1
|
Kim M, Yoon K, Lee S, Shin MS, Kim KG. Development of an Artificial Soft Solid Gel Using Gelatin Material for High-Quality Ultrasound Diagnosis. Diagnostics (Basel) 2024; 14:335. [PMID: 38337851 PMCID: PMC10855452 DOI: 10.3390/diagnostics14030335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
For ultrasound diagnosis, a gel is applied to the skin. Ultrasound gel serves to block air exposure and match impedance between the skin and the probe, enhancing imaging efficiency. However, if use of the ultrasound gel exceeds a certain period of time, it may dry out and be exposed to air, causing impedance mismatch and reducing imaging resolution. In such cases, the use of a soft, solid gel proves advantageous, as it can be employed for an extended period without succumbing to the drying phenomenon and can be reused after disinfection. Its soft consistency ensures excellent skin adhesion. Our soft solid gel demonstrated approximately 1.2 times better performance than water, silicone, and traditional ultrasound gels. When comparing the dimensions of grayscale, dead zone, vertical, and horizontal regions, the measurements for the traditional ultrasound gel were 93.79 mm, 45.32 mm, 103.13 mm, 83.86 mm, and 83.86 mm, respectively. In contrast, the proposed soft solid gel exhibited dimensions of 105.64 mm, 34.48 mm, 141.1 mm, and 102.8 mm.
Collapse
Affiliation(s)
- Minchan Kim
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 Beon-gil, Namdong-daero, Namdong-gu, Incheon 21565, Republic of Korea; (M.K.); (K.Y.); (S.L.)
| | - Kicheol Yoon
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 Beon-gil, Namdong-daero, Namdong-gu, Incheon 21565, Republic of Korea; (M.K.); (K.Y.); (S.L.)
- Premedicine Course, College of Medicine, Gachon University, 38-13, 3 Beon-gil, Dokjom-ro 3, Namdong-gu, Incheon 21565, Republic of Korea
| | - Sangyun Lee
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 Beon-gil, Namdong-daero, Namdong-gu, Incheon 21565, Republic of Korea; (M.K.); (K.Y.); (S.L.)
- Department of Health and Safety Convergence Sciences & Health and Environmental Convergence Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mi-Seung Shin
- Division of Cardiology, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, 21 Namdong-daero 774 Beon-gil, Namdong-gu, Incheon 21565, Republic of Korea
| | - Kwang Gi Kim
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 Beon-gil, Namdong-daero, Namdong-gu, Incheon 21565, Republic of Korea; (M.K.); (K.Y.); (S.L.)
- Department of Biomedical Engineering, College of Health Science, Gachon University, 191 Hambak-moero, Yeonsu-gu, Incheon 21936, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, 38-13, 3 Beon-gil, Dokjom-ro, Namdong-gu, Incheon 21565, Republic of Korea
| |
Collapse
|
2
|
ALMisned G, Elshami W, Kilic G, Rabaa E, Zakaly HMH, Ene A, Tekin HO. Utilization of three-layers heterogeneous mammographic phantom through MCNPX code for breast and chest radiation dose levels at different diagnostic X-ray energies: A Monte Carlo simulation study. Front Public Health 2023; 11:1136864. [PMID: 36935709 PMCID: PMC10022908 DOI: 10.3389/fpubh.2023.1136864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction We report the breast and chest radiation dose assessment for mammographic examinations using a three-layer heterogeneous breast phantom through the MCNPX Monte Carlo code. Methods A three-layer heterogeneous phantom along with compression plates and X-ray source are modeled. The validation of the simulation code is obtained using the data of AAPM TG-195 report. Deposited energy amount as a function of increasing source energy is calculated over a wide energy range. The behavioral changes in X-ray absorption as well as transmission are examined using the F6 Tally Mesh extension of MCNPX code. Moreover, deposited energy amount is calculated for modeled body phantom in the same energy range. Results and discussions The diverse distribution of glands has a significant impact on the quantity of energy received by the various breast layers. In layers with a low glandular ratio, low-energy primary X-ray penetrability is highest. In response to an increase in energy, the absorption in layers with a low glandular ratio decreased. This results in the X-rays releasing their energy in the bottom layers. Additionally, the increase in energy increases the quantity of energy absorbed by the tissues around the breast.
Collapse
Affiliation(s)
- Ghada ALMisned
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wiam Elshami
- Medical Diagnostic Imaging Department, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - G. Kilic
- Faculty of Science, Department of Physics, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Elaf Rabaa
- Medical Diagnostic Imaging Department, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hesham M. H. Zakaly
- Institute of Physics and Technology, Ural Federal University, Yekaterinburg, Russia
- Physics Department, Faculty of Science, Al-Azhar University, Asyut, Egypt
| | - Antoaneta Ene
- INPOLDE Research Center, Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, Dunarea de Jos University of Galati, Galaţi, Romania
- Antoaneta Ene
| | - H. O. Tekin
- Medical Diagnostic Imaging Department, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Engineering and Natural Sciences, Computer Engineering Department, Istinye University, Istanbul, Türkiye
- *Correspondence: H. O. Tekin tekin765@gmailcom
| |
Collapse
|