1
|
Yin J, Waman VP, Sen N, Firdaus-Raih M, Lam SD, Orengo C. Understanding the structural and functional diversity of ATP-PPases using protein domains and functional families in the CATH database. Structure 2025:S0969-2126(24)00551-3. [PMID: 39826548 DOI: 10.1016/j.str.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/18/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
ATP-pyrophosphatases (ATP-PPases) are the most primordial lineage of the large and diverse HUP (high-motif proteins, universal stress proteins, ATP-pyrophosphatase) superfamily. There are four different ATP-PPase substrate-specificity groups (SSGs), and members of each group show considerable sequence variation across the domains of life despite sharing the same catalytic function. Owing to the expansion in the number of ATP-PPase domain structures from advances in protein structure prediction by AlphaFold2 (AF2), we have characterized the two most populated ATP-PPase SSGs, the nicotinamide adenine dinucleotide synthases (NADSs) and guanosine monophosphate synthases (GMPSs). Local structural and sequence comparisons of NADS and GMPS identified taxonomic-group-specific functional motifs. As GMPS and NADS are potential drug targets of pathogenic microorganisms including Mycobacterium tuberculosis, bacterial GMPS and NADS specific functional motifs reported in this study, may contribute to antibacterial-drug development.
Collapse
Affiliation(s)
- Jialin Yin
- Department of Structural and Molecular Biology, University College London, London, UK
| | - Vaishali P Waman
- Department of Structural and Molecular Biology, University College London, London, UK
| | - Neeladri Sen
- Department of Structural and Molecular Biology, University College London, London, UK
| | - Mohd Firdaus-Raih
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | - Su Datt Lam
- Department of Structural and Molecular Biology, University College London, London, UK; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | - Christine Orengo
- Department of Structural and Molecular Biology, University College London, London, UK.
| |
Collapse
|
2
|
Zhang M, Li L, Li C, Ma A, Li J, Yang C, Chen X, Cao P, Li S, Zhang Y, Yuchi Z, Du X, Liu C, Wang X, Wang X, Xiang W. Natural product guvermectin inhibits guanosine 5'-monophosphate synthetase and confers broad-spectrum antibacterial activity. Int J Biol Macromol 2024; 267:131510. [PMID: 38608989 DOI: 10.1016/j.ijbiomac.2024.131510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Bacterial diseases caused substantial yield losses worldwide, with the rise of antibiotic resistance, there is a critical need for alternative antibacterial compounds. Natural products (NPs) from microorganisms have emerged as promising candidates due to their potential as cost-effective and environmentally friendly bactericides. However, the precise mechanisms underlying the antibacterial activity of many NPs, including Guvermectin (GV), remain poorly understood. Here, we sought to explore how GV interacts with Guanosine 5'-monophosphate synthetase (GMPs), an enzyme crucial in bacterial guanine synthesis. We employed a combination of biochemical and genetic approaches, enzyme activity assays, site-directed mutagenesis, bio-layer interferometry, and molecular docking assays to assess GV's antibacterial activity and its mechanism targeting GMPs. The results showed that GV effectively inhibits GMPs, disrupting bacterial guanine synthesis. This was confirmed through drug-resistant assays and direct enzyme inhibition studies. Bio-layer interferometry assays demonstrated specific binding of GV to GMPs, with dependency on Xanthosine 5'-monophosphate. Site-directed mutagenesis identified key residues crucial for the GV-GMP interaction. This study elucidates the antibacterial mechanism of GV, highlighting its potential as a biocontrol agent in agriculture. These findings contribute to the development of novel antibacterial agents and underscore the importance of exploring natural products for agricultural disease management.
Collapse
Affiliation(s)
- Manman Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, Plant Pathology Department, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lei Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Cheng Li
- College of Agriculture, Key Laboratory of Agricultural Microbiology of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Aifang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Junzhou Li
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chenyu Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xujun Chen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, Plant Pathology Department, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Peng Cao
- Key Laboratory of Drug Targets and Drug Leads for Degenerative Diseases, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiangge Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, Plant Pathology Department, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Chongxi Liu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Xiaodan Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, Plant Pathology Department, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Ballut L, Violot S, Kumar S, Aghajari N, Balaram H. GMP Synthetase: Allostery, Structure, and Function. Biomolecules 2023; 13:1379. [PMID: 37759779 PMCID: PMC10526850 DOI: 10.3390/biom13091379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Glutamine amidotransferases (GATs) catalyze the hydrolysis of glutamine and transfer the generated ammonia to diverse metabolites. The two catalytic activities, glutaminolysis and the subsequent amination of the acceptor substrate, happen in two distinct catalytic pockets connected by a channel that facilitates the movement of ammonia. The de novo pathway for the synthesis of guanosine monophosphate (GMP) from xanthosine monophosphate (XMP) is enabled by the GAT GMP synthetase (GMPS). In most available crystal structures of GATs, the ammonia channel is evident in their native state or upon ligand binding, providing molecular details of the conduit. In addition, conformational changes that enable the coordination of the two catalytic chemistries are also informed by the available structures. In contrast, despite the first structure of a GMPS being published in 1996, the understanding of catalysis in the acceptor domain and inter-domain crosstalk became possible only after the structure of a glutamine-bound mutant of Plasmodium falciparum GMPS was determined. In this review, we present the current status of our understanding of the molecular basis of catalysis in GMPS, becoming the first comprehensive assessment of the biochemical function of this intriguing enzyme.
Collapse
Affiliation(s)
- Lionel Ballut
- Molecular Microbiology and Structural Biochemistry, CNRS, University of Lyon1, UMR5086, 7 Passage du Vercors, CEDEX 07, F-69367 Lyon, France; (L.B.); (S.V.)
| | - Sébastien Violot
- Molecular Microbiology and Structural Biochemistry, CNRS, University of Lyon1, UMR5086, 7 Passage du Vercors, CEDEX 07, F-69367 Lyon, France; (L.B.); (S.V.)
| | - Sanjeev Kumar
- Trivedi School of Biosciences, Ashoka University, Rajiv Gandhi Education City, Sonipat 131029, Haryana, India;
| | - Nushin Aghajari
- Molecular Microbiology and Structural Biochemistry, CNRS, University of Lyon1, UMR5086, 7 Passage du Vercors, CEDEX 07, F-69367 Lyon, France; (L.B.); (S.V.)
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur 560064, Bangalore, India
| |
Collapse
|
4
|
Shivakumaraswamy S, Kumar S, Bellur A, Polisetty SD, Balaram H. Mechanistic Insights into the Functioning of a Two-Subunit GMP Synthetase, an Allosterically Regulated, Ammonia Channeling Enzyme. Biochemistry 2022; 61:1988-2006. [PMID: 36040251 DOI: 10.1021/acs.biochem.2c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Guanosine 5'-monophosphate (GMP) synthetases, enzymes that catalyze the conversion of xanthosine 5'-monophosphate (XMP) to GMP, are composed of two different catalytic units, which are either two domains of a polypeptide chain or two subunits that associate to form a complex. The glutamine amidotransferase (GATase) unit hydrolyzes glutamine generating ammonia, and the ATP pyrophosphatase (ATPPase) unit catalyzes the formation of an AMP-XMP intermediate. The substrate-bound ATPPase allosterically activates GATase, and the ammonia thus generated is tunneled to the ATPPase active site where it reacts with AMP-XMP generating GMP. In ammonia channeling enzymes reported thus far, a tight complex of the two subunits is observed, while the interaction of the two subunits of Methanocaldococcus jannaschii GMP synthetase (MjGMPS) is transient with the underlying mechanism of allostery and substrate channeling largely unclear. Here, we present a mechanistic model encompassing the various steps in the catalytic cycle of MjGMPS based on biochemical experiments, crystal structure, and cross-linking mass spectrometry guided integrative modeling. pH dependence of enzyme kinetics establishes that ammonia is tunneled across the subunits with the lifetime of the complex being ≤0.5 s. The crystal structure of the XMP-bound ATPPase subunit reported herein highlights the role of conformationally dynamic loops in enabling catalysis. The structure of MjGMPS derived using restraints obtained from cross-linking mass spectrometry has enabled the visualization of subunit interactions that enable allostery under catalytic conditions. We integrate the results and propose a functional mechanism for MjGMPS detailing the various steps involved in catalysis.
Collapse
Affiliation(s)
- Santosh Shivakumaraswamy
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Sanjeev Kumar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Asutosh Bellur
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Satya Dev Polisetty
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, India
| |
Collapse
|
5
|
Nan J, Zhang S, Zhan P, Jiang L. Discovery of Novel GMPS Inhibitors of Candidatus Liberibacter Asiaticus by Structure Based Design and Enzyme Kinetic. BIOLOGY 2021; 10:biology10070594. [PMID: 34203217 PMCID: PMC8301025 DOI: 10.3390/biology10070594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary The spread of citrus Huanglongbing caused significant damage to the world’s citrus industry. Thermotherapy and chemical agents were used to control this disease; however, the effectiveness of these treatments is frequently inconsistent. In addition, CLas cannot be cultured in vitro. Therefore, structure-based virtual screening is a novel method to find compounds that work against CLas. This study used CLas GMPS as a target for high-throughput screening and selected some compounds which have a higher binding affinity to test their inhibition of CLas GMPS. Finally, two molecules were identified as the lead compound to control citrus HLB. Abstract Citrus production is facing an unprecedented problem because of huanglongbing (HLB) disease. Presently, no effective HLB-easing method is available when citrus becomes infected. Guanosine 5′-monophosphate synthetase (GMPS) is a key protein in the de novo synthesis of guanine nucleotides. GMPS is used as an attractive target for developing agents that are effective against the patogen infection. In this research, homology modeling, structure-based virtual screening, and molecular docking were used to discover the new inhibitors against CLas GMPS. Enzyme assay showed that folic acid and AZD1152 showed high inhibition at micromole concentrations, with AZD1152 being the most potent molecule. The inhibition constant (Ki) value of folic acid and AZD1152 was 51.98 µM and 4.05 µM, respectively. These results suggested that folic acid and AZD1152 could be considered as promising candidates for the development of CLas agents.
Collapse
Affiliation(s)
- Jing Nan
- Ministry of Education Key Laboratory of Plant Biology, Huazhong Agricultural University, Wuhan 430070, China; (J.N.); (P.Z.)
| | - Shaoran Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Ping Zhan
- Ministry of Education Key Laboratory of Plant Biology, Huazhong Agricultural University, Wuhan 430070, China; (J.N.); (P.Z.)
| | - Ling Jiang
- Ministry of Education Key Laboratory of Plant Biology, Huazhong Agricultural University, Wuhan 430070, China; (J.N.); (P.Z.)
- Correspondence:
| |
Collapse
|
6
|
Shivakumaraswamy S, Pandey N, Ballut L, Violot S, Aghajari N, Balaram H. Helices on Interdomain Interface Couple Catalysis in the ATPPase Domain with Allostery in Plasmodium falciparum GMP Synthetase. Chembiochem 2020; 21:2805-2817. [PMID: 32358899 DOI: 10.1002/cbic.202000158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Indexed: 11/07/2022]
Abstract
GMP synthetase catalyses the conversion of XMP to GMP through a series of reactions that include hydrolysis of Gln to generate ammonia in the glutamine amidotransferase (GATase) domain, activation of XMP to adenyl-XMP intermediate in the ATP pyrophosphatase (ATPPase) domain and reaction of ammonia with the intermediate to generate GMP. The functioning of GMP synthetases entails bidirectional domain crosstalk, which leads to allosteric activation of the GATase domain, synchronization of catalytic events and tunnelling of ammonia. Herein, we have taken recourse to the analysis of structures of GMP synthetases, site-directed mutagenesis and steady-state and transient kinetics on the Plasmodium falciparum enzyme to decipher the molecular basis of catalysis in the ATPPase domain and domain crosstalk. Our results suggest an arrangement at the interdomain interface, of helices with residues that play roles in ATPPase catalysis as well as domain crosstalk enabling the coupling of ATPPase catalysis with GATase activation. Overall, the study enhances our understanding of GMP synthetases, which are drug targets in many infectious pathogens.
Collapse
Affiliation(s)
- Santosh Shivakumaraswamy
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| | - Nivedita Pandey
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| | - Lionel Ballut
- Biocrystallography and Structural Biology of Therapeutic Targets Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS -, University of Lyon 1, 7 passage du Vercors, 69367, Lyon Cedex 07, France
| | - Sébastien Violot
- Biocrystallography and Structural Biology of Therapeutic Targets Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS -, University of Lyon 1, 7 passage du Vercors, 69367, Lyon Cedex 07, France
| | - Nushin Aghajari
- Biocrystallography and Structural Biology of Therapeutic Targets Molecular Microbiology and Structural Biochemistry UMR 5086 CNRS -, University of Lyon 1, 7 passage du Vercors, 69367, Lyon Cedex 07, France
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, Karnataka, 560064, India
| |
Collapse
|
7
|
Amorim Franco TM, Favrot L, Vergnolle O, Blanchard JS. Mechanism-Based Inhibition of the Mycobacterium tuberculosis Branched-Chain Aminotransferase by d- and l-Cycloserine. ACS Chem Biol 2017; 12:1235-1244. [PMID: 28272868 DOI: 10.1021/acschembio.7b00142] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The branched-chain aminotransferase is a pyridoxal 5'-phosphate (PLP)-dependent enzyme responsible for the final step in the biosynthesis of all three branched-chain amino acids, l-leucine, l-isoleucine, and l-valine, in bacteria. We have investigated the mechanism of inactivation of the branched-chain aminotransferase from Mycobacterium tuberculosis (MtIlvE) by d- and l-cycloserine. d-Cycloserine is currently used only in the treatment of multidrug-drug-resistant tuberculosis. Our results show a time- and concentration-dependent inactivation of MtIlvE by both isomers, with l-cycloserine being a 40-fold better inhibitor of the enzyme. Minimum inhibitory concentration (MIC) studies revealed that l-cycloserine is a 10-fold better inhibitor of Mycobacterium tuberculosis growth than d-cycloserine. In addition, we have crystallized the MtIlvE-d-cycloserine inhibited enzyme, determining the structure to 1.7 Å. The structure of the covalent d-cycloserine-PMP adduct bound to MtIlvE reveals that the d-cycloserine ring is planar and aromatic, as previously observed for other enzyme systems. Mass spectrometry reveals that both the d-cycloserine- and l-cycloserine-PMP complexes have the same mass, and are likely to be the same aromatized, isoxazole product. However, the kinetics of formation of the MtIlvE d-cycloserine-PMP and MtIlvE l-cycloserine-PMP adducts are quite different. While the kinetics of the formation of the MtIlvE d-cycloserine-PMP complex can be fit to a single exponential, the formation of the MtIlvE l-cycloserine-PMP complex occurs in two steps. We propose a chemical mechanism for the inactivation of d- and l-cycloserine which suggests a stereochemically determined structural role for the differing kinetics of inactivation. These results demonstrate that the mechanism of action of d-cycloserine's activity against M. tuberculosis may be more complicated than previously thought and that d-cycloserine may compromise the in vivo activity of multiple PLP-dependent enzymes, including MtIlvE.
Collapse
Affiliation(s)
- Tathyana Mar Amorim Franco
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Lorenza Favrot
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Olivia Vergnolle
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - John S. Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
8
|
Chitty JL, Tatzenko TL, Williams SJ, Koh YQAE, Corfield EC, Butler MS, Robertson AAB, Cooper MA, Kappler U, Kobe B, Fraser JA. GMP Synthase Is Required for Virulence Factor Production and Infection by Cryptococcus neoformans. J Biol Chem 2017; 292:3049-3059. [PMID: 28062578 DOI: 10.1074/jbc.m116.767533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/04/2017] [Indexed: 11/06/2022] Open
Abstract
Over the last four decades the HIV pandemic and advances in medical treatments that also cause immunosuppression have produced an ever-growing cohort of individuals susceptible to opportunistic pathogens. Of these, AIDS patients are particularly vulnerable to infection by the encapsulated yeast Cryptococcus neoformans Most commonly found in the environment in purine-rich bird guano, C. neoformans experiences a drastic change in nutrient availability during host infection, ultimately disseminating to colonize the purine-poor central nervous system. Investigating the consequences of this challenge, we have characterized C. neoformans GMP synthase, the second enzyme in the guanylate branch of de novo purine biosynthesis. We show that in the absence of GMP synthase, C. neoformans becomes a guanine auxotroph, the production of key virulence factors is compromised, and the ability to infect nematodes and mice is abolished. Activity assays performed using recombinant protein unveiled differences in substrate binding between the C. neoformans and human enzymes, with structural insights into these kinetic differences acquired via homology modeling. Collectively, these data highlight the potential of GMP synthase to be exploited in the development of new therapeutic agents for the treatment of disseminated, life-threatening fungal infections.
Collapse
Affiliation(s)
- Jessica L Chitty
- From the Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences.,the Institute for Molecular Bioscience, and
| | - Tayla L Tatzenko
- From the Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences
| | - Simon J Williams
- From the Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences.,the ANU Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Y Q Andre E Koh
- From the Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences
| | - Elizabeth C Corfield
- From the Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences
| | | | | | - Matthew A Cooper
- From the Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences.,the Institute for Molecular Bioscience, and
| | - Ulrike Kappler
- From the Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences.,the Centre for Metals in Biology, University of Queensland, St. Lucia, Queensland 4072, Australia and
| | - Bostjan Kobe
- From the Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences.,the Institute for Molecular Bioscience, and
| | - James A Fraser
- From the Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences,
| |
Collapse
|
9
|
Amorim Franco TM, Hegde S, Blanchard JS. Chemical Mechanism of the Branched-Chain Aminotransferase IlvE from Mycobacterium tuberculosis. Biochemistry 2016; 55:6295-6303. [PMID: 27780341 DOI: 10.1021/acs.biochem.6b00928] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The biosynthetic pathway of the branched-chain amino acids is essential for Mycobacterium tuberculosis growth and survival. We report here the kinetic and chemical mechanism of the pyridoxal 5'-phosphate (PLP)-dependent branched-chain aminotransferase, IlvE, from M. tuberculosis (MtIlvE). This enzyme is responsible for the final step of the synthesis of the branched-chain amino acids isoleucine, leucine, and valine. As seen in other aminotransferases, MtIlvE displays a ping-pong kinetic mechanism. pK values were identified from the pH dependence on V as well as V/K, indicating that the phosphate ester of the PLP cofactor, and the α-amino group from l-glutamate and the active site Lys204, play roles in acid-base catalysis and binding, respectively. An intrinsic primary kinetic isotope effect was identified for the α-C-H bond cleavage of l-glutamate. Large solvent kinetic isotope effect values for the ping and pong half-reactions were also identified. The absence of a quininoid intermediate in combination with the Dkobs in our multiple kinetic isotope effects under single-turnover conditions suggests a concerted type of mechanism. The deprotonation of C2 of l-glutamate and the protonation of C4' of the PLP cofactor happen synchronously in the ping half-reaction. A chemical mechanism is proposed on the basis of the results obtained here.
Collapse
Affiliation(s)
- Tathyana M Amorim Franco
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Subray Hegde
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - John S Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
10
|
Active site coupling in Plasmodium falciparum GMP synthetase is triggered by domain rotation. Nat Commun 2015; 6:8930. [PMID: 26592566 PMCID: PMC4673825 DOI: 10.1038/ncomms9930] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/19/2015] [Indexed: 11/24/2022] Open
Abstract
GMP synthetase (GMPS), a key enzyme in the purine biosynthetic pathway performs catalysis through a coordinated process across two catalytic pockets for which the mechanism remains unclear. Crystal structures of Plasmodium falciparum GMPS in conjunction with mutational and enzyme kinetic studies reported here provide evidence that an 85° rotation of the GATase domain is required for ammonia channelling and thus for the catalytic activity of this two-domain enzyme. We suggest that conformational changes in helix 371–375 holding catalytic residues and in loop 376–401 along the rotation trajectory trigger the different steps of catalysis, and establish the central role of Glu374 in allostery and inter-domain crosstalk. These studies reveal the mechanism of domain rotation and inter-domain communication, providing a molecular framework for the function of all single polypeptide GMPSs and form a solid basis for rational drug design targeting this therapeutically important enzyme. GMP synthetase, a key enzyme in purine biosynthesis, is of interest for understanding purine metabolism processes and for developing therapeutic applications. Here, the authors propose a molecular mechanism and the structural basis for the catalytic activity of this enzyme.
Collapse
|
11
|
Villela AD, Eichler P, Pinto AFM, Rodrigues-Junior V, Yates Iii JR, Bizarro CV, Basso LA, Santos DS. Gene replacement and quantitative mass spectrometry approaches validate guanosine monophosphate synthetase as essential for Mycobacterium tuberculosis growth. Biochem Biophys Rep 2015; 4:277-282. [PMID: 29124214 PMCID: PMC5669397 DOI: 10.1016/j.bbrep.2015.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 01/10/2023] Open
Abstract
Guanosine monophosphate synthetase (GMPS), encoded by guaA gene, is a key enzyme for guanine nucleotide biosynthesis in Mycobacterium tuberculosis. The guaA gene from several bacterial pathogens has been shown to be involved in virulence; however, no information about the physiological effect of direct guaA deletion in M. tuberculosis has been described so far. Here, we demonstrated that the guaA gene is essential for M. tuberculosis H37Rv growth. The lethal phenotype of guaA gene disruption was avoided by insertion of a copy of the ortholog gene from Mycobacterium smegmatis, indicating that this GMPS protein is functional in M. tuberculosis. Protein validation of the guaA essentiality observed by PCR was approached by shotgun proteomic analysis. A quantitative method was performed to evaluate protein expression levels, and to check the origin of common and unique peptides from M. tuberculosis and M. smegmatis GMPS proteins. These results validate GMPS as a molecular target for drug design against M. tuberculosis, and GMPS inhibitors might prove to be useful for future development of new drugs to treat human tuberculosis. The guaA gene is essential for M. tuberculosis H37Rv growth. The lethal phenotype of guaA gene disruption was avoided by the ortholog gene from M. smegmatis. Multiplexed LC–MS/MS analysis was performed to validate protein expression levels. The guaA essentiality was confirmed by gene replacement and quantitative mass spectrometry.
Collapse
Affiliation(s)
- Anne Drumond Villela
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Avenida Ipiranga, 6681, TecnoPUC 92A, 90619-900 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Avenida Ipiranga, 6690, Hospital São Lucas, 90619-900 Porto Alegre, RS, Brazil
| | - Paula Eichler
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Avenida Ipiranga, 6681, TecnoPUC 92A, 90619-900 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Avenida Ipiranga, 6681, Prédio 12A, 90619-900 Porto Alegre, RS, Brazil
| | - Antonio Frederico Michel Pinto
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Avenida Ipiranga, 6681, TecnoPUC 92A, 90619-900 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Avenida Ipiranga, 6681, Prédio 12A, 90619-900 Porto Alegre, RS, Brazil
| | - Valnês Rodrigues-Junior
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Avenida Ipiranga, 6681, TecnoPUC 92A, 90619-900 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Avenida Ipiranga, 6690, Hospital São Lucas, 90619-900 Porto Alegre, RS, Brazil
| | - John R Yates Iii
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037, USA
| | - Cristiano Valim Bizarro
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Avenida Ipiranga, 6681, TecnoPUC 92A, 90619-900 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Avenida Ipiranga, 6681, Prédio 12A, 90619-900 Porto Alegre, RS, Brazil
| | - Luiz Augusto Basso
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Avenida Ipiranga, 6681, TecnoPUC 92A, 90619-900 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Avenida Ipiranga, 6690, Hospital São Lucas, 90619-900 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Avenida Ipiranga, 6681, Prédio 12A, 90619-900 Porto Alegre, RS, Brazil
| | - Diógenes Santiago Santos
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS, Avenida Ipiranga, 6681, TecnoPUC 92A, 90619-900 Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, PUCRS, Avenida Ipiranga, 6681, Prédio 12A, 90619-900 Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Ramos S, Chafsey I, Silva N, Hébraud M, Santos H, Capelo-Martinez JL, Poeta P, Igrejas G. Effect of vancomycin on the proteome of the multiresistant Enterococcus faecium SU18 strain. J Proteomics 2015; 113:378-87. [DOI: 10.1016/j.jprot.2014.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/03/2014] [Accepted: 10/20/2014] [Indexed: 11/25/2022]
|
13
|
Oliver JC, Linger RS, Chittur SV, Davisson VJ. Substrate activation and conformational dynamics of guanosine 5'-monophosphate synthetase. Biochemistry 2013; 52:5225-35. [PMID: 23841499 DOI: 10.1021/bi3017075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glutamine amidotransferases catalyze the amination of a wide range of molecules using the amide nitrogen of glutamine. The family provides numerous examples for study of multi-active-site regulation and interdomain communication in proteins. Guanosine 5'-monophosphate synthetase (GMPS) is one of three glutamine amidotransferases in de novo purine biosynthesis and is responsible for the last step in the guanosine branch of the pathway, the amination of xanthosine 5'-monophosphate (XMP). In several amidotransferases, the intramolecular path of ammonia from glutamine to substrate is understood; however, the crystal structure of GMPS only hinted at the details of such transfer. Rapid kinetics studies provide insight into the mechanism of the substrate-induced changes in this complex enzyme. Rapid mixing of GMPS with substrates also manifests absorbance changes that report on the kinetics of formation of a reactive intermediate as well as steps in the process of rapid transfer of ammonia to this intermediate. Isolation and use of the adenylylated nucleotide intermediate allowed the study of the amido transfer reaction distinct from the ATP-dependent reaction. Changes in intrinsic tryptophan fluorescence upon mixing of enzyme with XMP suggest a conformational change upon substrate binding, likely the ordering of a highly conserved loop in addition to global domain motions. In the GMPS reaction, all forward rates before product release appear to be faster than steady-state turnover, implying that release is likely rate-limiting. These studies establish the functional role of a substrate-induced conformational change in the GMPS catalytic cycle and provide a kinetic context for the formation of an ammonia channel linking the distinct active sites.
Collapse
Affiliation(s)
- Justin C Oliver
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University , West Lafayette, Indiana 47907, United States
| | | | | | | |
Collapse
|