1
|
Chitosan/Albumin Coating Factorial Optimization of Alginate/Dextran Sulfate Cores for Oral Delivery of Insulin. Mar Drugs 2023; 21:md21030179. [PMID: 36976228 PMCID: PMC10057083 DOI: 10.3390/md21030179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
The design of nanoparticle formulations composed of biopolymers, that govern the physicochemical properties of orally delivered insulin, relies on improving insulin stability and absorption through the intestinal mucosa while protecting it from harsh conditions in the gastrointestinal (GI) tract. Chitosan/polyethylene glycol (PEG) and albumin coating of alginate/dextran sulfate hydrogel cores are presented as a multilayer complex protecting insulin within the nanoparticle. This study aims to optimize a nanoparticle formulation by assessing the relationship between design parameters and experimental data using response surface methodology through a 3-factor 3-level optimization Box–Behnken design. While the selected independent variables were the concentrations of PEG, chitosan and albumin, the dependent variables were particle size, polydispersity index (PDI), zeta potential, and insulin release. Experimental results showed a nanoparticle size ranging from 313 to 585 nm, with PDI from 0.17 to 0.39 and zeta potential ranging from −29 to −44 mV. Insulin bioactivity was maintained in simulated GI media with over 45% cumulative release after 180 min in a simulated intestinal medium. Based on the experimental responses and according to the criteria of desirability on the experimental region’s constraints, solutions of 0.03% PEG, 0.047% chitosan and 1.20% albumin provide an optimum nanoparticle formulation for insulin oral delivery.
Collapse
|
2
|
Wang H, Xu MZ, Liang XY, Nag A, Zeng QZ, Yuan Y. Fabrication of food grade zein-dispersed selenium dual-nanoparticles with controllable size, cell friendliness and oral bioavailability. Food Chem 2023; 398:133878. [DOI: 10.1016/j.foodchem.2022.133878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/17/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
|
3
|
De Marchi J, Cé R, Bruschi L, Santos M, Paese K, Lavayen V, Klamt F, Pohlmann A, Guterres S. Triclosan and ⍺-bisabolol–loaded nanocapsule functionalized with ascorbic acid as a dry powder formulation against A549 lung cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
De Marchi JGB, Cé R, Onzi G, Alves ACS, Santarém N, Cordeiro da Silva A, Pohlmann AR, Guterres SS, Ribeiro AJ. IgG functionalized polymeric nanoparticles for oral insulin administration. Int J Pharm 2022; 622:121829. [PMID: 35580686 DOI: 10.1016/j.ijpharm.2022.121829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
The oral route is the best way to administer a drug; however, fitting peptide drugs in this route is a major challenge. In insulin cases, less than 0.5% of the administered dose achieves systemic circulation. Oral delivery by nanoparticles can increase insulin permeability across the intestinal epithelium while maintaining its structure and activity until release in the gut. This system can be improved to increase permeability across intestinal cells through active delivery. This study aimed to improve a nanoparticle formulation by promoting functionalization of its surface with immunoglobulin G to increase its absorption by intestinal epithelium. The characterization of formulations showed an adequate size and a good entrapment efficiency. Functionalized nanoparticles led to a desirable increase in insulin release time. Differential scanning calorimetry, infrared spectroscopy and paper chromatography proved the interactions of nanoparticle components. With immunoglobulin G, the nanoparticle size was slightly increased, which did not show aggregate formation. The developed functionalized nanoparticle formulation proved to be adequate to carry insulin and potentially increase its internalization by epithelial gut cells, being a promising alternative to the existing formulations for orally administered low-absorption peptides.
Collapse
Affiliation(s)
- J G B De Marchi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil; Universidade de Coimbra, Faculdade de Farmácia, Coimbra, Portugal
| | - R Cé
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil; Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90650-001, Brazil
| | - G Onzi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil
| | - A C S Alves
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil; Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90650-001, Brazil
| | - N Santarém
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - A Cordeiro da Silva
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; i(3)S, IBMC, Rua Alfredo Allen, Porto, Portugal
| | - A R Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil; Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90650-001, Brazil
| | - S S Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 90610-000, Brazil
| | - A J Ribeiro
- Universidade de Coimbra, Faculdade de Farmácia, Coimbra, Portugal; i(3)S, IBMC, Rua Alfredo Allen, Porto, Portugal.
| |
Collapse
|
5
|
Wong CYJ, Al-Salami H, Dass CR. β-Cyclodextrin-containing chitosan-oligonucleotide nanoparticles improve insulin bioactivity, gut cellular permeation and glucose consumption. J Pharm Pharmacol 2021; 73:726-739. [PMID: 33769519 DOI: 10.1093/jpp/rgaa052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/08/2020] [Indexed: 01/25/2023]
Abstract
OBJECTIVES The main objective of the present study was to develop a nanoparticulate drug delivery system that can protect insulin against harsh conditions in the gastrointestinal (GI) tract. The effects of the following employed techniques, including lyophilisation, cross-linking and nanoencapsulation, on the physicochemical properties of the formulation were investigated. METHODS We herein developed a nanocarrier via ionotropic gelation by using positively charged chitosan and negatively charged Dz13Scr. The lyophilised nanoparticles with optimal concentrations of tripolyphosphate (cross-linking agent) and β-cyclodextrin (stabilising agent) were characterised by using physical and cellular assays. KEY FINDINGS The addition of cryoprotectants (1% sucrose) in lyophilisation improved the stability of nanoparticles, enhanced the encapsulation efficiency, and ameliorated the pre-mature release of insulin at acidic pH. The developed lyophilised nanoparticles did not display any cytotoxic effects in C2C12 and HT-29 cells. Glucose consumption assays showed that the bioactivity of entrapped insulin was maintained post-incubation in the enzymatic medium. CONCLUSIONS Freeze-drying with appropriate cryoprotectant could conserve the physiochemical properties of the nanoparticles. The bioactivity of the entrapped insulin was maintained. The prepared nanoparticles could facilitate the permeation of insulin across the GI cell line.
Collapse
Affiliation(s)
- Chun Yuen Jerry Wong
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley,Australia.,Curtin Health Innovation Research Institute, Bentley,Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley,Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley,Australia.,Curtin Health Innovation Research Institute, Bentley,Australia
| |
Collapse
|
6
|
Wong CY, Al-Salami H, Dass CR. Fabrication techniques for the preparation of orally administered insulin nanoparticles. J Drug Target 2021; 29:365-386. [PMID: 32876505 DOI: 10.1080/1061186x.2020.1817042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The development of orally administered protein drugs is challenging due to their intrinsic unfavourable features, including large molecular size and poor chemical stability, both of which limit gastrointestinal (GI) absorption efficiency. Nanoparticles can overcome the GI barriers effectively and improve the oral bioavailability of proteins in the GI tract. They possess large surface area to volume ratio, and can facilitate the GI absorption of nanoparticles via the paracellular and transcellular routes. Nanoparticles can be prepared by various fabrication techniques that can encapsulate the fragile therapeutic proteins via hydrophobic bonding and electrostatic interaction. A desirable technique should involve minimal harsh conditions and encapsulate therapeutic proteins with preserved functionalities. The current review examines the characteristics of each preparation technique, and illustrates the examples of insulin-loaded nanoparticles that have been developed in each fabrication method. The following techniques, which include nanoprecipitation, hydrophobic conjugation, flash nanocomplexation, double emulsion, ionotropic gelation, and layer-by-layer adsorption, have been used to formulate ligand-modified nanoparticles for targeted delivery of insulin. Other techniques, including reduction, complex coacervation (polyelectrolyte complexation), hydrophobic ion pairing and emulsion solvent diffusion method, and sol-gel technology, were also discussed in the latter part of the review due to their extensive use in fabrication of insulin nanoparticles. This review also discusses the strategies that have been utilised during the formulation process to improve the stability and bioactivity of therapeutic proteins.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
7
|
Fuchs S, Ernst AU, Wang LH, Shariati K, Wang X, Liu Q, Ma M. Hydrogels in Emerging Technologies for Type 1 Diabetes. Chem Rev 2020; 121:11458-11526. [DOI: 10.1021/acs.chemrev.0c01062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander U. Ernst
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Long-Hai Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xi Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
8
|
Bianchera A, Bettini R. Polysaccharide nanoparticles for oral controlled drug delivery: the role of drug-polymer and interpolymer interactions. Expert Opin Drug Deliv 2020; 17:1345-1359. [PMID: 32602795 DOI: 10.1080/17425247.2020.1789585] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The oral route still represents the most popular way of administering drugs; nowadays oral administration faces new challenges, in particular with regards to the delivery of APIs that are poorly absorbed and sensitive to degradation such as macromolecules and biotechnological drugs. Nanoparticles are promising tools for the efficient delivery of these drugs to the gastrointestinal tract. Areas covered:Approaches and techniques for the formulation of drugs, with particular focus on the preparation of polysaccharide nanoparticles obtained by non-covalent interactions. Expert opinion:Polysaccharide-based nanoparticulate systems offer the opportunity to address some of the issues posed by biotechnological drugs, as well as by small molecules, with problems of stability/intestinal absorption, by exploiting the capability of the polymer to establish non-covalent bonds with functional groups in the chemical structure of the API. This area of research will continue to grow, provided that these drug delivery technologies will efficaciously be translated into systems that can be manufactured on a large scale under GMP conditions. Industrial scale-up represents the biggest obstacle to overcome in view of the transformation of very promising results obtained on lab scale into medicinal products. To do that, an effort toward the simplification of the process and technologies is necessary.
Collapse
Affiliation(s)
- Annalisa Bianchera
- Food and Drug Department, Viale Delle Scienze 27/a, University of Parma , Parma, Italy
| | - Ruggero Bettini
- Food and Drug Department, Viale Delle Scienze 27/a, University of Parma , Parma, Italy
| |
Collapse
|
9
|
Freitas AAR, Ribeiro AJ, Santos AC, Veiga F, Nunes LCC, Silva DA, Soares-Sobrinho JL, Silva-Filho EC. Sterculia striata gum as a potential oral delivery system for protein drugs. Int J Biol Macromol 2020; 164:1683-1692. [PMID: 32750476 DOI: 10.1016/j.ijbiomac.2020.07.276] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 12/11/2022]
Abstract
Natural polysaccharides have been investigated as vehicles for oral insulin administration. Because of their non-toxic, renewable, low cost and readily available properties, gums find multiple applications in the pharmaceutical industry. This work aimed to develop a Sterculia striata gum-based formulation associated with additional biopolymers (dextran sulfate, chitosan, and albumin), a crosslinking agent (calcium chloride) and stabilizing agents (polyethylene glycol and poloxamer 188), to increase the oral bioavailability of proteins. Insulin was used as a model drug and the methods used to prepare the formulation were based on ionotropic pregelation followed by electrolytic complexation of oppositely charged biopolymers under controlled pH conditions. The developed formulation was characterized to validate its efficacy, by the determination of its average particle size (622 nm), the insulin encapsulation efficiency (70%), stability in storage for 30 days, and the in vitro mucoadhesion strength (92.46 mN). Additionally, the developed formulation preserved about 64% of initial insulin dose in a simulated gastric medium. This study proposed, for the first time, a Sterculia striata gum-based insulin delivery system with potential for the oral administration of protein drugs, being considered a valid alternative for efficient delivery of those drugs.
Collapse
Affiliation(s)
- Alessandra A R Freitas
- Postgraduate Program of Northeast Biotechnology Network, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Antonio J Ribeiro
- University of Coimbra, Faculty of Pharmacy, Laboratory of Pharmaceutical Technology, Portugal
| | - Ana Claudia Santos
- University of Coimbra, Faculty of Pharmacy, Laboratory of Pharmaceutical Technology, Portugal
| | - Francisco Veiga
- University of Coimbra, Faculty of Pharmacy, Laboratory of Pharmaceutical Technology, Portugal
| | - Livio C C Nunes
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Durcilene A Silva
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - José L Soares-Sobrinho
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Edson C Silva-Filho
- Interdisciplinary Laboratory of Advanced Materials, Materials Engineering Department, Federal University of Piauí, Teresina, Piauí, Brazil.
| |
Collapse
|
10
|
Wong CY, Martinez J, Zhao J, Al-Salami H, Dass CR. Development of orally administered insulin-loaded polymeric-oligonucleotide nanoparticles: statistical optimization and physicochemical characterization. Drug Dev Ind Pharm 2020; 46:1238-1252. [PMID: 32597264 DOI: 10.1080/03639045.2020.1788061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Therapeutic peptides are administered via parenteral route due to poor absorption in the gastrointestinal (GI) tract, instability in gastric acid, and GI enzymes. Polymeric drug delivery systems have achieved significant interest in pharmaceutical research due to its feasibility in protecting proteins, tissue targeting, and controlled drug release pattern. MATERIALS AND METHODS In this study, the size, polydispersity index, and zeta potential of insulin-loaded nanoparticles were characterized by dynamic light scattering and laser Doppler micro-electrophoresis. The main and interaction effects of chitosan concentration and Dz13Scr concentration on the physicochemical properties of the prepared insulin-loaded nanoparticles (size, polydispersity index, and zeta potential) were evaluated statistically using analysis of variance. A robust procedure of reversed-phase high-performance liquid chromatography was developed to quantify insulin release in simulated GI buffer. Results and discussion: We reported on the effect of two independent parameters, including polymer concentration and oligonucleotide concentration, on the physical characteristics of particles. Chitosan concentration was significant in predicting the size of insulin-loaded CS-Dz13Scr particles. In terms of zeta potential, both chitosan concentration and squared term of chitosan were significant factors that affect the surface charge of particles, which was attributed to the availability of positively-charged amino groups during interaction with negatively-charged Dz13Scr. The excipients used in this study could fabricate nanoparticles with negligible toxicity in GI cells and skeletal muscle cells. The developed formulation could conserve the physicochemical properties after being stored for 1 month at 4 °C. CONCLUSION The obtained results revealed satisfactory results for insulin-loaded CS-Dz13Scr nanoparticles (159.3 nm, pdi 0.331, -1.08 mV). No such similar study has been reported to date to identify the main and interactive significance of the above parameters for the characterization of insulin-loaded polymeric-oligonucleotide nanoparticles. This research is of importance for the understanding and development of protein-loaded nanoparticles for oral delivery.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| | - Jorge Martinez
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia
| | - Jian Zhao
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,NIHR Bristol Biomedical Research Centre, University of Bristol, Bristol, UK.,Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Bentley, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Australia.,Curtin Health Innovation Research Institute, Bentley, Australia
| |
Collapse
|
11
|
Wong CY, Al-Salami H, Dass CR. Formulation and characterisation of insulin-loaded chitosan nanoparticles capable of inducing glucose uptake in skeletal muscle cells in vitro. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101738] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Wong CY, Al-Salami H, Dass CR. Lyophilisation Improves Bioactivity and Stability of Insulin-Loaded Polymeric-Oligonucleotide Nanoparticles for Diabetes Treatment. AAPS PharmSciTech 2020; 21:108. [PMID: 32215761 DOI: 10.1208/s12249-020-01648-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/21/2020] [Indexed: 12/23/2022] Open
Abstract
The oral bioavailability of therapeutic proteins is limited by the gastrointestinal barriers. Encapsulation of labile proteins into nanoparticles is a promising strategy. In order to improve the stability of nanoparticles, lyophilisation has been used to remove water molecules from the suspension. Although various cryoprotections were employed in the preparation of lyophilised nanoparticles, the selection of cryoprotectant type and concentration in majority of the developed formulation was not justified. In this study, nanoparticles were fabricated by cationic chitosan and anionic Dz13Scr using complex coacervation. The effect of cryoprotectant types (mannitol, sorbitol, sucrose and trehalose) and their concentrations (1, 3, 5, 7, 10% w/v) on physiochemical properties of nanoparticles were measured. Cellular assays were performed to investigate the impact of selected cryoprotectant on cytotoxicity, glucose consumption, oral absorption mechanism and gastrointestinal permeability. The obtained results revealed that mannitol (7% w/v) could produce nanoparticles with small size (313.2 nm), slight positive charge and uniform size distribution. The addition of cryoprotectant could preserve the bioactivity of entrapped insulin and improve the stability of nanoparticles against mechanical stress during lyophilisation. The gastrointestinal absorption of nanoparticles is associated with both endocytic and paracellular pathways. With the use of 7% mannitol, lyophilised nanoparticles induced a significant glucose uptake in C2C12 cells. This work illustrated the importance of appropriate cryoprotectant in conservation of particle physiochemical properties, structural integrity and bioactivity. An incompatible cryoprotectant and inappropriate concentration could lead to cake collapse and formation of heterogeneous particle size populations.
Collapse
|
13
|
Collado-González M, Ferreri MC, Freitas AR, Santos AC, Ferreira NR, Carissimi G, Sequeira JAD, Díaz Baños FG, Villora G, Veiga F, Ribeiro A. Complex Polysaccharide-Based Nanocomposites for Oral Insulin Delivery. Mar Drugs 2020; 18:md18010055. [PMID: 31952203 PMCID: PMC7024366 DOI: 10.3390/md18010055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/30/2022] Open
Abstract
Polyelectrolyte nanocomposites rarely reach a stable state and aggregation often occurs. Here, we report the synthesis of nanocomposites for the oral delivery of insulin composed of alginate, dextran sulfate, poly-(ethylene glycol) 4000, poloxamer 188, chitosan, and bovine serum albumin. The nanocomposites were obtained by Ca2+-induced gelation of alginate followed by an electrostatic-interaction process among the polyelectrolytes. Chitosan seemed to be essential for the final size of the nanocomposites and there was an optimal content that led to the synthesis of nanocomposites of 400–600 nm hydrodynamic size. The enhanced stability of the synthesized nanocomposites was assessed with LUMiSizer after synthesis. Nanocomposite stability over time and under variations of ionic strength and pH were assessed with dynamic light scattering. The rounded shapes of nanocomposites were confirmed by scanning electron microscopy. After loading with insulin, analysis by HPLC revealed complete drug release under physiologically simulated conditions.
Collapse
Affiliation(s)
- Mar Collado-González
- Department of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
- Department of Pharmaceutical technology, Faculty of Pharmacy of the University of Coimbra, 3000-548 Coimbra, Portugal; (M.C.F.); (A.R.F.); (A.C.S.); (J.A.D.S.); (F.V.)
- Faculty of Pharmacy of the University of Coimbra, 3000-548 Coimbra, Portugal;
- Correspondence: (M.C.-G.); (A.R.)
| | - Maria Cristina Ferreri
- Department of Pharmaceutical technology, Faculty of Pharmacy of the University of Coimbra, 3000-548 Coimbra, Portugal; (M.C.F.); (A.R.F.); (A.C.S.); (J.A.D.S.); (F.V.)
| | - Alessandra R. Freitas
- Department of Pharmaceutical technology, Faculty of Pharmacy of the University of Coimbra, 3000-548 Coimbra, Portugal; (M.C.F.); (A.R.F.); (A.C.S.); (J.A.D.S.); (F.V.)
| | - Ana Cláudia Santos
- Department of Pharmaceutical technology, Faculty of Pharmacy of the University of Coimbra, 3000-548 Coimbra, Portugal; (M.C.F.); (A.R.F.); (A.C.S.); (J.A.D.S.); (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Nuno R. Ferreira
- Faculty of Pharmacy of the University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Guzmán Carissimi
- Department of Chemical Engineering, University of Murcia, 30100 Murcia, Spain; (G.C.); (G.V.)
| | - Joana A. D. Sequeira
- Department of Pharmaceutical technology, Faculty of Pharmacy of the University of Coimbra, 3000-548 Coimbra, Portugal; (M.C.F.); (A.R.F.); (A.C.S.); (J.A.D.S.); (F.V.)
| | | | - Gloria Villora
- Department of Chemical Engineering, University of Murcia, 30100 Murcia, Spain; (G.C.); (G.V.)
| | - Francisco Veiga
- Department of Pharmaceutical technology, Faculty of Pharmacy of the University of Coimbra, 3000-548 Coimbra, Portugal; (M.C.F.); (A.R.F.); (A.C.S.); (J.A.D.S.); (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Antonio Ribeiro
- Department of Pharmaceutical technology, Faculty of Pharmacy of the University of Coimbra, 3000-548 Coimbra, Portugal; (M.C.F.); (A.R.F.); (A.C.S.); (J.A.D.S.); (F.V.)
- Correspondence: (M.C.-G.); (A.R.)
| |
Collapse
|
14
|
Fang Y, Li S, Ye L, Yi J, Li X, Gao C, Wu F, Guo B. Increased bioaffinity and anti-inflammatory activity of florfenicol nanocrystals by wet grinding method. J Microencapsul 2019; 37:109-120. [PMID: 31814493 DOI: 10.1080/02652048.2019.1701115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Context: The main objective of the current study is to improve the water solubility of florfenicol (FF) and evaluate changes in its pharmacokinetics and anti-inflammatory activity.Materials and methods: Florfenicol nanocrystals (FF-NC) were prepared by wet grinding combined with spray drying. The characterisations, pharmacokinetics, and anti-inflammatory activity of FF-NC were evaluated.Results: The particle size, polydispersity index (PDI), and zeta potential of FF-NC were 276.4 ± 19.4 nm, 0.166 ± 0.011, and -18.66 ± 5.25 mV, respectively. Compared with FF, FF-NC showed a better dissolution rate in media at different pH. Pharmacokinetic experiments showed the area under the curve (AUC0-t), maximum concentration (Cmax), and mean residence time (MRT) of FF-NC were about 4.62-fold, 2.86-fold, and 1.68-fold higher compared with FF, respectively. In vitro anti-inflammatory experiments showed that FF inhibited the secretion of tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), and synthesis of NO in a dose-dependent manner, while FF-NC showed a stronger anti-inflammatory effect than FF under the same dose.Conclusion: FF-NC are an effective way to improve the bioaffinity and anti-inflammatory effects of FF.
Collapse
Affiliation(s)
- Yuqi Fang
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuqi Li
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lijuan Ye
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jun Yi
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaofang Li
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chongkai Gao
- Guangdong Run Hua Pharmaceutical Co., Ltd, Jieyang, China
| | - Fang Wu
- Guangdong Run Hua Pharmaceutical Co., Ltd, Jieyang, China
| | - Bohong Guo
- Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
15
|
Wong CY, Luna G, Martinez J, Al-Salami H, Dass CR. Bio-nanotechnological advancement of orally administered insulin nanoparticles: Comprehensive review of experimental design for physicochemical characterization. Int J Pharm 2019; 572:118720. [PMID: 31715357 DOI: 10.1016/j.ijpharm.2019.118720] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022]
Abstract
Therapeutic proteins are labile macromolecules that are prone to degradation during production, freeze-drying and storage. Recent studies showed that nanoparticles can enhance the stability and oral bioavailability of encapsulated proteins. Several conventional approaches (enzyme inhibitors, mucoadhesive polymers) and novel strategies (surface modification, ligand conjugation, flash nano-complexation, stimuli-responsive drug delivery systems) have been employed to improve the physiochemical properties of nanoparticles such as size, zeta potential, morphology, polydispersity index, drug release kinetics and cell-targeting capacity. However, clinical translation of protein-based nanoparticle is limited due to poor experimental design, protocol non-compliance and instrumentation set-up that do not reflect the physiological conditions, resulting in difficulties in mass production of nanoparticles and waste in research funding. In order to address the above concerns, we conducted a comprehensive review to examine the experimental designs and conditions for physical characterization of protein-based nanoparticles. Reliable and robust characterization is essential to verify the cellular interactions and therapeutic potential of protein-based nanoparticles. Importantly, there are a number of crucial factors, which include sample treatment, analytical method, dispersants, sampling grid, staining, quantification parameters, temperature, drug concentration and research materials, should be taken into careful consideration. Variations in research protocol and unreasonable conditions that are used in optimization of pharmaceutical formulations can have great impact in result interpretation. Last but not least, we reviewed all novel instrumentations and assays that are available to examine mucus diffusion capacity, stability and bioactivity of protein-based nanoparticles. These include circular dichroism, fourier transform infrared spectroscopy, X-ray diffractogram, UV spectroscopy, differential scanning calorimetry, fluorescence spectrum, Förster resonance energy transfer, NMR spectroscopy, Raman spectroscopy, cellular assays and animal models.
Collapse
Affiliation(s)
- Chun Y Wong
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia
| | - Giuseppe Luna
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley 6102, Australia
| | - Jorge Martinez
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley 6102, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia; Biotechnology and Drug Development Research Laboratory, Curtin University, Bentley 6102, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley 6102, Australia; Curtin Health Innovation Research Institute, Bentley 6102, Australia.
| |
Collapse
|
16
|
Vasconcelos Silva EDL, Oliveira ACDJ, Patriota YBG, Ribeiro AJ, Veiga F, Hallwass F, Silva-Filho EC, da Silva DA, Soares MFDLR, Wanderley AG, Soares-Sobrinho JL. Solvent-free synthesis of acetylated cashew gum for oral delivery system of insulin. Carbohydr Polym 2018; 207:601-608. [PMID: 30600045 DOI: 10.1016/j.carbpol.2018.11.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/19/2018] [Accepted: 11/22/2018] [Indexed: 11/16/2022]
Abstract
Cashew gum (CG) is a biopolymer that presents a favorable chemical environment for structural modifications, which leads to more stable and resistant colloidal systems. The gum was subjected to an acetylation reaction using a fast, simple, solvent-free and low cost methodology. The derivative was characterized by infrared and NMR spectroscopy, elemental analysis, coefficient of solubility and zeta potential. The modified biopolymer was used as a platform for drug delivery systems using insulin as a model drug. Nanoparticles were developed through the technique of polyelectrolytic complexation and were characterized by size, surface charge, entrapment efficiency and gastrointestinal release profile. The nanoparticles presented size of 460 nm with a 52.5% efficiency of entrapment of insulin and the electrostatic stabilization was suggested by the zeta potential of + 30.6 mV. Sustained release of insulin was observed for up to 24 h. The results showed that acetylated cashew gum (ACG) presented potential as a vehicle for sustained oral insulin release.
Collapse
Affiliation(s)
| | | | | | - António José Ribeiro
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal
| | - Francisco Veiga
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal
| | - Fernando Hallwass
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Durcilene Alves da Silva
- Research Center on Biodiversity and Biotechnology, Federal University of Piauí, Parnaíba, PI, Brazil
| | | | | | | |
Collapse
|
17
|
Cikrikci S, Mert B, Oztop MH. Development of pH Sensitive Alginate/Gum Tragacanth Based Hydrogels for Oral Insulin Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11784-11796. [PMID: 30346766 DOI: 10.1021/acs.jafc.8b02525] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Insulin entrapped alginate-gum tragacanth (ALG-GT) hydrogels at different ALG replacement ratios (100, 75, 50, 25) were prepared through an ionotropic gelation method, followed by chitosan (CH) polyelectrolyte complexation. A mild gelation process without the use of harsh chemicals was proposed to improve insulin efficiency. Retention of almost the full amount of entrapped insulin in a simulated gastric environment and sustained insulin release in simulated intestinal buffer indicated the pH sensitivity of the gels. Insulin release from hydrogels with different formulations showed significant differences ( p < 0.05). Time domain (TD) NMR relaxometry experiments also showed the differences for different formulations, and the presence of CH revealed that ALG-GT gel formulation could be used as an oral insulin carrier at optimum concentrations. The hydrogels formulated from biodegradable, biocompatible, and nontoxic natural polymers were seen as promising devices for potential oral insulin delivery.
Collapse
Affiliation(s)
- Sevil Cikrikci
- Food Engineering Department , Middle East Technical University , Ankara 06800 , Turkey
| | - Behic Mert
- Food Engineering Department , Middle East Technical University , Ankara 06800 , Turkey
| | - Mecit Halil Oztop
- Food Engineering Department , Middle East Technical University , Ankara 06800 , Turkey
| |
Collapse
|
18
|
Güncüm E, Işıklan N, Anlaş C, Ünal N, Bulut E, Bakırel T. Development and characterization of polymeric-based nanoparticles for sustained release of amoxicillin – an antimicrobial drug. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:964-973. [DOI: 10.1080/21691401.2018.1476371] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Enes Güncüm
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Nuran Işıklan
- Department of Chemistry, Faculty of Science and Arts, Kırıkkale University, Kırıkkale, Turkey
| | - Ceren Anlaş
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University, Istanbul, Turkey
| | - Nilgün Ünal
- Department of Microbiology, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Elif Bulut
- Department of Microbiology, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Tülay Bakırel
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
19
|
Güncüm E, Bakırel T, Anlaş C, Ekici H, Işıklan N. Novel amoxicillin nanoparticles formulated as sustained release delivery system for poultry use. J Vet Pharmacol Ther 2018; 41:588-598. [DOI: 10.1111/jvp.12505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/05/2018] [Indexed: 12/17/2022]
Affiliation(s)
- E. Güncüm
- Department of Pharmacology and Toxicology; Faculty of Veterinary Medicine; Kırıkkale University; Yahşihan Kırıkkale Turkey
| | - T. Bakırel
- Department of Pharmacology and Toxicology; Faculty of Veterinary Medicine; Istanbul University; Avcılar, Istanbul Turkey
| | - C. Anlaş
- Department of Pharmacology and Toxicology; Faculty of Veterinary Medicine; Istanbul University; Avcılar, Istanbul Turkey
| | - H. Ekici
- Department of Pharmacology and Toxicology; Faculty of Veterinary Medicine; Kırıkkale University; Yahşihan Kırıkkale Turkey
| | - N. Işıklan
- Department of Chemistry; Faculty of Science and Arts; Kırıkkale University; Yahşihan Kırıkkale Turkey
| |
Collapse
|
20
|
Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment. J Control Release 2017; 264:247-275. [DOI: 10.1016/j.jconrel.2017.09.003] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 12/28/2022]
|
21
|
Gurina MS, Vil’danova RR, Badykova LA, Vlasova NM, Kolesov SV. Microparticles based on chitosan–hyaluronic acid interpolyelectrolyte complex, which provide stability of aqueous dispersions. RUSS J APPL CHEM+ 2017. [DOI: 10.1134/s1070427217020100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Nur M, Vasiljevic T. Can natural polymers assist in delivering insulin orally? Int J Biol Macromol 2017; 103:889-901. [PMID: 28552728 DOI: 10.1016/j.ijbiomac.2017.05.138] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/01/2017] [Accepted: 05/23/2017] [Indexed: 02/02/2023]
Abstract
Diabetes mellitus is one of the most grave and lethal non communicable diseases. Insulin is normally used to medicate diabetes. Due to bioavailability issues, the most regular route of administration is through injection, which may pose compliance problems to treatment. The oral administration thus appears as a suitable alternative, but with several important problems. Low stability of insulin in the gastrointestinal tract and low intestinal permeation are some of the issues. Encapsulation of insulin into polymer-based particles emerges as a plausible strategy. Different encapsulation approaches and polymers have been used in this regard. Polymers with different characteristics from natural or synthetic origin have been assessed to attain this goal, with natural polymers being preferable. Natural polymers studied so far include chitosan, alginate, carrageenan, starch, pectin, casein, tragacanth, dextran, carrageenan, gelatine and cyclodextrin. While some promising knowledge and results have been gained, a polymeric-based particle system to deliver insulin orally has not been introduced onto the market yet. In this review, effectiveness of different natural polymer materials developed so far along with fabrication techniques are evaluated.
Collapse
Affiliation(s)
- Mokhamad Nur
- Advanced Food Systems Research Unit, College of Health and Biomedicine, Victoria University, PO Box 14428, Melbourne, 8001, Australia; Department of Agricultural Product Technology, Faculty of Agricultural Technology, Brawijaya University, Jl. Veteran, 65145, Malang, Indonesia
| | - Todor Vasiljevic
- Advanced Food Systems Research Unit, College of Health and Biomedicine, Victoria University, PO Box 14428, Melbourne, 8001, Australia.
| |
Collapse
|
23
|
In vivo biodistribution of antihyperglycemic biopolymer-based nanoparticles for the treatment of type 1 and type 2 diabetes. Eur J Pharm Biopharm 2017; 113:88-96. [DOI: 10.1016/j.ejpb.2016.11.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/25/2016] [Accepted: 11/30/2016] [Indexed: 01/03/2023]
|
24
|
Zu Y, Yong Y, Zhang X, Yu J, Dong X, Yin W, Yan L, Zhao F, Gu Z, Zhao Y. Protein-directed synthesis of Bi2S3 nanoparticles as an efficient contrast agent for visualizing the gastrointestinal tract. RSC Adv 2017. [DOI: 10.1039/c7ra01526g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BSA@Bi2S3 nanoparticles can be applied for CT imaging of the gastrointestinal tract, realizing the visualization of gastrointestinal structures.
Collapse
|
25
|
Lopes M, Shrestha N, Correia A, Shahbazi MA, Sarmento B, Hirvonen J, Veiga F, Seiça R, Ribeiro A, Santos HA. Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. J Control Release 2016; 232:29-41. [PMID: 27074369 DOI: 10.1016/j.jconrel.2016.04.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/03/2016] [Accepted: 04/06/2016] [Indexed: 10/22/2022]
Abstract
The potential of nanoparticles (NPs) to overcome the barriers for oral delivery of protein drugs have led to the development of platforms capable of improving their bioavailability. However, despite the progresses in drug delivery technologies, the success of oral delivery of insulin remains elusive and the disclosure of insulin mechanisms of absorption remains to be clarified. To overcome multiple barriers faced by oral insulin and to enhance the insulin permeability across the intestinal epithelium, here insulin-loaded alginate/dextran sulfate (ADS)-NPs were formulated and dual-coated with chitosan (CS) and albumin (ALB). The nanosystem was characterized by its pH-sensitivity and mucoadhesivity, which enabled to prevent 70% of in vitro insulin release in simulated gastric conditions and allowed a sustained insulin release following the passage to simulated intestinal conditions. The pH and time-dependent morphology of the NPs was correlated to the release and permeation profile of insulin. Dual CS/ALB coating of the ADS-NPs demonstrated augmented intestinal interactions with the intestinal cells in comparison to the uncoated-NPs, resulting in a higher permeability of insulin across Caco-2/HT29-MTX/Raji B cell monolayers. The permeability of the insulin-loaded ALB-NPs was reduced after the temperature was decreased and after co-incubation with chlorpromazine, suggesting an active insulin transport by clathrin-mediated endocytosis. Moreover, the permeability inhibition with the pre-treatment with sodium chlorate suggested that the interaction between glycocalix and the NPs was critical for insulin permeation. Overall, the developed nanosystem has clinical potential for the oral delivery of insulin and therapy of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Marlene Lopes
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; CNrC-Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| | - Neha Shrestha
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Alexandra Correia
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mohammad-Ali Shahbazi
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Bruno Sarmento
- CESPU, Instituto de Investigacão e Formacão Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, 4150-180 Porto, Portugal; I3S-Instituto de Investigacão e Inovacão em Saúde, University of Porto, 4150-180 Porto, Portugal
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; CNrC-Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| | - Raquel Seiça
- IBILI-Instituto de Imagem Biomédica e Ciências da Vida, 3000-548 Coimbra, Portugal
| | - António Ribeiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; I3S-Instituto de Investigacão e Inovacão em Saúde, University of Porto, 4150-180 Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, 4150-180 Porto, Portugal.
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
26
|
Lopes M, Derenne A, Pereira C, Veiga F, Seiça R, Sarmento B, Ribeiro A. Impact of the in vitro gastrointestinal passage of biopolymer-based nanoparticles on insulin absorption. RSC Adv 2016. [DOI: 10.1039/c5ra26224k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Behavior of insulin-loaded biopolymer-based nanoparticles upon passage through the gastrointestinal tract. Intestinal pH triggered insulin release from nanoparticles, allowing its permeability through cell-based engineered intestinal models.
Collapse
Affiliation(s)
- Marlene Lopes
- Faculty of Pharmacy
- University of Coimbra
- 3000-548 Coimbra
- Portugal
- CNC – Center for Neuroscience and Cell Biology
| | - Amelie Derenne
- Faculty of Pharmacy
- University of Coimbra
- 3000-548 Coimbra
- Portugal
- Faculty of Medicine
| | - Carla Pereira
- I3S – Instituto de Investigação e Inovação em Saúde
- University of Porto
- 4150-180 Porto
- Portugal
| | - Francisco Veiga
- Faculty of Pharmacy
- University of Coimbra
- 3000-548 Coimbra
- Portugal
- CNC – Center for Neuroscience and Cell Biology
| | - Raquel Seiça
- Laboratory of Physiology
- IBILI – Institute for Biomedical Imaging and Life Sciences
- Faculty of Medicine
- 3000-548 Coimbra
- Portugal
| | - Bruno Sarmento
- I3S – Instituto de Investigação e Inovação em Saúde
- University of Porto
- 4150-180 Porto
- Portugal
- CESPU
| | - António Ribeiro
- Faculty of Pharmacy
- University of Coimbra
- 3000-548 Coimbra
- Portugal
- I3S – Instituto de Investigação e Inovação em Saúde
| |
Collapse
|
27
|
Ramadan E, Borg T, Abdelghani GM, Saleh NM. Transdermal microneedle-mediated delivery of polymeric lamivudine-loaded nanoparticles. ACTA ACUST UNITED AC 2016. [DOI: 10.7243/2050-120x-5-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Al Rubeaan K, Rafiullah M, Jayavanth S. Oral insulin delivery systems using chitosan-based formulation: a review. Expert Opin Drug Deliv 2015; 13:223-37. [DOI: 10.1517/17425247.2016.1107543] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Lopes MA, Abrahim-Vieira B, Oliveira C, Fonte P, Souza AMT, Lira T, Sequeira JAD, Rodrigues CR, Cabral LM, Sarmento B, Seiça R, Veiga F, Ribeiro AJ. Probing insulin bioactivity in oral nanoparticles produced by ultrasonication-assisted emulsification/internal gelation. Int J Nanomedicine 2015; 10:5865-80. [PMID: 26425087 PMCID: PMC4583106 DOI: 10.2147/ijn.s86313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Alginate-dextran sulfate-based particles obtained by emulsification/internal gelation technology can be considered suitable carriers for oral insulin delivery. A rational study focused on the emulsification and particle recovery steps was developed in order to reduce particles to the nanosize range while keeping insulin bioactivity. There was a decrease in size when ultrasonication was used during emulsification, which was more pronounced when a cosurfactant was added. Ultrasonication add-on after particle recovery decreased aggregation and led to a narrower nanoscale particle-size distribution. Insulin encapsulation efficiency was 99.3%±0.5%, attributed to the strong pH-stabilizing electrostatic effect between insulin and nanoparticle matrix polymers. Interactions between these polymers and insulin were predicted using molecular modeling studies through quantum mechanics calculations that allowed for prediction of the interaction model. In vitro release studies indicated well-preserved integrity of nanoparticles in simulated gastric fluid. Circular dichroism spectroscopy proved conformational stability of insulin and Fourier transform infrared spectroscopy technique showed rearrangements of insulin structure during processing. Moreover, in vivo biological activity in diabetic rats revealed no statistical difference when compared to nonencapsulated insulin, demonstrating retention of insulin activity. Our results demonstrate that alginate-dextran sulfate-based nanoparticles efficiently stabilize the loaded protein structure, presenting good physical properties for oral delivery of insulin.
Collapse
Affiliation(s)
- Marlene A Lopes
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal ; CNC - Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Bárbara Abrahim-Vieira
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Oliveira
- I3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal ; Group Genetics of Cognitive Dysfunction, IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Pedro Fonte
- REQUIMTE, Department of Chemical Sciences - Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Porto, Portugal ; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal
| | - Alessandra M T Souza
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tammy Lira
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joana A D Sequeira
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal ; CNC - Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Carlos R Rodrigues
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lúcio M Cabral
- Department of Pharmaceutics, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Sarmento
- REQUIMTE, Department of Chemical Sciences - Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Porto, Portugal ; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, Portugal ; INEB - Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| | - Raquel Seiça
- IBILI - Institute of Biomedical Research in Light and Image, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal ; CNC - Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - António J Ribeiro
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal ; I3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal ; Group Genetics of Cognitive Dysfunction, IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| |
Collapse
|
30
|
Jaganathan S. Bioresorbable polyelectrolytes for smuggling drugs into cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1080-97. [PMID: 25961363 DOI: 10.3109/21691401.2015.1011801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There is ample evidence that biodegradable polyelectrolyte nanocapsules are multifunctional vehicles which can smuggle drugs into cells, and release them upon endogenous activation. A large number of endogenous stimuli have already been tested in vitro, and in vivo research is escalating. Thus, the interest in the design of intelligent polyelectrolyte multilayer (PEM) drug delivery systems is clear. The need of the hour is a systematic translation of PEM-based drug delivery systems from the lab to clinical studies. Reviews on multifarious stimuli that can trigger the release of drugs from such systems already exist. This review summarizes the available literature, with emphasis on the recent progress in PEM-based drug delivery systems that are receptive in the presence of endogenous stimuli, including enzymes, glucose, glutathione, pH, and temperature, and addresses different active and passive drug targeting strategies. Insights into the current knowledge on the diversified endogenous approaches and methodological challenges may bring inspiration to resolve issues that currently bottleneck the successful implementation of polyelectrolytes into the catalog of third-generation drug delivery systems.
Collapse
Affiliation(s)
- Sripriya Jaganathan
- a SRM Research Institute, SRM University , Kattankulathur, 603203 , Chennai , Tamil Nadu , India
| |
Collapse
|
31
|
Zheng M, Yu J. Effect of particle surface charge on drug uptake. EUROPEAN JOURNAL OF NANOMEDICINE 2015. [DOI: 10.1515/ejnm-2015-0015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractIn this paper, it aims to build the relationship of statically electric interaction between the surface charge of a particle drug and cellular uptake. The statically electric theory is applied to study the change of wetting between the drug particle and the cell, a factor that enhanced uptake of cells induced by particle’s surface charge is introduced, then it is formulated according to Kelvin theory for dissolving of solid particle in liquid. It is found that the change of contact angle between the surface charged particle drug and the cell can be detected if the Zeta potential reaches to 6 mV in water like solution, an increase of about 11.1% for the uptake could be obtained for a polymer particle with molar mass
Collapse
|
32
|
Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.07.010] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Mudassir J, Darwis Y, Khiang PK. Prerequisite Characteristics of Nanocarriers Favoring Oral Insulin Delivery: Nanogels as an Opportunity. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2014.921919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Lim HP, Tey BT, Chan ES. Particle designs for the stabilization and controlled-delivery of protein drugs by biopolymers: a case study on insulin. J Control Release 2014; 186:11-21. [PMID: 24816070 DOI: 10.1016/j.jconrel.2014.04.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/19/2014] [Accepted: 04/23/2014] [Indexed: 11/24/2022]
Abstract
Natural biopolymers have attracted considerable interest for the development of delivery systems for protein drugs owing to their biocompatibility, non-toxicity, renewability and mild processing conditions. This paper offers an overview of the current status and future perspectives of particle designs using biopolymers for the stabilization and controlled-delivery of a model protein drug--insulin. We first describe the design criteria for polymeric encapsulation and subsequently classify the basic principles of particle fabrication as well as the existing particle designs for oral insulin encapsulation. The performances of these existing particle designs in terms of insulin stability and in vitro release behavior in acidic and alkaline media, as well as their in vivo performance are compared and reviewed. This review forms the basis for future works on the optimization of particle design and material formulation for the development of an improved oral delivery system for protein drugs.
Collapse
Affiliation(s)
- Hui-Peng Lim
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway 46150, Selangor, Malaysia.
| | - Beng-Ti Tey
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway 46150, Selangor, Malaysia; Multidisciplinary Platform of Advanced Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway 46150, Selangor, Malaysia.
| | - Eng-Seng Chan
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway 46150, Selangor, Malaysia; Multidisciplinary Platform of Advanced Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway 46150, Selangor, Malaysia.
| |
Collapse
|
35
|
Sosnik A. Alginate Particles as Platform for Drug Delivery by the Oral Route: State-of-the-Art. ISRN PHARMACEUTICS 2014; 2014:926157. [PMID: 25101184 PMCID: PMC4004034 DOI: 10.1155/2014/926157] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 02/25/2014] [Indexed: 11/17/2022]
Abstract
Pharmaceutical research and development aims to design products with ensured safety, quality, and efficacy to treat disease. To make the process more rational, coherent, efficient, and cost-effective, the field of Pharmaceutical Materials Science has emerged as the systematic study of the physicochemical properties and behavior of materials of pharmaceutical interest in relation to product performance. The oral route is the most patient preferred for drug administration. The presence of a mucus layer that covers the entire gastrointestinal tract has been exploited to expand the use of the oral route by developing a mucoadhesive drug delivery system that showed a prolonged residence time. Alginic acid and sodium and potassium alginates have emerged as one of the most extensively explored mucoadhesive biomaterials owing to very good cytocompatibility and biocompatibility, biodegradation, sol-gel transition properties, and chemical versatility that make possible further modifications to tailor their properties. The present review overviews the most relevant applications of alginate microparticles and nanoparticles for drug administration by the oral route and discusses the perspectives of this biomaterial in the future.
Collapse
Affiliation(s)
- Alejandro Sosnik
- Group of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology De-Jur Building, Office 607, Technion City, 32000 Haifa, Israel
| |
Collapse
|
36
|
Cohen K, Emmanuel R, Kisin-Finfer E, Shabat D, Peer D. Modulation of drug resistance in ovarian adenocarcinoma using chemotherapy entrapped in hyaluronan-grafted nanoparticle clusters. ACS NANO 2014; 8:2183-2195. [PMID: 24494862 DOI: 10.1021/nn500205b] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Resistance to anticancer drugs is considered a major cause of chemotherapy failure. One of the major mediators of resistance is the multidrug extrusion pump protein, P-glycoprotein (P-gp), an ATP-binding cassette (ABC) transporter with broad substrate specificity. In order to bypass this drug resistance mechanism, we have devised phospholipid-based nanoparticle clusters coated with the glycosaminoglycan hyaluronan, the major ligand of CD44, which is upregulated and undergoes different splice variations in many types of cancer cells. These particles, termed glycosaminoglycan particle nanoclusters or gagomers (GAGs), were self-assembled into ∼500 nm diameter clusters, with zeta-potential values of ∼-70 mV. Flow cytometry analysis provided evidence that, unlike free doxorubicin (DOX), a model chemotherapy, DOX entrapped in the GAGs (DOX-GAGs) accumulated in P-gp-overexpressing human ovarian adenocarcinoma cell line and dramatically decreased cell viability, while drug-free GAGs and the commercially available drug DOXIL (PEGylated liposomal DOX) did not produce therapeutic benefit. Furthermore, by using RNA interference strategy, we showed that DOX-GAGs were able to overcome the P-gp-mediated resistant mechanism of these cells. Most importantly, DOX-GAGs showed a superior therapeutic effect over free DOX in a resistant human ovarian adenocarcinoma mouse xenograft model. Taken together, these results demonstrated that GAGs might serve as an efficient platform for delivery of therapeutic payloads by bypassing P-gp-mediated multidrug resistance.
Collapse
Affiliation(s)
- Keren Cohen
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, ‡Department of Materials Sciences and Engineering, Faculty of Engineering, §Center for Nanoscience and Nanotechnology, and ⊥School of Chemistry, Tel Aviv University , Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
37
|
Santos AC, Cunha J, Veiga F, Cordeiro-da-Silva A, Ribeiro AJ. Ultrasonication of insulin-loaded microgel particles produced by internal gelation: Impact on particle's size and insulin bioactivity. Carbohydr Polym 2013; 98:1397-408. [DOI: 10.1016/j.carbpol.2013.06.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 06/13/2013] [Accepted: 06/27/2013] [Indexed: 01/12/2023]
|
38
|
Yu SH, Tang DW, Hsieh HY, Wu WS, Lin BX, Chuang EY, Sung HW, Mi FL. Nanoparticle-induced tight-junction opening for the transport of an anti-angiogenic sulfated polysaccharide across Caco-2 cell monolayers. Acta Biomater 2013; 9:7449-59. [PMID: 23583645 DOI: 10.1016/j.actbio.2013.04.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 03/15/2013] [Accepted: 04/02/2013] [Indexed: 01/23/2023]
Abstract
Fucoidan has the ability to inhibit angiogenesis by human umbilical vein endothelial cells (HUVECs). However, a major clinical limitation is its poor oral availability because fucoidan is a hydrophilic macromolecule. In this study, an oversulfation reaction of fucoidan has been performed to enhance its anti-angiogenic activities. The synthesized, oversulfated fucoidan (OFD) was characterized by Fourier transform infrared spectroscopy. The oversulfate content of OFD was estimated to be 41.7% by using a BaCl2 gelatin method. Nanoparticles (NPs) composed of chitosan (CS) and OFD were prepared by a polycation-polyanion complex method. The mean particle sizes of prepared CS/OFD NPs were in the range of 172-265nm with a negative or positive surface charge, depending on the relative concentrations of CS to OFD used. The self-assembled NPs with pH-sensitive characteristics could be used as a pH-switched nanocarrier for oral delivery of the antiangiogenic macromolecule, OFD, in response to simulated gastrointestinal (GI) tract media. Evaluation of test NPs in enhancing the intestinal paracellular transport of OFD suggested that the NPs with a positive surface charge could transiently open the tight junctions between Caco-2 cells and thus increase the paracellular permeability. Tight-junction opening and restoration were examined by monitoring the redistribution of ZO-1 tight-junction proteins using confocal laser scanning microscopy (CLSM). The transported OFD significantly inhibits the tube formation of HUVECs via competitive binding of OFD and basic fibroblast growth factor (bFGF) to bFGF receptors (bFGFRs).
Collapse
Affiliation(s)
- Shu-Huei Yu
- Department of Materials Science and Engineering, Vanung University, Chung-Li, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Liu P, Zhao X. Facile preparation of well-defined near-monodisperse chitosan/sodium alginate polyelectrolyte complex nanoparticles (CS/SAL NPs) via ionotropic gelification: a suitable technique for drug delivery systems. Biotechnol J 2013; 8:847-54. [PMID: 23625874 DOI: 10.1002/biot.201300093] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/16/2013] [Accepted: 04/24/2013] [Indexed: 01/06/2023]
Abstract
Polymeric nanoparticles have emerged as a promising approach for drug delivery systems. We prepared chitosan (CS)/sodium alginate (SAL) polyelectrolyte complex nanoparticles (CS/SAL NPs) via a simple and mild ionic gelation method by adding a CS solution to a SAL solution, and investigated the effects of molecular weight of the added CS, and the SAL:CS mass ratio on the formation of the polyelectrolyte complex nanoparticles. The well-defined CS/SAL NPs with near-monodisperse particle size of about 160 nm exhibited a pH stable structure, and pH responsive properties with a negatively or positively charged surface. The so-called "electrostatic sponge" structure of the polyelectrolyte complex nanoparticles enhanced their drug-loading capacity towards the differently charged model drug molecules, and favored controlled release. We also found that the drug-loading capacity was influenced by the nature of the drugs and the drug-loading media, while drug release was affected by the solubility of the drugs in the drug-releasing media. The biocompatibility and biodegradability of the polyelectrolytes in the polyelectrolyte complex nanoparticles were maintained by ionic interactions. These results indicate that CS/SAL NPs can represent a useful technique for pH-responsive drug delivery systems.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.
| | | |
Collapse
|
40
|
Chaturvedi K, Ganguly K, Nadagouda MN, Aminabhavi TM. Polymeric hydrogels for oral insulin delivery. J Control Release 2012; 165:129-38. [PMID: 23159827 DOI: 10.1016/j.jconrel.2012.11.005] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 11/04/2012] [Accepted: 11/06/2012] [Indexed: 11/28/2022]
Abstract
The search for an effective and reliable oral insulin delivery system has been a major challenge facing pharmaceutical scientists for over many decades. Even though innumerable carrier systems that protect insulin from degradation in the GIT with improved membrane permeability and biological activity have been developed, yet a clinically acceptable device is not available for human application. Efforts in this direction are continuing at an accelerated speed. One of the preferred systems widely explored is based on polymeric hydrogels that protect insulin from enzymatic degradation in acidic stomach and delivers effectively in the intestine. Swelling and deswelling mechanisms of the hydrogel under varying pH conditions of the body control the release of insulin. The micro and nanoparticle (NP) hydrogel devices based on biopolymers have been widely explored, but their applications in human insulin therapy are still far from satisfactory. The present review highlights the recent findings on hydrogel-based devices for oral delivery of insulin. Literature data are critically assessed and results from different laboratories are compared.
Collapse
Affiliation(s)
- Kiran Chaturvedi
- Soniya Education Trust's College of Pharmacy, S.R. Nagar, Dharwad, India
| | | | | | | |
Collapse
|
41
|
Mukhopadhyay P, Mishra R, Rana D, Kundu PP. Strategies for effective oral insulin delivery with modified chitosan nanoparticles: A review. Prog Polym Sci 2012. [DOI: 10.1016/j.progpolymsci.2012.04.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Garcia-Fuentes M, Alonso MJ. Chitosan-based drug nanocarriers: Where do we stand? J Control Release 2012; 161:496-504. [DOI: 10.1016/j.jconrel.2012.03.017] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 03/14/2012] [Accepted: 03/16/2012] [Indexed: 12/31/2022]
|
43
|
Abstract
Oral peptide delivery has been one of the major challenges of pharmaceutical sciences as it could lead to a great improvement of classical therapies, such as insulin, alongside making an important number of new therapies feasible. Successful oral delivery needs to fulfill two key tasks: to protect the macromolecules from degradation in the GI tract and to shuttle them across the intestinal epithelium in a safe and efficient fashion. Over the last decade, there have been numerous approaches based on the chemical modification of peptides and on the use of permeation enhancers, enzyme inhibitors and drug-delivery systems. Among the approaches developed to overcome these restrictions, the design of nanocarriers seems to be a particularly promising approach. This article is an overview on the state of the art of oral-peptide formulation strategies, with special attention to insulin delivery and the use of polymeric nanocarriers as delivery systems.
Collapse
|
44
|
Abstract
In spite of the numerous barriers inherent in the oral delivery of therapeutically active proteins, research into the development of functional protein-delivery systems is still intense. The effectiveness of such oral protein-delivery systems depend on their ability to protect the incorporated protein from proteolytic degradation in the GI tract and enhance its intestinal absorption without significantly compromising the bioactivity of the protein. Among these delivery systems are polyelectrolyte complexes (PECs) which are composed of polyelectrolyte polymers complexed with a protein via coulombic and other interactions. This review will focus on the current status of PECs with a particular emphasis on the potential and limitations of multi- or inter-polymer PECs used to facilitate oral protein delivery.
Collapse
|
45
|
Fangueiro JF, Gonzalez-Mira E, Martins-Lopes P, Egea MA, Garcia ML, Souto SB, Souto EB. A novel lipid nanocarrier for insulin delivery: production, characterization and toxicity testing. Pharm Dev Technol 2011; 18:545-9. [DOI: 10.3109/10837450.2011.591804] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Ulery BD, Nair LS, Laurencin CT. Biomedical Applications of Biodegradable Polymers. JOURNAL OF POLYMER SCIENCE. PART B, POLYMER PHYSICS 2011; 49:832-864. [PMID: 21769165 PMCID: PMC3136871 DOI: 10.1002/polb.22259] [Citation(s) in RCA: 1224] [Impact Index Per Article: 87.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Utilization of polymers as biomaterials has greatly impacted the advancement of modern medicine. Specifically, polymeric biomaterials that are biodegradable provide the significant advantage of being able to be broken down and removed after they have served their function. Applications are wide ranging with degradable polymers being used clinically as surgical sutures and implants. In order to fit functional demand, materials with desired physical, chemical, biological, biomechanical and degradation properties must be selected. Fortunately, a wide range of natural and synthetic degradable polymers has been investigated for biomedical applications with novel materials constantly being developed to meet new challenges. This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Bret D. Ulery
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Lakshmi S. Nair
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
- Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06268
| | - Cato T. Laurencin
- Department of Orthopaedic Surgery, New England Musculoskeletal Institute, University of Connecticut Health Center, Farmington, Connecticut 06030
- Institute of Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030
- Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06268
| |
Collapse
|
47
|
Woitiski CB, Sarmento B, Carvalho RA, Neufeld RJ, Veiga F. Facilitated nanoscale delivery of insulin across intestinal membrane models. Int J Pharm 2011; 412:123-31. [PMID: 21501675 DOI: 10.1016/j.ijpharm.2011.04.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 11/17/2022]
Abstract
The effect of nanoparticulate delivery system on enhancing insulin permeation through intestinal membrane was evaluated in different intestinal epithelial models using cell cultures and excised intestinal tissues. Multilayered nanoparticles were formulated by encapsulating insulin within a core consisting of alginate and dextran sulfate nucleating around calcium and binding to poloxamer, stabilized by chitosan, and subsequently coated with albumin. Insulin permeation through Caco-2 cell monolayer was enhanced 2.1-fold, facilitated by the nanoparticles compared with insulin alone, 3.7-fold through a mucus-secreting Caco-2/HT29 co-culture, and 3.9-fold through excised intestinal mucosa of Wistar rats. Correlation of Caco-2/HT29 co-culture cells with the animal-model intestinal membrane demonstrates that the mucus layer plays a significant role in determining the effectiveness of oral nanoformulations in delivering poorly absorbed drugs. Albumin was applied to the nanoparticles as outermost coat to protect insulin through shielding from proteolytic degradation. The effect of the albumin layering on insulin permeation was compared with albumin-free nanoparticles that mimic the result of albumin being enzymatically removed during gastric and intestinal transport. Results showed that albumin layering is important toward improving insulin transport across the intestinal membrane, possibly by stabilizing insulin in the intestinal conditions. Transcellular permeation was evidenced by internalization of independently labeled insulin and nanoparticles into enterocytes, in which insulin appeared to remain associated with the nanoparticles. Transcellular transport of insulin through rat intestinal mucosa may represent the predominant mechanism by which nanoparticles facilitate insulin permeation. Nanoformulations demonstrated biocompatibility with rat intestinal mucosa through determination of cell viability via monitoring of mitochondrial dehydrogenases. Insulin permeation facilitated by the biocompatible nanoparticles suggests a potential carrier system in delivering protein-based drugs by the oral route.
Collapse
Affiliation(s)
- Camile B Woitiski
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | | | | | | | | |
Collapse
|
48
|
Casettari L, Castagnino E, Stolnik S, Lewis A, Howdle SM, Illum L. Surface characterisation of bioadhesive PLGA/chitosan microparticles produced by supercritical fluid technology. Pharm Res 2011; 28:1668-82. [PMID: 21394661 DOI: 10.1007/s11095-011-0403-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 02/17/2011] [Indexed: 12/31/2022]
Abstract
PURPOSE Novel biodegradable and mucoadhesive PLGA/chitosan microparticles with the potential for use as a controlled release gastroretentive system were manufactured using supercritical CO(2) (scCO(2)) by the Particle Gas Saturated System (PGSS) technique (also called CriticalMix(TM)). METHODS Microparticles were produced from PLGA with the addition of mPEG and chitosan in the absence of organic solvents, surfactants and crosslinkers using the PGSS technique. Microparticle formulations were morphologically characterized by scanning electron microscope; particle size distribution was measured using laser diffraction. Microparticle surface was analyzed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) to evaluate the presence of chitosan on the surface. Mucoadhesiveness of the microparticles was evaluated in vitro using a mucin assay employing two different kinds of mucin (Mucin type III and I-S) with different degrees of sialic acid contents, 0.5-1.5% and 9-17%, respectively. RESULTS The two analytical surface techniques (XPS and ToF-SIMS) demonstrated the presence of the chitosan on the surface of the particles (<100 μm), dependent on the polymer composition of the microparticles. The interaction between the mucin solutions and the PLGA/chitosan microparticles increased significantly with an increasing concentration of mucin and chitosan. CONCLUSIONS The strong interaction of mucin with the chitosan present on the surface of the particles suggests a potential use of the mucoadhesive carriers for gastroretentive and oral controlled drug release.
Collapse
Affiliation(s)
- Luca Casettari
- Department of Drug and Health Sciences, University of Urbino Carlo Bo, Urbino P.zza Rinascimento 6, Urbino, 61029, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Chen L, Mccrate JM, Lee JCM, Li H. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. NANOTECHNOLOGY 2011; 22:105708. [PMID: 21289408 PMCID: PMC3144725 DOI: 10.1088/0957-4484/22/10/105708] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The objective of this study is to evaluate the effect of hydroxyapatite (HAP) nanoparticles with different surface charges on the cellular uptake behavior and in vitro cell viability and proliferation of MC3T3-E1 cell lines (osteoblast). The nanoparticles' surface charge was varied by surface modification with two carboxylic acids: 12-aminododecanoic acid (positive) and dodecanedioic acid (negative). The untreated HAP nanoparticles and dodecanoic acid modified HAP nanoparticles (neutral) were used as the control. X-ray diffraction (XRD) revealed that surface modifications by the three carboxylic acids did not change the crystal structure of HAP nanoparticles; Fourier transform infrared spectroscopy (FT-IR) confirmed the adsorption and binding of the carboxylic acids on the HAP nanoparticles' surfaces; and zeta potential measurement confirmed that the chemicals successfully modified the surface charge of HAP nanoparticles in water based solution. Transmission electron microscopy (TEM) images showed that positively charged, negatively charged and untreated HAP nanoparticles, with similar size and shape, all penetrated into the cells and cells had more uptake of HAP nanoparticles with positive charge compared to those with negative charge, which might be attributed to the attractive or repulsive interaction between the negatively charged cell membrane and positively/negatively charged HAP nanoparticles. The neutral HAP nanoparticles could not penetrate the cell membrane due to their larger size. MTT assay and LDH assay results indicated that as compared with the polystyrene control, greater cell viability and cell proliferation were measured on MC3T3-E1 cells treated with the three kinds of HAP nanoparticles (neutral, positive, and untreated), among which positively charged HAP nanoparticles showed the strongest improvement for cell viability and cell proliferation. In summary, the surface charge of HAP nanoparticles can be modified to influence the cellular uptake of HAP nanoparticles and the different uptake also influences the behavior of cells. These in vitro results may also provide useful information for investigations of HAP nanoparticle applications in gene delivery and intracellular drug delivery.
Collapse
Affiliation(s)
- Liang Chen
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65203
| | - Joseph M. Mccrate
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65203
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - James C-M. Lee
- Department of Biological Engineering, University of Missouri, Columbia, MO 65203
| | - Hao Li
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65203
- :
| |
Collapse
|
50
|
Vauthier C, Bouchemal K. Processing and Scale-up of Polymeric Nanoparticles. INTRACELLULAR DELIVERY 2011. [DOI: 10.1007/978-94-007-1248-5_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|