierre et Marie Curie, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Han G, Ma H, Chintala R, Fulton DJR, Barman SA, White RE. Essential role of the 90-kilodalton heat shock protein in mediating nongenomic estrogen signaling in coronary artery smooth muscle. J Pharmacol Exp Ther 2009; 329:850-5. [PMID: 19293389 DOI: 10.1124/jpet.108.149112] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Under normal physiological conditions, estrogen is a coronary vasodilator, and this response involves production of NO from endothelial cells. In addition, estrogen also stimulates NO production in coronary artery smooth muscle (CASM); however, the molecular basis for this nongenomic effect of estrogen is unclear. The purpose of this study was to investigate a potential role for the 90-kDa heat shock protein (Hsp90) in estrogen-stimulated neuronal nitric-oxide synthase (nNOS) activity in coronary artery smooth muscle. 17Beta-estradiol produced a concentration-dependent relaxation of endothelium-denuded porcine coronary arteries in vitro, and this response was attenuated by inhibiting Hsp90 function with 1 microM geldanamycin (GA) or 100 microg/ml radicicol (RAD). These inhibitors also prevented estrogen-stimulated NO production in human CASM cells and reversed the stimulatory effect of estrogen on calcium-activated potassium (BK(Ca)) channels. These functional studies indicated a role for Hsp90 in coupling estrogen receptor activation to NOS stimulation in CASM. Furthermore, coimmunoprecipitation studies demonstrated that estrogen stimulates bimolecular interaction of immunoprecipitated nNOS with Hsp90 and that either GA or RAD could inhibit this association. Blocking estrogen receptors with ICI182780 (fulvestrant) also prevented this association. These findings indicate an essential role for Hsp90 in nongenomic estrogen signaling in CASM and further suggest that Hsp90 might represent a prospective therapeutic target to enhance estrogen-stimulated cardiovascular protection.
Collapse
Affiliation(s)
- Guichun Han
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Mecanismos implicados en la disfunción endotelial asociada al envejecimiento. Med Clin (Barc) 2009; 132:62-9. [DOI: 10.1016/j.medcli.2008.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 09/17/2008] [Indexed: 11/21/2022]
|
39
|
Averna M, Stifanese R, De Tullio R, Passalacqua M, Salamino F, Pontremoli S, Melloni E. Functional role of HSP90 complexes with endothelial nitric-oxide synthase (eNOS) and calpain on nitric oxide generation in endothelial cells. J Biol Chem 2008; 283:29069-76. [PMID: 18682401 DOI: 10.1074/jbc.m803638200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although several reports have indicated that eNOS is a highly sensitive calpain substrate, the occurrence of a concomitant Ca(2+)-dependent activation of the synthase and of the protease has never been analyzed in specific direct experiments. In this study, we have explored in vivo how eNOS can undergo Ca(2+)-dependent translocation and activation, protected against degradation by activated calpain. Here we demonstrate that following a brief exposure to Ca(2+)-loading, the cytosolic eNOS-HSP90 complex recruits calpain in a form in which the chaperone and the synthase are almost completely resistant to digestion by the protease. Furthermore, in the presence of the HSP90 inhibitor geldanamycin, a significant decrease in NO production and an extensive degradation of eNOS protein occurs, indicating that dissociation from membranes and association with the chaperone is correlated to the protection of the synthase. Experiments with isolated membrane preparations confirm the primary role of HSP90 in dissociation of eNOS from caveolae. Prolonged exposure of cells to Ca(2+)-loading resulted in an extensive degradation of both eNOS and HSP90, accompanied by a large suppression of NO production. We propose that the protective effect exerted by HSP90 on eNOS degradation mediated by calpain represents a novel and critical mechanism that assures the reversibility of the intracellular trafficking and activation of the synthase.
Collapse
Affiliation(s)
- Monica Averna
- Department of Experimental Medicine (DIMES), Biochemistry Section, and Centre of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 1-16132 Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Isenberg JS, Frazier WA, Roberts DD. Thrombospondin-1: a physiological regulator of nitric oxide signaling. Cell Mol Life Sci 2008; 65:728-42. [PMID: 18193160 PMCID: PMC2562780 DOI: 10.1007/s00018-007-7488-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thrombospondin-1 is a secreted protein that modulates vascular cell behavior via several cell surface receptors. In vitro, nanomolar concentrations of thrombospondin-1 are required to alter endothelial and vascular smooth muscle cell adhesion, proliferation, motility, and survival. Yet, much lower levels of thrombospondin-1 are clearly functional in vivo. This discrepancy was explained with the discovery that the potency of thrombospondin-1 increases more than 100-fold in the presence of physiological levels of nitric oxide (NO). Thrombospondin-1 binding to CD47 inhibits NO signaling by preventing cGMP synthesis and activation of its target cGMP-dependent protein kinase. This potent antagonism of NO signaling allows thrombospondin-1 to acutely constrict blood vessels, accelerate platelet aggregation, and if sustained, inhibit angiogenic responses. Acute antagonism of NO signaling by thrombospondin-1 is important for hemostasis but becomes detrimental for tissue survival of ischemic injuries. New therapeutic approaches targeting thrombospondin-1 or CD47 can improve recovery from ischemic injuries and overcome a deficit in NO-responsiveness in aging. (Part of a Multi-author Review).
Collapse
Affiliation(s)
- J. S. Isenberg
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 2A33, 10 Center Dr MSC1500, Bethesda, Maryland 20892 USA
| | - W. A. Frazier
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110 USA
| | - D. D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room 2A33, 10 Center Dr MSC1500, Bethesda, Maryland 20892 USA
| |
Collapse
|
41
|
Lipoic acid significantly restores, in rats, the age-related decline in vasomotion. Br J Pharmacol 2008; 153:1615-22. [PMID: 18297110 DOI: 10.1038/bjp.2008.28] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE The age-related decline in vasorelaxation is largely due to ceramide-induced induction of phosphatase 2A (PP2A), which limits nitric oxide synthase (eNOS) phosphorylation at stimulatory sites. We hypothesized that ceramide accumulation was from an age-related loss of endothelial glutathione (GSH) and subsequent activation of neutral sphingomyelinase (nSMase), an enzyme whose activity increases when GSH is limited. EXPERIMENTAL APPROACH Old (30-32 mo) F344xBN rats were given (R)-alpha-lipoic acid (LA), an agent known to induce GSH synthesis. Vasorelaxation was measured in aortic rings; GSH and ceramide levels, activity of nSMase and eNOS phosphorylation (by Western blot) was measured in aortic endothelial cells, isolated from the same aortas. KEY RESULTS In old animals, endothelium-dependent relaxation in aortic rings was decreased, GSH levels and its redox state in aortic endothelia were over 30% lower and nSMase activity and endothelial ceramide levels were three-fold increased, relative to young (2-4 mo) rats. LA treatment of old animals improved relaxation in aortic rings, reversed the changes in endothelial GSH, in nSMase activities and in ceramide levels. Similar effects on GSH levels and nSMase activity in old rats were also induced by treatment with GSH monoethylester. Activation (by phosphorylation) of eNOS was decreased by about 50% in old rats and this age-related decrease was partially reversed by LA treatment. CONCLUSIONS AND IMPLICATIONS Decreased endothelial GSH was partly responsible for the age-related loss of vascular endothelial function and LA might be therapeutically evaluated to treat endothelial dysfunction.
Collapse
|
42
|
Abstract
Degradation of elastin, the main amorphous component of elastic fibers, by elastases belonging to the serine, metallo, or cysteine families leads to the generation of elastin fragments, designated as elastokines in keeping with their cytokine-like properties. Generation of elastokines from one of the longest lived protein in human might represent a strong tissue repair signal. Indeed, they (1) exhibit potent chemotactic activity for leukocytes, (2) stimulate fibroblast and smooth muscle cell proliferation, and (3) display proangiogenic activity as potent as VEGF. However, continuous exposure of cells to these matrikines, through increased elastase(s) expression with age, can contribute to the formation of a chronic inflammatory state, that is, inflamm-aging. Importantly, binding of elastokines to S-Gal, their cognate receptor, proved to stimulate matrix metalloproteinase expression in normal and cancer cells. Besides, these elastin fragments can polarize lymphocytes toward a Th-1 response or induce an osteogenic response in smooth muscle cells, and arterial wall calcification. In this chapter, emphasis will be made on the contribution of elastokines on the genesis of age-related arterial wall diseases, particularly abdominal aortic aneurysms (AAAs). An elastokine theory of AAAs progression will be proposed. Age is one main risk factor of cancer incidence and development. The myriad of biological effects exerted by elastokines on stromal and inflammatory cells led us to hypothesize that they might be main actors in elaborating a favorable cancerization field in melanoma; for instance these peptides could catalyze the vertical growth phase transition in melanoma through increased expression of gelatinase A and membrane-type 1 matrix metalloproteinase.
Collapse
Affiliation(s)
- Frank Antonicelli
- Faculty of Medicine Extracellular Matrix and Cell Signaling--Reims University, UMR 6198 CNRS 51095 Reims Cedex, France
| | | | | | | |
Collapse
|
43
|
Mukhopadhyay S, Xu F, Sehgal PB. Aberrant cytoplasmic sequestration of eNOS in endothelial cells after monocrotaline, hypoxia, and senescence: live-cell caveolar and cytoplasmic NO imaging. Am J Physiol Heart Circ Physiol 2006; 292:H1373-89. [PMID: 17071725 DOI: 10.1152/ajpheart.00990.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported the disruption of caveolae/rafts, dysfunction of Golgi tethers, N-ethylmaleimide-sensitive factor-attachment protein (SNAP) receptor proteins (SNAREs), and SNAPs, and inhibition of anterograde trafficking in endothelial cells in culture and rat lung exposed to monocrotaline pyrrole (MCTP) as a prelude to the development of pulmonary hypertension. We have now investigated 1) whether this trafficking block affects subcellular localization and function of endothelial nitric oxide (NO) synthase (eNOS) and 2) whether Golgi blockade and eNOS sequestration are observed after hypoxia and senescence. Immunofluorescence data revealed that MCTP-induced "megalocytosis" of pulmonary arterial endothelial cells (PAEC) was accompanied by a loss of eNOS from the plasma membrane, with increased accumulation in the cytoplasm. This cytoplasmic eNOS was sequestered in heterogeneous compartments and partially colocalized with Golgi and endoplasmic reticulum (ER) markers, caveolin-1, NOSTRIN, and ER Tracker, but not Lyso Tracker. Hypoxia and senescence also produced enlarged PAEC, with dysfunctional Golgi and loss of eNOS from the plasma membrane, with sequestration in the cytoplasm. Live-cell imaging of caveolar and cytoplasmic NO with 4,5-diaminofluorescein diacetate (DAF-2DA) as probe showed a marked loss of caveolar NO after MCTP, hypoxia, and senescence. Although ionomycin stimulated DAF-2DA fluorescence in control PAEC, this ionophore decreased DAF-2DA fluorescence in MCTP-treated and senescent PAEC, suggesting localization of eNOS in an aberrant cytoplasmic compartment that was readily discharged by Ca(2+)-induced exocytosis. Thus monocrotaline, hypoxia, and senescence produce a Golgi blockade in PAEC, leading to sequestration of eNOS away from its functional caveolar location and providing a mechanism for the often-reported reduction in pulmonary arterial NO levels in experimental pulmonary hypertension, despite sustained eNOS protein levels.
Collapse
|