1
|
Guille AG, Purnell S, Lohery S, Ciocan C. CLAMity: Mixtures of agricultural pesticides as multiple stressors in a bivalve species. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136692. [PMID: 39616845 DOI: 10.1016/j.jhazmat.2024.136692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/11/2024] [Accepted: 11/25/2024] [Indexed: 01/28/2025]
Abstract
Pesticides play a vital role in ensuring global food security amid a growing global population; however, their movement away from application sites can pose significant risks to the health of non-target species. Pollution of freshwater is a key contributor to the high extinction rates of freshwater species, which often face exposure to a complex "cocktail" of pollutants simultaneously. A better understanding of pesticide interactions will enable more targeted policies and land management practices to mitigate environmental damage while ensuring food security. In this study, Corbicula fluminea (Asian clam) were exposed to binary pesticide mixtures commonly found in two rivers in the South of England. The exposures involved individual pesticides and mixtures at a concentration of 0.1μg/L per pesticide. Selected molecular markers were targeted and proved to be impacted by the timing and the pesticide mixture; an Integrated Biomarker Response (V2) value was also calculated. Our results show that both seasonality and the chemicals characteristics of the pesticides may significantly modulate their toxicity, both individually and in a mixture. When put into the context of catchment management this data combined with pesticide monitoring could improve estimating ecological risk. To the authors' knowledge, this is the first study to assess the molecular responses of these mixtures in bivalve molluscs using the IBRv2 value following exposure to combined pesticides.
Collapse
Affiliation(s)
- Alice Graihagh Guille
- Environment and Public Health Research and Enterprise Group, School of Applied Sciences, University of Brighton, Cockcroft Building, Lewes Road, Brighton BN2 4GJ, United Kingdom.
| | - Sarah Purnell
- Environment and Public Health Research and Enterprise Group, School of Applied Sciences, University of Brighton, Cockcroft Building, Lewes Road, Brighton BN2 4GJ, United Kingdom
| | - Simon Lohery
- South East Water Ltd., Rocfort Road, Snodland, Kent ME6 5AH, United Kingdom
| | - Corina Ciocan
- Environment and Public Health Research and Enterprise Group, School of Applied Sciences, University of Brighton, Cockcroft Building, Lewes Road, Brighton BN2 4GJ, United Kingdom
| |
Collapse
|
2
|
Lin Z, Xu H, Zhou M, Wang B, Qin H. Waste classification strategy based on multi-scale feature fusion for intelligent waste recycling in office buildings. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:443-454. [PMID: 39418863 DOI: 10.1016/j.wasman.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Waste classification is an important measure to protect the environment. Existing waste classification methods mainly focus on scientific research, but lack attention to the challenges of waste classification in actual scenarios. For example, wastes with similar contours, similar textures, or contaminated appearance are difficult to be classified in actual scenarios. To address these issues, this paper proposes an innovative multi-scale feature fusion strategy (MFFS) to improve the classification accuracy of these wastes. MFFS combines local fine-grained features with global coarse-grained features to improve the feature expression ability of waste. However, how to effectively fuse these two features is a key challenge. This paper proposes a dual-scale feature fusion strategy, first fusing fine-grained features in the first dimension, then fusing coarse-grained features in the second dimension, and introducing spatial features to further enhance feature expression capabilities. In order to reduce the interference of background information, the model in this paper models global relationships based on convolutional features. The MFFS strategy achieved a classification accuracy of 95.5% on the self-built dataset and 94.1% on the public dataset TrashNet. The number of parameters of our model is reduced by 57.2% compared with the classic VGG16 and by 34.2% compared with the Vision Transformer. In addition, we designed an intelligent waste sorting device and deployed the MFFS model on the device to implement the application. Experiments show that our model has ideal accuracy and stability and can be promoted and applied.
Collapse
Affiliation(s)
- Zongjing Lin
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Huxiu Xu
- State Key Laboratory of Fluid Power and Mechanical Systems, Zhejiang University, Hangzhou 310027, China
| | - Maoying Zhou
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Ban Wang
- Department of Mechanical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Huawei Qin
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
3
|
Kim T, Zhen J, Lee J, Park SY, Lee C, Kwon BO, Hong S, Shin HM, Giesy JP, Chang GS, Khim JS. Prediction of cytotoxicity of polycyclic aromatic hydrocarbons from first principles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177145. [PMID: 39490391 DOI: 10.1016/j.scitotenv.2024.177145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Ligand-specific binding interactions of xenobiotics with receptor proteins form the basis of cytotoxicity-based hazard assessment. Computational approaches enable predictive hazard assessment for a large number of chemicals in a high-throughput manner, minimizing the use of animal testing. However, in silico models for predicting mechanisms of toxic actions and potencies are difficult to develop because toxicity datasets or comprehensive understanding of the complicated kinetic process of ligand-receptor interactions are needed for model development. In this study, a directional reactive binding factor (DRBF) model based on first principles was used to predict cytotoxicity potencies of agonists of the aryl hydrocarbon receptor (AhR) for 16 different polycyclic aromatic hydrocarbons (PAHs). Molecular dynamics were simulated by accounting for the directional configuration factor toward receptor protein and the factor of binding to the Per-Arnt-Sim (PAS) domain. When comparing the experimental results of toxic potencies from in vitro bioassays with the predictions among two different in silico models, including quantitative structure-activity relationship (QSAR) and molecular docking models, the DRBF model exhibited the highest model performance (R2 = 0.90 and p < 0.01). Our results showed that the DRBF model based on first principles and molecular and computational structural biology could serve as a novel framework to advance next generation hazard assessment for high-throughput screening of chemical substances.
Collapse
Affiliation(s)
- Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Juyuan Zhen
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK, S7N5E2, Canada
| | - Junghyun Lee
- Department of Environmental Education, Kongju National University, Gongju 32588, Republic of Korea
| | - Shin Yeong Park
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Changkeun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong-Oh Kwon
- Department of Marine Biotechnology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyeong-Moo Shin
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States
| | - John P Giesy
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States; Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N5B3, Canada; Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Gap Soo Chang
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK, S7N5E2, Canada.
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
4
|
Lu YY, Hua W, Sun Y, Lu L, Ren H, Huang Q. Proteomics reveals that nanoplastics with different sizes induce hepatocyte apoptosis in mice through distinct mechanisms involving mitophagy dysregulation and cell cycle arrest. Toxicol Res (Camb) 2024; 13:tfae188. [PMID: 39539253 PMCID: PMC11557221 DOI: 10.1093/toxres/tfae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Nanoplastics (NPs) can penetrate the intestinal barrier of organisms and accumulate in the liver, thereby inducing hepatocyte apoptosis. However, the underlying mechanisms remain incompletely elucidated. This study examined the effects of PS-NPs exposure on hepatocyte apoptosis and revealed the role of cell cycle arrest and mitophagy. The C57BL/6 mice were administered a diet containing 100 nm and 500 nm PS-NPs at a concentration of 0.1 g/kg for 180 days, respectively. TUNEL staining confirmed that 100 nm PS-NPs induced more pronounced apoptosis compared to 500 nm PS-NPs in mouse liver. Mechanistically, proteomic analysis revealed that Pdcd2l, associated with the S phase of cell cycle and apoptosis, exhibited the highest fold changes among all detected proteins in 100 nm and 500 nm PS-NPs exposure groups. Notably, the expression of Tbc1d17, Bcl2l13, and Pgam5 involved in mitophagosome formation in mouse liver was upregulated by 100 nm PS-NPs but not by 500 nm PS-NPs; moreover, mitophagosomes were observed in HepG2 cells exposed to 100 nm PS-NPs. Additionally, 100 nm PS-NPs internalized by HepG2 cells could penetrate lysosomes. The protein levels of Igf2r and Rab7a were altered, and p62 mRNA expression was increased in mouse liver, suggesting 100 nm PS-NPs, but not 500 nm PS-NPs, impaired lysosomal function and subsequently inhibited mitophagy degradation. Collectively, 500 nm PS-NPs induced Pdcd2l-mediated cell cycle arrest, thereby exacerbating hepatocyte apoptosis; while 100 nm PS-NPs not only triggered similar levels of cell cycle arrest as 500 nm PS-NPs, but also disrupted mitophagy, which was also associated with hepatocyte apoptosis.
Collapse
Affiliation(s)
- Yan-Yang Lu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Weizhen Hua
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Yiqiong Sun
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Lu Lu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Hongyun Ren
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| |
Collapse
|
5
|
Harishchandra A, Di Giulio RT, Jayasundara N. Transcriptomic and Methylomic Analyses Show Significant Shifts in Biosynthetic Processes and Reduced Intrapopulation Gene Expression Variance in PAH-Adapted Atlantic Killifish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20859-20872. [PMID: 39552013 DOI: 10.1021/acs.est.4c06845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Environmental contaminants pose a significant selection pressure across taxa, potentiating evolved resistance to chemicals. However, rapid evolution may alter molecular and physiological homeostasis leading to trade-offs. To elucidate molecular underpinnings of evolved chemical resistance, we compared liver gene expression and methylation profiles in polycyclic aromatic hydrocarbon (PAH)-adapted Atlantic killifish (Fundulus heteroclitus) in the Republic site (RP), Elizabeth River, Virginia with PAH-sensitive Kings Creek (KC) fish. We found 1607 differentially expressed and 2252 alternatively spliced genes between RP and KC, with highly enriched genes involving lipid and amino acid metabolism, respectively. While 308 genes had differentially methylated regions, only 13 of these genes were differentially expressed. The aryl hydrocarbon receptor 2b gene (ahr2b) was differentially methylated and expressed, as well as alternatively spliced signifying its critical role in mediating PAH tolerance. Notably, the intrapopulation coefficient of variation (CoV) was lower in 82% of 17,566 expressed genes in RP fish compared to KC fish. Among other pathways, these genes with low CoV were highly enriched in bioenergetic processes inferring reduced metabolic physiological variation as a population in RP fish. Altered metabolic gene expression and overall reduced gene expression variance in RP fish warrant further studies on fitness trade-offs including altered susceptibility to other stressors associated with rapid adaptation to anthropogenic pressures.
Collapse
Affiliation(s)
- Akila Harishchandra
- Nicholas School of the Environment, Duke University, Durham 27708, North Carolina, United States
- School of Marine Sciences, University of Maine, Bangor 44069, Maine, United States
| | - Richard T Di Giulio
- Nicholas School of the Environment, Duke University, Durham 27708, North Carolina, United States
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, Durham 27708, North Carolina, United States
| |
Collapse
|
6
|
Liu S, Xi C, Wu Y, Wang S, Li B, Zhu L, Xu X. Hexavalent chromium damages intestinal cells and coelomocytes and impairs immune function in the echiuran worm Urechis unicinctus by causing oxidative stress and apoptosis. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:110002. [PMID: 39151816 DOI: 10.1016/j.cbpc.2024.110002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Hexavalent chromium (Cr(VI)) is a common pollutant in the marine environment, which impairs immunity and causes reproductive and heredity disorders in organisms. To clarify the immunotoxic effects of Cr (VI) on the marine worm Urechis unicinctus, we analyzed tissue damage and immune dysfunction caused by Cr (VI) in this organism at histopathologic, zymologic, apoptotic and molecular levels. The results indicated that the bioaccumulation of Cr (VI) bioaccumulation levels in coelomocytes was significantly higher than in the intestines and muscles. Pathological observation showed that Cr (VI) caused damage to the respiratory intestine, stomach and midgut. Cr (VI) also increased the replication of goblet cells and a reduction in the replication of epithelial cells. Meanwhile, Cr (VI) induced apoptosis of intestinal cells and coelomocytes, accompanied by an increase in the expression of Caspase-3, COX-2, and MyD88 in the intestine and coelomocytes. At the same time, Cr (VI) significantly affected the activities of antioxidant enzymes such as SOD, ACP, CAT, CAT, and GST, and increased H2O2 and MDA contents in U. unicinctus. Moreover, Cr (VI) exposure also up-regulated the transcription of hsc70, mt and jnk genes but decreased that of sod in the intestines. In contrast, Cr (VI) down-regulated the expression of sod, hsc70, mt, and jnk genes in coelomocytes. Collectively, Cr (VI) bioaccumulated in U. unicinctus cells and tissues, causing several histopathological changes, oxidative stress, and apoptosis of several cells in the organism, resulting in intestinal and coelomocyte damage and immune dysfunctioning.
Collapse
Affiliation(s)
- Shun Liu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Chenxiao Xi
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Yuxin Wu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Sijie Wang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Baiyu Li
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Long Zhu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Xinghong Xu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
7
|
Yang X, Wang L, Lu K, Li X, Song K, Zhang C. High temperature induces oxidative stress in spotted seabass (Lateolabrax maculatus) and leads to inflammation and apoptosis. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109913. [PMID: 39306215 DOI: 10.1016/j.fsi.2024.109913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Our study aims to examine the changes of long-term high temperature on the mortality and health status of spotted seabass (Lateolabrax maculatus), as well as to screen suitable biomarkers to determine whether the spotted seabass is under heat stress. In this study, 360 juvenile spotted seabass were evenly distributed into three temperature-controlled systems at 27 °C (N, normal temperature), 31 °C (M, moderate temperature), and 35 °C (H, high temperature) for an 8-week aquaculture experiment. The results revealed that 35 °C water temperature significantly increased the mortality and the MDA content in tissues (P < 0.05). Meanwhile, 35 °C water temperature significantly increased the activity of SOD enzyme and T-AOC capacity in tissues, as well as the expression of hsp60, hsp70, and hsp90 (P < 0.05). Additionally, the expression of nrf2, il1β, il8, caspase3, caspase9, and bax in the liver significantly increased (P < 0.05), while the expression of keap1, il10, tgfβ, and bcl2 decreased significantly (P < 0.05). These results indicate that 35 °C water temperature induces oxidative stress in spotted seabass, leading to tissue oxidative damage, promoting inflammation and apoptosis in liver, and increasing mortality. However, the organism compensates by heightening its antioxidant capacity via the Nrf2-Keap1 signaling pathway and inducing high expression of heat shock proteins for self-protection. Furthermore, the alterations in the mRNA level of hsp70 and MDA content in the liver, muscle, and kidney can serve as indicators for evaluating spotted seabass under prolonged heat stress.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Ling Wang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kangle Lu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xueshan Li
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kai Song
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Chunxiao Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
8
|
Martino C, Chiarelli R. Between Life and Death: Sea Urchin Embryos Undergo Peculiar DNA Fragmentation after Exposure to Vanadium, Cadmium, Gadolinium, and Selenium. Life (Basel) 2024; 14:1296. [PMID: 39459596 PMCID: PMC11508963 DOI: 10.3390/life14101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Exogenous DNA damage represents one of the most harmful outcomes produced by environmental, physical, or chemical agents. Here, a comparative analysis of DNA fragmentation was carried out on Paracentrotus lividus sea urchin embryos exposed to four common pollutants of the marine environment: vanadium, cadmium, gadolinium and selenium. Using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, fragmented DNA was quantified and localized in apoptotic cells mapping whole-mount embryos. This is the first study reporting how different chemicals are able to activate distinctive apoptotic features in sea urchin embryos, categorized as follows: (i) cell-selective apoptosis, showing DNA fragmentation restricted to a subset of extremely damaged cells, acting as an embryo survival mechanism; or (ii) total apoptosis, with fragmented DNA widespread throughout the cells of the entire embryo, leading to its death. Also, this is the first report of the effects of Se exposure on P. lividus sea urchin embryos. These data confirm the TUNEL assay as the most suitable test to study DNA fragmentation in the sea urchin embryo model system. Taken together, this research highlights embryos' ability to find alternative pathways and set physiological limits for development under stress conditions.
Collapse
Affiliation(s)
- Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
- NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy;
| |
Collapse
|
9
|
Wu S, Ding D, Wang D. Regulated Cell Death Pathways in Pathological Cardiac Hypertrophy. Rev Cardiovasc Med 2024; 25:366. [PMID: 39484135 PMCID: PMC11522757 DOI: 10.31083/j.rcm2510366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/19/2024] [Accepted: 06/03/2024] [Indexed: 11/03/2024] Open
Abstract
Cardiac hypertrophy is characterized by an increased volume of individual cardiomyocytes rather than an increase in their number. Myocardial hypertrophy due to pathological stimuli encountered by the heart, which reduces pressure on the ventricular walls to maintain cardiac function, is known as pathological hypertrophy. This eventually progresses to heart failure. Certain varieties of regulated cell death (RCD) pathways, including apoptosis, pyroptosis, ferroptosis, necroptosis, and autophagy, are crucial in the development of pathological cardiac hypertrophy. This review summarizes the molecular mechanisms and signaling pathways underlying these RCD pathways, focusing on their mechanism of action findings for pathological cardiac hypertrophy. It intends to provide new ideas for developing therapeutic approaches targeted at the cellular level to prevent or reverse pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Shengnan Wu
- Department of Geriatrics, The First Affiliated Hospital of Wannan Medical College, 241001 Wuhu, Anhui, China
| | - Ding Ding
- Department of Geriatrics, The First Affiliated Hospital of Wannan Medical College, 241001 Wuhu, Anhui, China
| | - Deguo Wang
- Department of Geriatrics, The First Affiliated Hospital of Wannan Medical College, 241001 Wuhu, Anhui, China
| |
Collapse
|
10
|
Moreira S, Martins AD, Alves MG, Pastor LM, Seco-Rovira V, Oliveira PF, Pereira MDL. Aminocarb Exposure Induces Cytotoxicity and Endoplasmic Reticulum Stress-Mediated Apoptosis in Mouse Sustentacular Sertoli Cells: Implications for Male Infertility and Environmental Health. BIOLOGY 2024; 13:721. [PMID: 39336148 PMCID: PMC11429014 DOI: 10.3390/biology13090721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024]
Abstract
Exposure to pesticides, poses a significant threat to male fertility by compromising crucial cells involved in spermatogenesis. Aminocarb, is a widely used carbamate insecticide, although its detrimental effects on the male reproductive system, especially on sustentacular Sertoli cells, pivotal for spermatogenesis, remains poorly understood. In this study, we investigated the effects of escalating concentrations of aminocarb on a mouse Sertoli cell line, TM4. Assessments included cytotoxic analysis, mitochondrial biogenesis and membrane potential, expression of apoptotic proteins, caspase-3 activity, and oxidative stress evaluation. Our findings revealed a dose-dependent reduction in the proliferation and viability of TM4 cells following exposure to increasing concentrations of aminocarb. Notably, exposure to 5 μM of aminocarb induced depolarization of mitochondria membrane potential, and a significant decrease in the ratio of phosphorylated eIF2α to total eIF2α, suggesting heightened endoplasmic reticulum stress via the activation of the eIF2α pathway. Moreover, the same aminocarb concentration was demonstrated to increase both caspase-3 protein levels and activity, indicating an apoptotic induction. Collectively, our results demonstrate that aminocarb serves as an apoptotic inducer for mouse sustentacular Sertoli cells in vitro, suggesting its potential to modulate independent pathways of the apoptotic cascade. These findings underscore the deleterious impact of aminocarb on spermatogenic performance and male fertility, highlighting the urgent need for further investigation into its mechanisms of action and mitigation strategies to safeguard male fertility.
Collapse
Affiliation(s)
- Sílvia Moreira
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- CICECO-Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana D Martins
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marco G Alves
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luis Miguel Pastor
- Departamento de Biología Celular e Histología, Faculdad de Medicina, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30120 Murcia, Spain
| | - Vicente Seco-Rovira
- Departamento de Biología Celular e Histología, Faculdad de Medicina, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, 30120 Murcia, Spain
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria de Lourdes Pereira
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- CICECO-Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
11
|
Deenathayalan U, Nandita R, Kavithaa K, Kavitha VS, Govindasamy C, Al-Numair KS, Alsaif MA, Cheon YP, Arul N, Brindha D. Evaluation of Developmental Toxicity and Oxidative Stress Caused by Zinc Oxide Nanoparticles in Zebra Fish Embryos/ Larvae. Appl Biochem Biotechnol 2024; 196:4954-4973. [PMID: 37987950 DOI: 10.1007/s12010-023-04791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are used in various fields, including biological ones. ZnO NPs are eventually disposed of in the environment where they may affect natural systems, and there is no international law to regulate their manufacture, usage, and disposal. Hence, this present study is carried out to synthesise a more non-toxic and bioactive ZnO NPs from the marine algae Sargassum polycystum. The ZnO NPs were biologically produced using the marine algae Sargassum polycystum. The dynamic light scattering result describes that synthesised particles' average size is about 100 nm in diameter. Transmission electron microscopy (TEM) analysis demonstrated the rod-like morphology of ZnO NPs. Fourier tranform-infrared spectroscopy (FT-IR) results revealed the presence of functional groups in ZnO NPs. The selected area electron diffraction (SAED) results strongly suggested the ZnO NPs crystallinity. ZnO NPs surface morphology and compositions were identified by scanning electron microscopy (SEM- EDX) values. To analyse the toxicity of synthesised nanoparticles, zebra fish larvae were used, which involved subjecting embryos to various ZnO NPs concentrations at 1 hpf and analysing the results at 96 hpf. The 60 and 80 ppm sub-lethal doses were chosen for further studies based on the LC50 (82.23 ppm). In the ZnO NPs-treated groups, a significant slowdown in pulse rate and a delay in hatching were seen, both of which impacted the embryonic processes. A teratogenic study revealed a dose-dependent increase in the incidence of developmental deformities in the treated groups. Along with increased oxidants and a corresponding reduction in antioxidant enzymes, Na+ K+-ATPase and AChE activity changes were seen in ZnO NPs-treated zebra fish larvae groups. The apoptosis process was increased in ZnO NPs-treated groups revealed by acridine orange staining. These results indicate that the green synthesis process cannot mitigate the oxidative stress induced by ZnO NPs on oxidative signalling.
Collapse
Affiliation(s)
- Uvarajan Deenathayalan
- Department of Biochemistry, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | - Ravichandran Nandita
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Krishnamoorthy Kavithaa
- Department of Biotechnology, Hindusthan College of Arts & Science, Coimbatore, Tamil Nadu, India
| | | | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, KingSaud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Khalid S Al-Numair
- Department of Community Health Sciences, College of Applied Medical Sciences, KingSaud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Mohammed A Alsaif
- Department of Community Health Sciences, College of Applied Medical Sciences, KingSaud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Yong Pil Cheon
- Division of Developmental Biology and Physiology, Department of Biotechnology, Sungshin University, Seoul, 02844, South Korea
| | - Narayanasamy Arul
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Durairaj Brindha
- Department of Biochemistry, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
12
|
Pires de Almeida TV, Sales CF, Ribeiro YM, Sobjak TM, Bazzoli N, Melo RMC, Rizzo E. Metal-contaminated sediment toxicity in a highly impacted Neotropical river: Insights from zebrafish embryo toxicity assays. CHEMOSPHERE 2024; 362:142627. [PMID: 38885763 DOI: 10.1016/j.chemosphere.2024.142627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The Fundão dam collapse was one of the largest mining-related disasters globally. It resulted in the release of mining tailings containing heavy metals, which contaminated the Doce River in southeastern Brazil. This study assessed the effects of acute exposure of Danio rerio embryos to sediments contaminated by mine tailings six years after the Fundão dam collapse. The study sites included P2, P3, and P4 in the upper Doce River, as well as site P1 on the Piranga River, an uncontaminated river. Sediment samples were analyzed for 10 metals/metalloid by atomic absorption spectrometry. In the assays, embryos were exposed to sediment from P1-P4 sites, and uncontaminated quartz was used as control sediment. Various biomarkers were applied to assess biological responses, and the integrated biomarker response (IBR) index was calculated for each site. Sediment samples revealed elevated levels of As, Cr, Cu, Hg, and Ni beyond Brazilian legislation limits. At 96-h exposure, embryo mortality rates exceeded 20% in P1, P2, and P3, higher than the control and P4 (p < 0.0001). Hatching rates ranged from 60 to 80% in P1, P2, and P3, lower than the control and P4 (p < 0.001). Larvae exposed to P2 sediment (closest to the Fundão dam) exhibited skeletal, physiological, and sensory malformations. Neurotoxicity was indicated by increased acetylcholinesterase activity and reduced spontaneous movements in embryos exposed to Doce River sediment. Contamination also increased metallothionein and heat shock protein 70 levels, along with changes in cell proliferation and apoptosis. Principal component analysis showed a good correlation between metals/metalloid in the sediment and larval morphometric endpoints. The IBR index highlighted suitable biomarkers for monitoring metal contamination in fish embryos. Overall, our findings suggest that sediment toxicity following the Fundão dam failure may compromise the sustainability of fish communities in the Doce River.
Collapse
Affiliation(s)
- Thaís Victória Pires de Almeida
- Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil
| | - Camila Ferreira Sales
- Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil
| | - Yves Moreira Ribeiro
- Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil
| | - Thais Maylin Sobjak
- Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil
| | - Nilo Bazzoli
- Programa de Pós-Graduação em Biologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Magno Costa Melo
- Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil
| | - Elizete Rizzo
- Programa de Pós-Graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, Belo Horizonte, C.P.486, 30161-970, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Vega-Retter C, Rojas-Hernández N, Cortés-Miranda J, Véliz D, Rico C. Genome scans reveal signals of selection associated with pollution in fish populations of Basilichthys microlepidotus, an endemic species of Chile. Sci Rep 2024; 14:15727. [PMID: 38977738 PMCID: PMC11231317 DOI: 10.1038/s41598-024-66121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
The Maipo River catchment is one of Chile's most polluted basins. In recent decades, discharges of untreated sewage and organic matter have caused eutrophication and water quality degradation. We employed the indigenous silverfish species Basilichthys microlepidotus as a model organism to investigate the process of adaptation and selection on genes influenced by pollution. Using variation at single nucleotide polymorphisms (SNPs), we determined the temporal stability of the population structure patterns previously identified in this species by varying SNPs. We also examined local adaptation to pollution-selected genes. Using the genotypes of 7684 loci in 180 individuals, we identified 429 and 700 loci that may be undergoing selection. We detected these loci using the FSTHET and ARLEQUIN outlier detection software, respectively. Both software packages simultaneously identified a total of 250 loci. B. microlepidotus' population structure did not change over time at contaminated or unpolluted sites. In addition, our analysis found: (i) selection of genes associated with pollution, consistent with observations in other organisms; (ii) identification of candidate genes that are functionally linked to the same biological processes, molecular functions and/or cellular components that previously showed differential expression in the same populations; and (iii) a candidate gene with differential expression and a non-synonymous substitution.
Collapse
Affiliation(s)
- Caren Vega-Retter
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras #3425, Ñuñoa, Santiago, Chile
| | - Noemi Rojas-Hernández
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras #3425, Ñuñoa, Santiago, Chile
| | - Jorge Cortés-Miranda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras #3425, Ñuñoa, Santiago, Chile
| | - David Véliz
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras #3425, Ñuñoa, Santiago, Chile
- Centro de Ecología y Manejo Sustentable de Islas Oceánicas (ESMOI), Coquimbo, Chile
| | - Ciro Rico
- Instituto de Ciencias Marinas de Andalucía (ICMAN), CSIC. Campus Universitario Río San Pedro, C. Republica Saharaui, 4, 11519, Puerto Real, Cádiz, Spain.
| |
Collapse
|
14
|
Park K, Kwak IS. Modulating responses of indicator genes in cellular homeostasis, immune defense and apoptotic process in the Macrophthalmus japonicus exposed to di(2-ethylhexyl) phthalate as a plastic additive. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104456. [PMID: 38657882 DOI: 10.1016/j.etap.2024.104456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), have been increasingly used as plasticizers to manufacture soft and flexible materials and ubiquitously found in water and sediments in the aquatic ecosystem. The aim of the present study was to evaluate the effect of DEHP exposure on cellular homeostasis (HSF1 and seven HSPs), immune responses (ILF), and apoptotic responses (p53, BAX, Bcl-2). DEHP exposure upregulated the expression of HSF1 and ILF. Moreover, it altered the expression levels of HSPs (upregulation of HSP70, HSP90, HSP40, HSP83, and HSP67B2 and downregulation of HSP60 and HSP21) in conjunction with HSF1 and ILF in the gills and hepatopancreas of M. japonicus exposed to DEHP. At the protein level, DEHP exposure changed apoptotic signals in both tissues of M. japonicus. These findings indicate that chronic exposures to several DEHP concentrations could disturb cellular balance, damage the inflammatory and immune systems, and induce apoptotic cell death, thereby affecting the survival of M. japonicus.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea; Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea.
| |
Collapse
|
15
|
Hu Z, Sun Y, Liu S, Xiang Y, Li M, Li Y, Li Y, Liu X, Fu M. Dietary additive ferulic acid alleviated oxidative stress, inflammation, and apoptosis induced by chronic exposure to avermectin in the liver of common carp (Cyprinus carpio). Toxicon 2024; 244:107755. [PMID: 38740097 DOI: 10.1016/j.toxicon.2024.107755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Avermectin (AVM) has been utilized extensively in agricultural production since it is a low-toxicity pesticide. However, the pollution caused by its residues to fisheries aquaculture has been neglected. As an abundant polyphenolic substance in plants, ferulic acid (FA) possesses anti-inflammatory and antioxidant effects. The goal of the study is to assess the FA's ability to reduce liver damage in carp brought on by AVM exposure. Four groups of carp were created at random: the control group; the AVM group; the FA group; and the FA + AVM group. On day 30, and the liver tissues of carp were collected and examined for the detection of four items of blood lipid as well as the activity of the antioxidant enzymes catalase (CAT), glutathione (GSH) and malondialdehyde (MDA) in carp liver tissues by biochemical kits, and the transcript levels of indicators of oxidative stress, inflammation and apoptosis by qPCR. The results showed that liver injury, inflammation, oxidative stress, and apoptosis were attenuated in the FA + AVM group compared to the AVM group. In summary, dietary addition of FA could ameliorate the hepatotoxicity caused by AVM in carp by alleviating oxidative stress, inflammation, apoptosis in liver tissues.
Collapse
Affiliation(s)
- Zunhan Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ying Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shujuan Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yannan Xiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Mengxin Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ying Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yuanyuan Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiguang Liu
- Neurosurgery Department, Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China.
| | - Mian Fu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
16
|
Pan E, Xin Y, Li X, Ping K, Li X, Sun Y, Xu X, Dong J. Immunoprotective effect of silybin through blocking p53-driven caspase-9-Apaf-1-Cyt c complex formation and immune dysfunction after difenoconazole exposure in carp spleen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19396-19408. [PMID: 38358624 DOI: 10.1007/s11356-024-32392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
As a broad-spectrum and efficient triazole fungicide, difenoconazole is widely used, which not only pollutes the environment but also exerts toxic effects on non-target organisms. The spleen plays an important role in immune protection as an important secondary lymphoid organ in carp. In this study, we assessed the protective impact of silybin as a dietary additive on spleen tissues of carp during exposure to difenoconazole. Sixty carp were separated into four groups for this investigation including control group, difenoconazole group, silybin group, and silybin and difenoconazole group. By hematoxylin-eosin staining, dihydroethidium staining, immunohistochemical staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, quantitative real-time PCR assay, Western blot analysis, biochemical assays, and immune function indicator assays, we found that silybin could prevent difenoconazole-induced spleen tissue damage, oxidative stress, and immune dysfunction, and inhibited apoptosis of carp spleen tissue cells by suppressing the formation of p53-driven caspase-9-apoptotic protease activating factor-1-cytochrome C complex. The results suggested that silybin as a dietary additive could improve spleen tissue damage and immune dysfunction induced by difenoconazole in aquaculture carp.
Collapse
Affiliation(s)
- Enzhuang Pan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yue Xin
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xueqing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Kaixin Ping
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xing Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ying Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xuhui Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Marine Pharmaceutical Resources Development Engineering Research Center, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
17
|
Yang L, Zeng J, Gao N, Zhu L, Feng J. Predicting the Metal Mixture Toxicity with a Toxicokinetic-Toxicodynamic Model Considering the Time-Dependent Adverse Outcome Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3714-3725. [PMID: 38350648 DOI: 10.1021/acs.est.3c09857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Chemicals mainly exist in ecosystems as mixtures, and understanding and predicting their effects are major challenges in ecotoxicology. While the adverse outcome pathway (AOP) and toxicokinetic-toxicodynamic (TK-TD) models show promise as mechanistic approaches in chemical risk assessment, there is still a lack of methodology to incorporate the AOP into a TK-TD model. Here, we describe a novel approach that integrates the AOP and TK-TD models to predict mixture toxicity using metal mixtures (specifically Cd-Cu) as a case study. We preliminarily constructed an AOP of the metal mixture through temporal transcriptome analysis together with confirmatory bioassays. The AOP revealed that prolonged exposure time activated more key events and adverse outcomes, indicating different modes of action over time. We selected a potential key event as a proxy for damage and used it as a measurable parameter to replace the theoretical parameter (scaled damage) in the TK-TD model. This refined model, which connects molecular responses to organism outcomes, effectively predicts Cd-Cu mixture toxicity over time and can be extended to other metal mixtures and even multicomponent mixtures. Overall, our results contribute to a better understanding of metal mixture toxicity and provide insights for integrating the AOP and TK-TD models to improve risk assessment for chemical mixtures.
Collapse
Affiliation(s)
- Lanpeng Yang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
| | - Jing Zeng
- School of Life Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ning Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
18
|
Li Y, Tan Z, Zuo P, Li M, Hou L, Wang X. Gestodene causes masculinization of the western mosquitofish (Gambusia affinis): Insights from ovary metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168693. [PMID: 38008334 DOI: 10.1016/j.scitotenv.2023.168693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
Gestodene (GES) is a common synthetic progesterone frequently detected in aquatic environments. Chronic exposure to GES can cause masculinization of a variety of fish; however, whether metabolism is closely related to the masculinization has yet to be explored. Hence, the ovary metabolome of adult female western mosquitofish (Gambusia affinis) after exposing to GES (0.0, 5.0, 50.0, and 500.0 ng/L) for 40 days was analyzed by using high-performance liquid chromatography ionization with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF-MS). The results showed that GES increased the levels of cysteine, taurine, ophthalmic acid and cAMP while decreased methionine, these metabolites changes may owing to the oxidative stress of the ovaries; while taurcholic acid and uric acid were decreased along with induced oocyte apopotosis. Steroids hormone metabolism was also significantly affected, with progesterone and cortisol being the most affected. Enzyme-linked immunoassay results showed that estradiol levels were decreased while testosterone levels were increased with GES exposure. In addition, correlation analysis showed that the differential metabolites of some amino acids (e.g. leucine) were strongly correlated with the levels of steroids hormones secreted by the pituitary gland. The results of this study suggest that GES affects ovarian metabolism via the hypothalamus-pituitary-gonad and hypothalamic-pituitary-adrenal axes, impair antioxidant capacity, induce apoptosis in the ovary of G. affinis, and finally caused masculinization.
Collapse
Affiliation(s)
- Yelin Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhiqing Tan
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; School of Life Sciences, Zhaoqing University, Zhaoqing 526000, China
| | - Peiyu Zuo
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Maorong Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Xiaolan Wang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
19
|
Hossen MM, Ashraf A, Hasan M, Majid ME, Nashbat M, Kashem SBA, Kunju AKA, Khandakar A, Mahmud S, Chowdhury MEH. GCDN-Net: Garbage classifier deep neural network for recyclable urban waste management. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 174:439-450. [PMID: 38113669 DOI: 10.1016/j.wasman.2023.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/10/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
The escalating waste volume due to urbanization and population growth has underscored the need for advanced waste sorting and recycling methods to ensure sustainable waste management. Deep learning models, adept at image recognition tasks, offer potential solutions for waste sorting applications. These models, trained on extensive waste image datasets, possess the ability to discern unique features of diverse waste types. Automating waste sorting hinges on robust deep learning models capable of accurately categorizing a wide range of waste types. In this study, a multi-stage machine learning approach is proposed to classify different waste categories using the "Garbage In, Garbage Out" (GIGO) dataset of 25,000 images. The novel Garbage Classifier Deep Neural Network (GCDN-Net) is introduced as a comprehensive solution, adept in both single-label and multi-label classification tasks. Single-label classification distinguishes between garbage and non-garbage images, while multi-label classification identifies distinct garbage categories within single or multiple images. The performance of GCDN-Net is rigorously evaluated and compared against state-of-the-art waste classification methods. Results demonstrate GCDN-Net's excellence, achieving 95.77% accuracy, 95.78% precision, 95.77% recall, 95.77% F1-score, and 95.54% specificity when classifying waste images, outperforming existing models in single-label classification. In multi-label classification, GCDN-Net attains an overall Mean Average Precision (mAP) of 0.69 and an F1-score of 75.01%. The reliability of network performance is affirmed through saliency map-based visualization generated by Score-CAM (class activation mapping). In conclusion, deep learning-based models exhibit efficacy in categorizing diverse waste types, paving the way for automated waste sorting and recycling systems that can mitigate costs and processing times.
Collapse
Affiliation(s)
- Md Mosarrof Hossen
- Department of Electrical and Electronics Engineering, University of Dhaka, Dhaka, Bangladesh.
| | - Azad Ashraf
- Chemical Engineering Department, University of Doha for Science and Technology, Doha, Qatar.
| | - Mazhar Hasan
- Chemical Engineering Department, University of Doha for Science and Technology, Doha, Qatar.
| | - Molla E Majid
- Computer Applications Department, Academic Bridge Program, Qatar Foundation, Doha, Qatar.
| | - Mohammad Nashbat
- Chemical Engineering Department, University of Doha for Science and Technology, Doha, Qatar.
| | - Saad Bin Abul Kashem
- Department of Computing Science, AFG College with the University of Aberdeen, Doha, Qatar.
| | - Ali K Ansaruddin Kunju
- Chemical Engineering Department, University of Doha for Science and Technology, Doha, Qatar.
| | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, Doha, Qatar.
| | - Sakib Mahmud
- Department of Electrical Engineering, Qatar University, Doha, Qatar.
| | | |
Collapse
|
20
|
Park K, Moon BS, Kwak IS. Responses of multifunctional immune complement component 1q (C1q) and apoptosis-related genes in Macrophthalmus japonicus tissues and human cells following exposure to environmental pollutants. Cell Stress Chaperones 2023; 28:959-968. [PMID: 37880562 PMCID: PMC10746657 DOI: 10.1007/s12192-023-01389-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/13/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Apoptosis is a key defense process for multiple immune system functions, playing a central role in maintaining homeostasis and cell development. The purpose of this study was to evaluate the effects of environmental pollutant exposure on immune-related apoptotic pathways in crab tissues and human cells. To do this, we characterized the multifunctional immune complement component 1q (C1q) gene and analyzed C1q expression in Macrophthalmus japonicus crabs after exposure to di(2-ethylhexyl) phthalate (DEHP) or hexabromocyclododecanes (HBCDs). Moreover, the responses of apoptotic signal-related genes were observed in M. japonicus tissues and human cell lines (HEK293T and HCT116). C1q gene expression was downregulated in the gills and hepatopancreas of M. japonicus after exposure to DEHP or HBCD. Pollutant exposure also increased antioxidant enzyme activities and altered transcription of 15 apoptotic signaling genes in M. japonicus. However, patterns in apoptotic signaling in response to these pollutants differed in human cells. HBCD exposure generated an apoptotic signal (cleaved caspase-3) and inhibited cell growth in both cell lines, whereas DEHP exposure did not produce such a response. These results suggest that exposure to environmental pollutants induced different levels of immune-related apoptosis depending on the cell or tissue type and that this induction of apoptotic signaling may trigger an initiation of carcinogenesis in M. japonicus and in humans as consumers.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea
| | - Byoung-San Moon
- Department of Biotechnology, Chonnam National University, Yeosu, 59626, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea.
- Department of Ocean Integrated Science, Chonnam National University, Yeosu, 59626, South Korea.
| |
Collapse
|
21
|
Yang Y, Zhang C, Wang X, Yu Q, He L, Cai X, Li E, Qin C, Qin J, Chen L. Adverse effects of thiamethoxam on the behavior, biochemical responses, hepatopancreas health, transcriptome and intestinal flora of juvenile Chinese mitten crab (Eriocheir sinensis). CHEMOSPHERE 2023; 340:139853. [PMID: 37595694 DOI: 10.1016/j.chemosphere.2023.139853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Frequent detection of thiamethoxam in global surface waters has provoked great concern in environmental safety, as thiamethoxam exhibits high toxicity to aquatic arthropods. However, little systematic investigation has been conducted on the chronic toxicity of thiamethoxam to crustaceans. This study exposed Eriocheir sinensis to thiamethoxam (0, 0.5, 5 and 50 μg/L) in water for 28 days. No significant difference in mortality was observed among all groups. A high concentration of thiamethoxam (50 μg/L) impaired the righting ability of E. sinensis. Thiamethoxam significantly increased antioxidant enzyme activities (superoxide dismutase, total antioxidant capacity and glutathione peroxidase) and malondialdehyde levels. Simultaneously, detoxification enzyme activities (aminopyrine N-demethylase, erythromycin N-demethylase and glutathione-S-transferase) increased under chronic thiamethoxam stress. In addition, thiamethoxam caused immune and hepatopancreas damage. Moreover, thiamethoxam induced intestinal flora dysbiosis by altering the microbiome structure. The reduced complexity of the gut microbiota further illustrated that thiamethoxam could disrupt the stability of the microbiota ecological network. The transcriptomic results revealed that the number of downregulated DEGs increased in a dose-dependent manner, and most downregulated DEGs were enriched in energy metabolism-related pathways. These results indicate that thiamethoxam can adversely affect the crab behavior, biochemistry, intestinal microflora and transcriptomic responses.
Collapse
Affiliation(s)
- Yiwen Yang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Cong Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Qiuran Yu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Long He
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Xinyu Cai
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Sichuan, 641100, PR China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, PR China.
| |
Collapse
|
22
|
Unar A, Sarfraz M, Ajarem JS, Allam AA, Bhatti U, Chanihoon GQ, Afridi HI. Mitigating marine hazardous contaminants: A sustainable management perspective. CHEMOSPHERE 2023; 338:139292. [PMID: 37437618 DOI: 10.1016/j.chemosphere.2023.139292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Marine hazardous contaminants, such as cadmium (Cd) and lead (Pb), pose significant risks to both human health and aquatic organisms. Traditional methods may not remove contaminants to safe levels, leading to the release of hazardous materials into marine environments. This research proposes polymeric membrane bioreactors as a potential solution to this problem. We determined Cd and Pb levels in three freshwater fish species (Rita, Ompok bimaculatus, and Heteropneustes fossils) from two distinctive regions (Zone 1 and Zone 2). Additionally, Cd and Pb concentrations in feeding materials, water, and sediments were analyzed to estimate daily intake and potential hazardous effects of these contaminants on the fish species. These findings underscore the need for effective regulatory measures and policies to reduce the discharge of hazardous contaminants into freshwater and marine environments, protecting both human health and the environment. Implementing polymeric membrane bioreactors in wastewater treatment and industrial facilities could mitigate the risks associated with consuming contaminated fish species. Significantly, the Cd and Pb levels in all three fish species from both fishponds exceeded the Food and Agriculture Organization's (FAO) maximum permissible limits. These findings carry important implications for policymakers, regulators, and industries, urging them to act appropriately to ensure the safety of the environment and public health. This study suggests that polymeric membrane bioreactors are a promising technological approach to address marine contamination, emphasizing their potential role in safeguarding human health and aquatic ecosystems.
Collapse
Affiliation(s)
- Ahsanullah Unar
- Department of Translational Medicine, University of Campania 'L. Vanvitelli, Naples, Italy
| | - Muddassar Sarfraz
- School of Management, Zhejiang Shuren University, 310015, Hangzhou, PR China.
| | - Jamaan S Ajarem
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A Allam
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Urooj Bhatti
- Physiology Department, Liaquat University of Medical and Health Sciences, Jamshoro, 76090, Pakistan
| | - Ghulam Qadir Chanihoon
- National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76090, Pakistan
| | - Hassan Imran Afridi
- Mechanical and Manufacturing Engineering, Dublin City University, Dublin, Ireland
| |
Collapse
|
23
|
Jiao F, Zhao Y, Limbu SM, Kong L, Zhang D, Liu X, Yang S, Gui W, Rong H. Cyhexatin causes developmental toxic effects by disrupting endocrine system and inducing behavioral inhibition, apoptosis and DNA hypomethylation in zebrafish (Danio rerio) larvae. CHEMOSPHERE 2023; 339:139769. [PMID: 37562506 DOI: 10.1016/j.chemosphere.2023.139769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/16/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Cyhexatin (CYT), an organotin acaricide, is extensively utilized in developing countries to mitigate plant diseases caused by mites and minimize agricultural crop losses. However, the comprehensive mechanisms underlying the developmental stage of non-target organisms remain largely unexplored. In this study, zebrafish embryos were firstly exposed to CYT (0.06, 0.12, and 0.20 ng/mL, referred to as CYTL, CYTM, and CYTH, respectively) from 2 hpf (hours post fertilization) to 30 dpf (days post fertilization). No developmental toxicity was observed in the CYTL and CYTM groups, except for induced deformed phenotypes in the CYTM group at 120 hpf. However, exposure to CYTH resulted in significant reductions in spontaneous movement (24 hpf), heart rate (48 hpf), hatching rate (48 and 72 hpf), body weight (30 dpf), whole body length (30 dpf), and locomotion (30 dpf). Additionally, CYTH exposure induced morphological malformations, including spinal curvature, pericardial edema, and tail curvature in zebrafish larvae. Moreover, CYTH treatment induced apoptosis, increased reactive oxygen species (ROS) production, and resulted in significant reductions in free T3, cholesterol, estradiol, and testosterone levels in zebrafish larvae, while free T4 levels were increased. RNA-Seq analysis indicated that CYTH exposure led to significant alterations in the genome-wide gene expression profiles of zebrafish, particularly in the thyroid hormone and steroid biosynthesis signaling pathways, indicating endocrine disruption. Furthermore, CYTH exposure induced global DNA hypomethylation, reduced S-adenosylmethionine (SAM) levels and the SAM/S-adenosylhomocysteine (SAH) ratio, elevated SAH levels, and suppressed the mRNA expression of DNA methyltransferases (DNMTs) while also downregulating DNMT1 at both the gene and protein levels in zebrafish larvae. Overall, this study partially elucidated the developmental toxicity and endocrine disruption caused by CYT in zebrafish, providing evidence of the environmental hazards associated with this acaricide.
Collapse
Affiliation(s)
- Fang Jiao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, PR China
| | - Yang Zhao
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310058, PR China
| | - Samwel Mchele Limbu
- Department of Aquaculture Technology, School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, P. O. Box 60091, Dar es Salaam, Tanzania
| | - Lingfu Kong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Daitao Zhang
- Xiangyang Polytechnic, Xiangyang, 441050, PR China
| | - Xianghe Liu
- Xiangyang Polytechnic, Xiangyang, 441050, PR China
| | - Sha Yang
- Xiangyang Polytechnic, Xiangyang, 441050, PR China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China.
| | - Hua Rong
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, PR China; Xiangyang Polytechnic, Xiangyang, 441050, PR China.
| |
Collapse
|
24
|
Laborde MRR, Larramendy ML, Soloneski S. Cytotoxic and genotoxic profiles of the pyrethroid insecticide lambda-cyhalothrin and its microformulation Karate® in CHO-K1 cells. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503682. [PMID: 37770139 DOI: 10.1016/j.mrgentox.2023.503682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023]
Abstract
Lambda-cyhalothrin (LCT) and its microformulation Karate® (25 % a.i.) were analysed for its genotoxicity and cytotoxicity on Chinese hamster ovary (CHO-K1) cells. Cytokinesis-block micronucleus cytome (CBMN-cyt) and alkaline single-cell gel electrophoresis (SCGE) bioassays were selected to test genotoxicity. Neutral red uptake (NRU), succinic dehydrogenase activity (MTT) and apoptogenic induction were employed for estimating cytotoxicity. Both compounds were analysed within a concentration range of 0.1-100 µg/mL. Only LCT produced a significant augment in the frequency of micronuclei (MNs) when the cultures were exposed to highest concentrations of 10 and 100 µg LCT/mL. A noticeable decrease in NDI was observed for cultures treated with LCT at 10 and 100 µg/mL. Karate® induced the inhibition of both the proportion of viable cells and succinic dehydrogenase activity and triggered apoptosis 24 h of exposition. Whilst an increased GDI in CHO-K1 cells was observed in the treatments with 1-100 µg Karate®/mL, the GDI was not modified in the treatments employing LCT at equivalent doses. SCGE showed that Karate® was more prone to induce genotoxic effects than LCT. Only 50 µg/mL of Karate® was able to increase apoptosis. Our results demonstrate the genomic instability and cytotoxic effects induced by this pyrethroid insecticide, confirming that LCT exposure can result in a severe drawback for the ecological equilibrium of the environment.
Collapse
Affiliation(s)
- Milagros R R Laborde
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nº 3, B1904AMA La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marcelo L Larramendy
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nº 3, B1904AMA La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Sonia Soloneski
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nº 3, B1904AMA La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
25
|
Noor MI, Rahman MS. Roundup® disrupts tissue architecture, attenuates Na +/K +-ATPase expression, and induces protein oxidation/nitration, cellular apoptosis, and antioxidant enzyme expressions in the gills of goldfish, Carassius auratus. Comp Biochem Physiol C Toxicol Pharmacol 2023; 272:109710. [PMID: 37532112 DOI: 10.1016/j.cbpc.2023.109710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Extensive agricultural activities to feed the growing population are one major driving force behind aquatic pollution. Different types of pesticides are used in farmlands to increase crop production and wash up into water bodies. Glyphosate-based herbicide Roundup® is one of the most used pesticides in the United States; however, its effects on teleost species are still poorly understood. This study focused on the effects of environmentally relevant concentrations of Roundup exposure (low- and high-dose: 0.5 and 5 μg/L for 2-week) on Na+/K+-ATPase (NKA, a biomarker for sodium‑potassium ion pump efficacy), cytochrome P450-1A (CYP1A, a monooxygenase enzyme), 2,4-dinitrophenyl protein (DNP, a biomarker for protein oxidation), 3-nitrotyrosine protein (NTP, a biomarker for protein nitration), superoxidase dismutase (SOD, an antioxidant enzyme), catalase (CAT, an antioxidant enzyme) expressions, and cellular apoptosis in the gills of goldfish. Histopathological and in situ TUNEL analyses showed widespread tissue damage, including lamellar fusion, loss of gill architecture, club shape of primary lamellae, mucous formation, and distortion in the epithelium layer, as well as apoptotic nuclei in gills. Immunohistochemical and qRT-PCR analyses provided insights into the expressions of molecular indicators in gills. Fish exposed to Roundup exhibited a significant (P < 0.05) downregulation of NKA expression in gills. Additionally, we observed upregulation of CYP1A, DNP, NTP, SOD, and CAT expressions in the gills of goldfish. Overall, our results suggest that exposure to Roundup causes disruption of gill architecture, induces protein oxidation/nitration and cellular apoptosis, and alters prooxidant-antioxidant homeostasis in tissues, which may lead to reduced fitness and survivability of teleost species.
Collapse
Affiliation(s)
- Md Imran Noor
- Biochemistry and Molecular Biology Program, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- Biochemistry and Molecular Biology Program, University of Texas Rio Grande Valley, Brownsville, TX, USA; School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA.
| |
Collapse
|
26
|
Sarly MS, Pedro CA, Bruno CS, Raposo A, Quadros HC, Pombo A, Gonçalves SC. Use of the gonadal tissue of the sea urchin Paracentrotus lividus as a target for environmental contamination by trace metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89559-89580. [PMID: 37454008 PMCID: PMC10412469 DOI: 10.1007/s11356-023-28472-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Many environmental monitoring works have been carried out using biomarkers as a tool to identify the effects of oil contamination on marine organisms; however, only a few studies have used sea urchin gonadal tissue for this purpose. Within this context, the present work aimed to understand the impact of an oil spill, proposing the use of sea urchin gonadal tissue as a biomarker for environmental contamination by trace metals in the species Paracentrotus lividus. Biometric analysis, quantification analyses of the elements Cd, Pb, Ni, Fe, Mn, Zn, and Cu, as well as histopathological evaluations were performed in gonads of P. lividus collected from an area affected by hydrocarbons, named as impacted shore (IS) and an area not affected, named reference shore (RS). The results showed that carapace diameter (DC), total wet weight (WW), and Cd concentrations in the gonads were significantly influenced by the interaction between the rocky shores of origin, the months of sampling, and by the sex of the individuals. Moreover, from July until September, the levels of Zn and Cd were significantly lower in male than in female gonads. In July (the month of the oil spill), the indexes of histopathological alterations (IHPA) of membrane dilation were significantly higher in individuals from the IS, compared to the individuals from the RS. In addition, there were significant correlations between biometric variables (wet weight, diameter of carapace, gonadal weight, and gonadosomatic index) and the elements Cd, Cu, Ni, and Mn concentrations. Lastly, a delay in the gametogenic cycle of the sea urchins from IS was also observed. Taken together, these findings suggest that direct exposure to trace metals induces histopathological lesions in P. lividus' gonads and affects its reproductive cycle.
Collapse
Affiliation(s)
- Monique S Sarly
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Carmen A Pedro
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Catarina S Bruno
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Andreia Raposo
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Helenita C Quadros
- Gonçalo Moniz Institute - Oswaldo Cruz Foundation (Fiocruz), Salvador, 40296-710, Brazil
| | - Ana Pombo
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Sílvia C Gonçalves
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal.
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517, Coimbra, Portugal.
| |
Collapse
|
27
|
Al Marshoudi M, Al Reasi HA, Al Habsi A, Barry MJ. Additive effects of microplastics on accumulation and toxicity of cadmium in male zebrafish. CHEMOSPHERE 2023; 334:138969. [PMID: 37244557 DOI: 10.1016/j.chemosphere.2023.138969] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Microplastics (MPs) have emerged as contaminants of concern because of their ubiquitous presence in almost all aquatic environments. The ecological effects of MPs are complex and depend on multiple factors including their age, size and the ecological matrix. There is an urgent need for multifactorial studies to elucidate their impacts. We measured the effects of virgin and naturally aged MPs, alone, pretreated with cadmium (Cd), or in combination with ionic Cd, on the bioaccumulation of Cd, metallothionein expression, behavior, and histopathology of adult zebrafish (Danio rerio). Zebrafish were exposed to virgin or aged polyethylene MPs (0.1% MPs enriched diets, w/w) or waterborne Cd (50 μg/L) or a combination of the two for 21 days. There was an additive interaction between water-borne Cd and MPs on bioaccumulation in males but not in females, Cd accumulation increased by twofold when water-borne Cd and MPs were combined. Water-borne Cd significantly induced higher levels of metallothionein compared to MPs pre-exposed to Cd. However, Cd-treated MPs caused greater damage to the intestine and liver compared to untreated MPs suggesting that bound Cd could be released or modulate MPs toxicity. We also showed that co-exposure to water-borne Cd and MPs increased anxiety in the zebrafish, compared with water-borne Cd alone, suggesting using microplastics as a vector may increase toxicity. This study demonstrates that MPs can enhance the toxicity of Cd, but further study is needed to elucidate the mechanism.
Collapse
Affiliation(s)
- Maklas Al Marshoudi
- Biology Department, Sultan Qaboos University, PO Box 36, Muscat, 123, Sultanate of Oman; Current Address: College of Applied Sciences and Pharmacy, University of Technology and Applied Sciences (UTA), Muscat, PO Box 74, Al-Khuwair, Sultanate of Oman
| | - Hassan A Al Reasi
- Biology Department, Sultan Qaboos University, PO Box 36, Muscat, 123, Sultanate of Oman; Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khod, Muscat, PO Box: 17, Postal Code: 123 SQU, Oman
| | - Aziz Al Habsi
- Biology Department, Sultan Qaboos University, PO Box 36, Muscat, 123, Sultanate of Oman
| | - Michael J Barry
- Biology Department, Sultan Qaboos University, PO Box 36, Muscat, 123, Sultanate of Oman.
| |
Collapse
|
28
|
Shen C, Tang C, Zhu K, He C, Yang C, Zuo Z. Toxicity and ecological risk assessment for two AhR agonistic pesticides mepanipyrim and cyprodinil and their metabolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58944-58955. [PMID: 37002518 DOI: 10.1007/s11356-023-26735-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/27/2023] [Indexed: 05/10/2023]
Abstract
Mepanipyrim and cyprodinil are widely used to control and/or prevent fungal diseases in fruit culture. They are frequently detected in the aquatic environment and some food commodities. Different from TCDD, mepanipyrim and cyprodinil are more easily metabolised in the environments. However, the risk of their metabolites to the ecological environment is unclear and needs to be further confirmed. In this study, we investigated the temporal pattern of mepanipyrim- and cyprodinil-induced CYP1A and AhR2 expression and EROD enzyme activity at different time frames during zebrafish embryonic and larval development. Then, we assessed the ecological risk of mepanipyrim, cyprodinil, and their metabolites to aquatic organisms. Our results showed that mepanipyrim and cyprodinil exposure could increase the expression level of cyp1a and ahr2 genes and EROD activity by a dynamic pattern in different developmental stages of zebrafish. Besides, their several metabolites showed strong AhR agonistic activity. Importantly, these metabolites could cause potential ecological risks to aquatic organisms and should be paid more attention to. Our results would provide an important reference value for environmental pollution control and the use management of mepanipyrim and cyprodinil.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Kongyang Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, Fujian, China.
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
29
|
Singh S, Rani H, Sharma N, Behl T, Zahoor I, Makeen HA, Albratty M, Alhazm HA, Aleya L. Targeting multifunctional magnetic nanowires for drug delivery in cancer cell death: an emerging paradigm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57219-57235. [PMID: 37010687 DOI: 10.1007/s11356-023-26650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
Apoptosis, often known as programmed cell death is a mechanism used by numerous species to maintain tissue homeostasis. The process leading to cell death is complicated because it requires the stimulation of caspases. According to several studies, nanowires have important medical benefits, can kill cells by adhering to cancer cells, destroying them, and killing the entire cell using a triple attack that integrates vibration, heat, and drug delivery to trigger apoptosis. The sewage effluents and industrial, fertilizer and organic wastes decomposition can produce elevated levels of chemicals in the environment which may interrupt the cell cycle and activate apoptosis. The purpose of this review is to give a thorough summary of the evidence that is currently available on apoptosis. Current review discussed topics like the morphological and biochemical alterations that occur during apoptosis, as well as the various mechanisms that cause cell death, including the intrinsic (or mitochondrial), extrinsic (or death receptor), and intrinsic endoplasmic reticulum pathway. The apoptosis reduction in cancer development is mediated by (i) an imbalance between pro- and anti-apoptotic proteins, such as members of the B-cell lymphoma-2 (BCL2) family of proteins, tumour protein 53 and inhibitor of apoptosis proteins, (ii) a reduction in caspase activity, and (iii) impaired death receptor signalling. This review does an excellent task of outlining the function of nanowires in both apoptosis induction and targeted drug delivery for cancer cells. A comprehensive summary of the relevance of nanowires synthesised for the purpose of inducing apoptosis in cancer cells has been compiled collectively.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hema Rani
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, 141104, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| | - Tapan Behl
- School of Health Sciences &Technology, University of Petroleum and Energy Studies, Bidholi, Uttarakhand, 248007, Dehradun, India
| | - Ishrat Zahoor
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazm
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| |
Collapse
|
30
|
Cruz-Esquivel Á, Díez S, Marrugo-Negrete JL. Genotoxicity effects in freshwater fish species associated with gold mining activities in tropical aquatic ecosystems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114670. [PMID: 36857922 DOI: 10.1016/j.ecoenv.2023.114670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The main aim of this study was to investigate total mercury (THg), methylmercury (MeHg) and arsenic (As) concentrations, and their genotoxic effects on fish species in freshwater habitats impacted by gold mining activities in the Mojana and Bajo Cauca regions (Northern Colombia). A total of 255 individuals of Prochilodus magdalenae (PM) and Hoplias malabaricus (HM) were collected in different areas of northern Colombia, 205 in the exposed groups: Mojana 1 (61), Mojana 2 (81) and Bajo Cauca (63); and 50 individuals in the control group. Dorsal muscle was analysed for pollutants and blood to perform micronucleus (MN) and erythrocytic nuclear alterations (ENA) tests. The results of the MN revealed statistically significant (p < 0.05) genetic damage in both PM (Mojana 1 = 29.7 ± 14.2; Mojana 2 = 25 ± 6.25; Bajo Cauca= 26.6 ± 10.6) and in HM (Mojana 1 = 17.7 ± 7.8; Mojana 2 = 20.4 ± 6.3; Bajo Cauca= 20.8 ± 9.8) compared to the control group (PM= 10.5 ± 3.6; HM= 9.1 ± 3.9). Likewise, the frequency of ENA was statistically higher in the exposed groups compared to the control group (p < 0.05). On the other hand, the concentrations of THg, MeHg and As found in tissue samples were significantly higher (p < 0.05) compared to the control group, being the Bajo Cauca region the area of highest risk due to high concentrations of THg (651.2 ± 344.5 μg/kg for HM and 678.5 ± 983.9 μg/kg for PM) and MeHg (504.6 ± 220.9 μg/kg for HM and 606.8 ± 886.4 μg/kg for PM). Results showed that mean THg values for both species in Bajo Cauca exceeded the WHO maximum limit (set in 500 μg Hg/kg) in fish for human consumption. Results suggest that DNA damage in erythrocytes is associated with the presence of Hg, MeHg and As, coming from mining activities.
Collapse
Affiliation(s)
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, E-08034 Barcelona, Spain.
| | | |
Collapse
|
31
|
Abdel-Kader HH, Mourad MH. Estimation of Cadmium in Muscles of Five Freshwater Fish Species from Manzalah Lake, and Possible Human Risk Assessment of Fish Consumption (Egypt). Biol Trace Elem Res 2023; 201:937-945. [PMID: 35325364 PMCID: PMC9849296 DOI: 10.1007/s12011-022-03188-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/01/2022] [Indexed: 01/22/2023]
Abstract
The Egyptian government devised a plan in 2016 to improve the unique ecological significance of northern lakes, which mentioned Manzalah Lake in the Egypt Vision 2030. In this regard, this study investigated cadmium (Cd) content in five freshwater fish species collected from Manzalah Lake in Egypt at 2018 by local fishermen. According to the findings, Clarias gariepinus recorded the highest concentration of Cd (1.40 ± 0.2 μg/g) and the lowest concentration was recorded in O. aureus (1.19 ± 0.2 μg/g). Cadmium contents of all species were largely above the permissible level of the Food Agricultural Organization (FAO)/World Health Organization (WHO) and Commission Regulation (EC). The estimated daily intake (EDI), the estimated weekly intake (EWI), and the percentages of provisional tolerable weekly intake (PTWI %) values for Cd in the C. gariepinus > Sarotherodon galilaeus > Tilapia zillii > Oreochromis niloticus > Oreochromis aureus which consumed by children, teenagers, and adults were much higher than the PTWI values established by FAO/WHO. In addition, C. gariepinus consumed by children showed the highest value of the target hazard quotient (THQ) (5.83 a day or 40.81 a week) while O. aureus that ingested by adults showed the lowest level (1.06 a day or 7.42a week). The target carcinogenic risk (TCR) of C. gariepinus in children had the greatest level (2.21 × 10-3 a day or 1.55 × 10-2 a week), whereas O. aureus in adults had the lowest level of TCR (4 × 10-4 a day or 2.81 × 10-3 a week). THQs values of Cd in the five studied species were found higher than one. Moreover, TCRs values of Cd in the five species were exceeded the US Environmental Protection Agency guideline USEPA permissible limits suggesting that a daily or weekly consumption of these species could lead to a high risk non-carcinogenic and carcinogenic for humans.
Collapse
Affiliation(s)
- Heba H Abdel-Kader
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt.
| | - Mohamed H Mourad
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| |
Collapse
|
32
|
Zhao S, Bao Q, Ma G, Yao Y, Xie L, Xiong J. Benzo[b]fluoranthene (B[b]F) affects apoptosis, oxidative stress, mitochondrial membrane potential and expressions of blood-brain barrier markers in microvascular endothelial cells. Toxicol In Vitro 2022; 86:105522. [DOI: 10.1016/j.tiv.2022.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022]
|
33
|
Feng W, Su S, Song C, Yu F, Zhou J, Li J, Jia R, Xu P, Tang Y. Effects of Copper Exposure on Oxidative Stress, Apoptosis, Endoplasmic Reticulum Stress, Autophagy and Immune Response in Different Tissues of Chinese Mitten Crab ( Eriocheir sinensis). Antioxidants (Basel) 2022; 11:antiox11102029. [PMID: 36290752 PMCID: PMC9598082 DOI: 10.3390/antiox11102029] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
High concentrations of copper (Cu2+) pose a great threat to aquatic animals. However, the mechanisms underlying the response of crustaceans to Cu2+ exposure have not been well studied. Therefore, we investigated the alterations of physiological and molecular parameters in Chinese mitten crab (Eriocheir sinensis) after Cu2+ exposure. The crabs were exposed to 0 (control), 0.04, 0.18, and 0.70 mg/L of Cu2+ for 5 days, and the hemolymph, hepatopancreas, gills, and muscle were sampled. The results showed that Cu2+ exposure decreased the antioxidative capacity and promoted lipid peroxidation in different tissues. Apoptosis was induced by Cu2+ exposure, and this activation was associated with the mitochondrial and ERK pathways in the hepatopancreas. ER stress-related genes were upregulated in the hepatopancreas but downregulated in the gills at higher doses of Cu2+. Autophagy was considerably influenced by Cu2+ exposure, as evidenced by the upregulation of autophagy-related genes in the hepatopancreas and gills. Cu2+ exposure also caused an immune response in different tissues, especially the hepatopancreas, where the TLR2-MyD88-NF-κB pathway was initiated to mediate the inflammatory response. Overall, our results suggest that Cu2+ exposure induces oxidative stress, ER stress, apoptosis, autophagy, and immune response in E. sinensis, and the toxicity may be implicated following the activation of the ERK, AMPK, and TLR2-MyD88-NF-κB pathways.
Collapse
Affiliation(s)
- Wenrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shengyan Su
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Changyou Song
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Fan Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jun Zhou
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Jianlin Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongkai Tang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Correspondence: ; Tel.: +86-051085554198
| |
Collapse
|
34
|
Park K, Kwak IS. Environmental co-exposure of high temperature and Cu induce hormonal disturbance of cortisol signaling and altered responses of cellular defense genes in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156555. [PMID: 35750185 DOI: 10.1016/j.scitotenv.2022.156555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/29/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Global warming is causing a continuous increase in environmental temperatures, which simultaneously activates toxic environmental stresses, such as heavy metal exposure, in aquatic ecosystems. The present study aimed at evaluating the effects of Cu toxicity along with increased temperature during zebrafish embryogenesis. Decreased survival rates were observed following combined exposure to high temperature and Cu. Heart rates of zebrafish embryos were significantly increased only during heat stress. An abnormal morphology with curved body shape was induced by exposure to a combination of Cu and heat stress. Furthermore, heat stress also triggered Cu-induced intracellular reactive oxygen species (ROS) production, with upregulation of superoxide dismutase (SOD) and glutathione s-transferase (GST) expression, and cell death with modified expression of p53 and B-cell lymphoma-2 (Bcl-2) in zebrafish embryos. Finally, increased cortisol levels and altered expression of cortisol-signaling genes were observed following exposure to Cu and high temperatures. These results highlight that realistic exposure to combined stressors induces developmental disturbances via stress-induced responses involving oxidative stress and cell death as well as transcriptional alterations leading to cortisol signaling in fish.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea; Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea.
| |
Collapse
|
35
|
Hasan M, Zafar A, Imran M, Iqbal KJ, Tariq T, Iqbal J, Shaheen A, Hussain R, Anjum SI, Shu X. Crest to Trough Cellular Drifting of Green-Synthesized Zinc Oxide and Silver Nanoparticles. ACS OMEGA 2022; 7:34770-34778. [PMID: 36211074 PMCID: PMC9535654 DOI: 10.1021/acsomega.2c02178] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/20/2022] [Indexed: 06/16/2023]
Abstract
Green nanotechnology facilitates the blooming of zinc oxide (ZnO) and silver (Ag) nanoparticles (NPs) with distinct flowerlike and spherical morphologies, respectively. The well-characterized NPs with an average size of 35 nm (ZnO) and 25 nm (Ag) were functionalized on the cresty plates for antibacterial inhibition against Staphylococcus aureus and Pseudomonas aeruginosa, with the flowerlike ZnONPs exhibiting 90.9% inhibition and AgNPs exhibiting 100% inhibition. Further, the in vivo underwater troughs for hematological, immunological, and serological analysis in Labeo rohita exhibited 102 > 575 > 104 and 206 > 109 > 81% at concentrations of 1, 2, and 3 mg/L with 4-day and 15-day treatment, respectively, over ZnONPs. However, AgNPs exhibited 257 > 408 > 124 and 86 > 202 > 43% with 4-day and 15-day treatment, respectively, at the same concentrations. The classical ZnNPs and AgNPs exhibited excellent inhibition potential and significant transfiguration of hematological, enzymological, and protein parameters as safe nanomedicine, but ZnONPs were found to be 58, 69, 29 and 34, 51, 70% more active than AgNPs with 4-day and 15-day treatment, respectively. Therefore, the onset of ROX and antioxidant arena favors beneficial cellular drifting of NPs.
Collapse
Affiliation(s)
- Murtaza Hasan
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, P. R. China
- Department
of Biotechnology, The Islamia University
of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ayesha Zafar
- Department
of Biotechnology, The Islamia University
of Bahawalpur, Bahawalpur 63100, Pakistan
- School
of Biomedical Engineering, Department of Future Technology, Peking University 10081 Beijing, China
| | - Muhammad Imran
- Department
of Biotechnology, The Islamia University
of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Khalid Javed Iqbal
- Department
of Zoology, The Islamia University Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tuba Tariq
- Department
of Biotechnology, The Islamia University
of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Javed Iqbal
- Department
of Agriculture Engineering, Khawaja Fareed
University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan 64200, Pakistan
| | - Aqeela Shaheen
- Department
of Chemistry, Govt, Sadiq College Women
University, Bahawalpur 63100, Pakistan
| | - Riaz Hussain
- Department
of Zoology, Kohat University of Science
and Technology, Kohat 26000, Pakistan
| | - Syed Ishtiaq Anjum
- Department
of Zoology, Kohat University of Science
and Technology, Kohat 26000, Pakistan
| | - Xugang Shu
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou, Guangdong Province 510225, P. R. China
| |
Collapse
|
36
|
Shi Y, Zhong L, Fan Y, Zhang J, Dai J, Zhong H, Fu G, Hu Y. Taurine inhibits hydrogen peroxide-induced oxidative stress, inflammatory response and apoptosis in liver of Monopterus albus. FISH & SHELLFISH IMMUNOLOGY 2022; 128:536-546. [PMID: 35988713 DOI: 10.1016/j.fsi.2022.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Fish are extremely vulnerable to environmental stimulation and produce oxidative stress. Among them, hydrogen peroxide is an oxidative stress source that cannot be ignored in fish, which can cause physical disorders, inflammation and even death. Taurine was revealed to reduce oxidative damage and inflammation caused by toxic substances, but whether it can reduce toxicity of rice field eel caused by H2O2 has not been determined. Thus, the intervention effects of taurine on H2O2-induced oxidative stress, inflammation, apoptosis, and autophagy in rice field eel. The results showed that oxidative injury in the liver was determined after H2O2 injection, as indicated by enhanced serum AST and ALT activities, inhibited the antioxidant function (increased MDA and ROS contents, decreased antioxidant enzymes, inhibited nrf2 transcription level), and induced inflammatory response (upregulated il-1β, il-6, il-8, and il-12β gene expression, downregulated tgf-β1 gene expression, activated the transcription level of nf-κb, tlr-3, and tlr-7). In addition, bax, caspase3, beclin1, and Lc3B gene expression were significantly upregulated after H2O2 injection, while bcl2 and p62 gene expression were downregulated, leading to the occurrence of apoptosis and autophagy. In contrast, adding 0.2 and 0.5% taurine to feed significantly alleviated this damage, as indicated by the recovery of the aforementioned bioindicators, and the effect of 0.5% taurine addition is better than 0.2%. Overall, these results suggested that taurine can relieve the liver toxicity induced by H2O2, which enriched the toxic mechanism of H2O2 on fish and provided evidence for the protective effect of taurine on liver.
Collapse
Affiliation(s)
- Yong Shi
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Lei Zhong
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China; Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Junzhi Zhang
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Jihong Dai
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Huan Zhong
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Guihong Fu
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Hu
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China; Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
37
|
Santos D, Luzio A, Félix L, Cabecinha E, Bellas J, Monteiro SM. Microplastics and copper induce apoptosis, alter neurocircuits, and cause behavioral changes in zebrafish (Danio rerio) brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113926. [PMID: 35930835 DOI: 10.1016/j.ecoenv.2022.113926] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/30/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The knowledge regarding the neurological and behavioral toxic effects associated with microplastics (MPs) and heavy metals exposure is still scarce. The present study aimed to evaluate the potential chronic (30 days) toxic effects of MPs (2 mg/L) and copper (Cu, 25 µg/L), alone or combined, in the zebrafish (Danio rerio) brain antioxidant system, cell proliferation/death, cholinergic-, serotonergic- and dopaminergic pathways and, consequently, in locomotor, anxiety, and social behaviors. Our findings showed that MPs and Cu exposure modulated the antioxidant system of zebrafish brain, with superoxide dismutase (SOD) and glutathione reductase (GR) having higher activity in the Cu25 +MPs group, but glutathione peroxidase (GPx) being inhibited in MPs, Cu25 and Cu25 +MPs. Moreover, an increase in acetylcholinesterase (AChE) activity was observed in all exposed groups. When considering neurogenesis genes, a downregulation of proliferating cell nuclear antigen (pcna) was noticed in zebrafish exposed to the mixture treatment, while for dopaminergic system-related genes (th and slc6a3) an upregulation was observed in MPs, Cu25 and Cu25 +MPs groups. An increase in apoptosis-related genes expression (casp8, casp9 and casp3) was observed in the MPs exposed group. Changes in zebrafish behavior, particularly in mean speed, total distance moved, inactivity in the aquaria, and social/shoaling behavior was also observed in the MPs and Cu exposed groups. Overall, our results highlight the multiplicity of toxic effects of MPs, alone or combined with Cu, in zebrafish brain, namely apoptosis and alterations in adult neurogenesis, neurocircuits and, consequently, behavior.
Collapse
Affiliation(s)
- Dércia Santos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Quinta de Prados, Vila Real 5000-801, Portugal; University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real 5000-801, Portugal.
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Quinta de Prados, Vila Real 5000-801, Portugal; University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real 5000-801, Portugal
| | - Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Quinta de Prados, Vila Real 5000-801, Portugal; University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real 5000-801, Portugal
| | - Edna Cabecinha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Quinta de Prados, Vila Real 5000-801, Portugal; University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real 5000-801, Portugal
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, IEO-CSIC, Subida a Radio Faro 50, Vigo 36390, Spain
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB and Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Quinta de Prados, Vila Real 5000-801, Portugal; University of Trás-os-Montes and Alto Douro, Quinta de Prados, Vila Real 5000-801, Portugal
| |
Collapse
|
38
|
Garnero PL, Ballesteros ML, Monferran MV, Rivetti NG, Bistoni MA. Multi-biomarker Assessment in a Native Species Psalidodon eigenmanniorum Under Inorganic Mercury and Recovery Scenarios. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 83:142-154. [PMID: 35934735 DOI: 10.1007/s00244-022-00946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The increasing contamination of water bodies with mercury raises concerns about its possible effects on aquatic organisms. The combined use of several biomarkers allows researchers to study the impact of a chemical at different levels of biological organization. In the present work, we determined the response of histological (gills and liver), somatic (condition factor and hepato-somatic index), and behavioral (predator-prey relationship, through the presentation of a computer-animated image) biomarkers in the native species Psalidodon eigenmanniorum exposed to 100 µg L-1 of inorganic Hg (IHg) during 96 h. We also assessed whether there was a change in the biomarkers analyzed after 7 days in Hg-free water compared with those exposed to IHg. In exposed fish, IHg caused damage to the gills and liver tissues. The condition factor showed no difference between IHg-exposed organisms and control organisms, while the hepato-somatic index was lower in IHg-exposed fish. As for the behavioral analyses, it was observed that the presentation of a stimulus induced changes in the behavioral responses of fish exposed to IHg, which showed a heightened state of alertness with respect to control. On the other hand, after 7 days in Hg-free water, the organisms generally showed no changes in biomarkers compared with IHg-exposed fish. Our results contribute new data on IHg toxicity in a native species and provide information on the plasticity of damage to reverse itself. Furthermore, this work provides baseline information for environmental assessments in water bodies where mercury is present.
Collapse
Affiliation(s)
- Paola L Garnero
- Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.
- Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| | - María L Ballesteros
- Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Magdalena V Monferran
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET) and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Natalia G Rivetti
- Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María A Bistoni
- Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Diversidad y Ecología Animal (IDEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
39
|
Vieira CED, Marques JA, da Silva NG, Bevitório LZ, Zebral YD, Maraschi AC, Costa SR, Costa PG, Damasceno EM, Pirovani JCM, do Vale-Oliveira M, Souza MM, de Martinez Gaspar Martins C, Bianchini A, Sandrini JZ. Ecotoxicological impacts of the Fundão dam failure in freshwater fish community: Metal bioaccumulation, biochemical, genetic and histopathological effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154878. [PMID: 35364171 DOI: 10.1016/j.scitotenv.2022.154878] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
This study investigates the ecotoxicological impacts of the Fundão dam rupture, one of the major environmental disaster that occurred in Brazil and in the world mining industry history, through multi-biomarkers responses and metals bioaccumulation in the fish community of different trophic levels. Specimens of the fishes (omnivorous/herbivorous and carnivorous) were collected along the Doce River channel and its affluent Guandú River, and in different lakes and coastal lagoons adjacent to the river channel, in the Espirito Santo State, Southeast of Brazil. Four sampling collections were carried out over two years (2018 to 2020, during dry and rainy seasons). For both trophic groups the biomarkers responses indicated physiological alterations related to metals exposure and showed strong seasonal variations. The principal component analysis and integrated biomarker response index showed that DNA damage and lipid peroxidation were more associated with dry season 2 (Sep/Oct 2019) and the oxidative damage in proteins, metallothioneins concentration and the activity of superoxide dismutase in the gills showed a greater association with rainy season 2 (Jan/Feb 2020). On the other hand, the enzymes of energy metabolism, catalase and histological damage in the liver and the gills, were more associated with the dry and rainy campaigns of the first year of monitoring. The multivariate approach also suggested a temporal intensification in the bioaccumulation of metals and biological effects in the lacustrine environments. Thus, these results demonstrate that the release of mineral residues from the rupture of the Fundão mine dam affects the health status of the fish from the Doce River basin, provoking metals bioaccumulation, hepatic and branchial damage in the fish besides inducing of enzyme activity related to metal contamination, even four years after the rupture.
Collapse
Affiliation(s)
- Carlos Eduardo Delfino Vieira
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Av. Itália, s/n, Carreiros, Rio Grande, RS, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil.
| | - Joseane Aparecida Marques
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Av. Itália, s/n, Carreiros, Rio Grande, RS, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil
| | - Niumaique Gonçalves da Silva
- Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil; Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo - CEUNES/UFES, Rod. Governador Mário Covas, Km 60, Litorâneo, São Mateus, ES, Brazil
| | - Lorena Ziviani Bevitório
- Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil; Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo - CEUNES/UFES, Rod. Governador Mário Covas, Km 60, Litorâneo, São Mateus, ES, Brazil
| | - Yuri Dornelles Zebral
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Av. Itália, s/n, Carreiros, Rio Grande, RS, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil
| | - Anieli Cristina Maraschi
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Av. Itália, s/n, Carreiros, Rio Grande, RS, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil
| | - Simone Rutz Costa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Av. Itália, s/n, Carreiros, Rio Grande, RS, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil
| | - Patricia Gomes Costa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Av. Itália, s/n, Carreiros, Rio Grande, RS, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil
| | - Eduardo Medeiros Damasceno
- Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil; Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo - CEUNES/UFES, Rod. Governador Mário Covas, Km 60, Litorâneo, São Mateus, ES, Brazil
| | - Juliana Castro Monteiro Pirovani
- Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil; Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo - CEUNES/UFES, Rod. Governador Mário Covas, Km 60, Litorâneo, São Mateus, ES, Brazil
| | - Maysa do Vale-Oliveira
- Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil; Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo - CEUNES/UFES, Rod. Governador Mário Covas, Km 60, Litorâneo, São Mateus, ES, Brazil
| | - Marta Marques Souza
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Av. Itália, s/n, Carreiros, Rio Grande, RS, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil
| | - Camila de Martinez Gaspar Martins
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Av. Itália, s/n, Carreiros, Rio Grande, RS, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Av. Itália, s/n, Carreiros, Rio Grande, RS, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil
| | - Juliana Zomer Sandrini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Av. Itália, s/n, Carreiros, Rio Grande, RS, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil
| |
Collapse
|
40
|
Sadeghian I, Heidari R, Raee MJ, Negahdaripour M. Cell-penetrating peptide-mediated delivery of therapeutic peptides/proteins to manage the diseases involving oxidative stress, inflammatory response and apoptosis. J Pharm Pharmacol 2022; 74:1085-1116. [PMID: 35728949 DOI: 10.1093/jpp/rgac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/22/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Peptides and proteins represent great potential for modulating various cellular processes including oxidative stress, inflammatory response, apoptosis and consequently the treatment of related diseases. However, their therapeutic effects are limited by their inability to cross cellular barriers. Cell-penetrating peptides (CPPs), which can transport cargoes into the cell, could resolve this issue, as would be discussed in this review. KEY FINDINGS CPPs have been successfully exploited in vitro and in vivo for peptide/protein delivery to treat a wide range of diseases involving oxidative stress, inflammatory processes and apoptosis. Their in vivo applications are still limited due to some fundamental issues of CPPs, including nonspecificity, proteolytic instability, potential toxicity and immunogenicity. SUMMARY Totally, CPPs could potentially help to manage the diseases involving oxidative stress, inflammatory response and apoptosis by delivering peptides/proteins that could selectively reach proper intracellular targets. More studies to overcome related CPP limitations and confirm the efficacy and safety of this strategy are needed before their clinical usage.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
41
|
V SK, Raman RK, Talukder A, Mahanty A, Sarkar DJ, Das BK, Bhowmick S, Samanta S, Manna SK, Mohanty BP. Arsenic Bioaccumulation and Identification of Low-Arsenic-Accumulating Food Fishes for Aquaculture in Arsenic-Contaminated Ponds and Associated Aquatic Ecosystems. Biol Trace Elem Res 2022; 200:2923-2936. [PMID: 34467440 DOI: 10.1007/s12011-021-02858-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022]
Abstract
Arsenic-contaminated food including farmed fish is one of the main routes of human exposure. Fish farmed in contaminated environment accumulates arsenic in different tissues with great variability. Thus, it is utmost important to quantify the risk associated with different farmed fish species in arsenic-contaminated aquaculture systems. In the present study, arsenic content was measured in twelve fish species (Labeo rohita, L. catla, Cirrhinus mrigala, Oreochromis niloticus, O. mossambicus, Liza tade, Puntius javanicus, L. calbasu, Glossogobius giuris, Macrobrachium rosenbergii, Ctenopharyngodon idella, and Bellamya bengalensis (gastropod)) collected from arsenic-contaminated aquaculture systems. Among the studied finfishes, C. idella was found to accumulate the lowest amount of arsenic (< 0.05 ± 0.00 mg kg-1) whereas the highest accumulation was noticed in O. mossambicus (1.0 ± 0.18 mg kg-1). However, the estimated carcinogenic and non-carcinogenic risks of human were found to be low for all the studied fishes. The calculated target hazard quotient (THQ) value for adults ranged from 0.01 to 0.08 whereas for children it ranged from 0.05 to 0.27 for low-arsenic-accumulating fishes (arsenic conc. < 0.5 mg kg-1). Based on these findings, C. mrigala, C. idella, and M. rosenbergii could be recommended as the candidate species for aquaculture in the arsenic-contaminated areas as farming of the low-arsenic-accumulating food fishes would also lower the risk of human exposure through food chain.
Collapse
Affiliation(s)
- Santhana Kumar V
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Rohan Kumar Raman
- ICAR- Research Complex for Eastern Region, Patna, Bihar, 800014, India
| | - Anjon Talukder
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Arabinda Mahanty
- ICAR- National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Sanjay Bhowmick
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Srikanta Samanta
- Riverine Ecology and Fisheries Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Sanjib Kumar Manna
- Fisheries Enhancement & Management (FEM) Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India
| | - Bimal Prasanna Mohanty
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700120, India.
- ICAR-Fisheries Science Division, Krishi Anusandhan Bhawan II, Pusa, New Delhi, 110 012, India.
| |
Collapse
|
42
|
de Oliveira CACR, dos Santos Souto PS, da Conceição Palheta D, de Oliveira Bahia M, da AraújoCunha L, de Lourdes Souza Santos M, do Nascimento Medeiros Rodrigues T, Bentes B. Genotoxicity assessment in two Amazonian estuaries using the Plagioscion squamosissimus as a biomonitor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41344-41356. [PMID: 35088285 PMCID: PMC8794734 DOI: 10.1007/s11356-022-18767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Genotoxicity studies in coastal ecosystems have been a priority in Environmental Risk Assessment (ERA). This research aimed to study the genotoxicity by the micronucleus test and comet assay in two Brazilian Amazon estuaries (anthropized and control) using Plagioscion squamosissimus as a biomonitor. Blood samples were collected from 54 specimens. No significant genotoxic effects were detected in the cells analyzed, although the highest occurrence (MN and DNA damages) was observed in anthropized site. The percentage of genomic damage differed between the sites studied, being always higher in anthropizes site as well. Of the nucleoids analyzed in this site, on average, 28 ± 14.42% of the cells were classified in the highest damage class. The fish analyzed in the present study are direct influenced of xenobiont agents capable of producing damage to the genetic material of aquatic organisms in both sites and, consequently, may bring consequences still little reported in studies of morphophysiological alterations in humans.
Collapse
Affiliation(s)
| | - Paulo Sérgio dos Santos Souto
- Universidade Federal Rural da Amazônia, Instituto de Saúde E Produção Animal-ISPA, Avenida Presidente Tancredo Neves, 2501Bairro: Terra Firme, CEP: 66077-830 Belém, Pará Brasil
| | - Dulcidéia da Conceição Palheta
- Universidade Federal Rural da Amazônia, Instituto de Saúde E Produção Animal-ISPA, Avenida Presidente Tancredo Neves, 2501Bairro: Terra Firme, CEP: 66077-830 Belém, Pará Brasil
| | - Marcelo de Oliveira Bahia
- Centro de Ciências Biológicas, Departamento de Patologia. Av. Augusto Correa, 01; Laboratório de Citogenética Humana e Genética Toxicológica, Universidade Federal Do Pará, , Guamá, CEP: 66075110 Belém, Pará Brasil
| | - Lorena da AraújoCunha
- Centro de Ciências Biológicas, Departamento de Patologia. Av. Augusto Correa, 01; Laboratório de Citogenética Humana e Genética Toxicológica, Universidade Federal Do Pará, , Guamá, CEP: 66075110 Belém, Pará Brasil
| | - Maria de Lourdes Souza Santos
- Laboratório de Química Ambiental, Avenida Presidente Tancredo Neves, Universidade Federal Rural da Amazônia, 2501 Terra Firme, CEP: 66077-830 Belém, Pará Brasil
| | | | - Bianca Bentes
- Universidade Federal Do Pará, Núcleo de Ecologia Aquática E Pesca, Rua Augusto Corrêa, S/N Guamá, CEP: 66075-110 Belém, Pará Brasil
| |
Collapse
|
43
|
Leads RR, Magnuson JT, Lucero J, Lund AK, Schlenk D, Chavez JR, Roberts AP. Transcriptomic responses and apoptosis in larval red drum (Sciaenops ocellatus) co-exposed to crude oil and ultraviolet (UV) radiation. MARINE POLLUTION BULLETIN 2022; 179:113684. [PMID: 35489094 DOI: 10.1016/j.marpolbul.2022.113684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Ultraviolet (UV) radiation can significantly increase the toxicity of polycyclic aromatic hydrocarbons (PAHs) in crude oil to early life stage (ELS) fishes through photo-induced /photo-enhanced toxicity. However, little is known about the sub-lethal effects and mechanisms of photo-induced PAH toxicity in ELS fishes. The present study investigated apoptosis and global transcriptomic effects in larval red drum (Sciaenops ocellatus) (24-72 h post-fertilization) following co-exposure to oil (0.29-0.30 μg/L ∑PAH50) and UV. Apoptosis was quantified using the TUNEL assay, and transcriptomic effects were assessed using RNA sequencing analysis. Apoptotic fluorescence was greatest in the eyes and skin following 24 and 48 h co-exposure to oil and UV, indicating photo-induced toxicity. Consistent with these phenotypic responses, pathways associated with phototransduction, eye development, and dermatological disease were among the top predicted pathways impacted. The present study is the first to provide global transcriptomic analysis of UV and oil co-exposure in an ELS fish.
Collapse
Affiliation(s)
- Rachel R Leads
- University of North Texas, Department of Biological Sciences and Advanced Environmental Research Institute, 1155 Union Circle #305220, Denton, TX 76203, USA.
| | - Jason T Magnuson
- Department of Environmental Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - JoAnn Lucero
- University of North Texas, Department of Biological Sciences and Advanced Environmental Research Institute, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Amie K Lund
- University of North Texas, Department of Biological Sciences and Advanced Environmental Research Institute, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA 92521, USA; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - J Ruben Chavez
- Texas Parks and Wildlife Department, Coastal Conservation Association, Central Power and Light Marine Development Center, Corpus Christi, TX 78418, USA
| | - Aaron P Roberts
- University of North Texas, Department of Biological Sciences and Advanced Environmental Research Institute, 1155 Union Circle #305220, Denton, TX 76203, USA
| |
Collapse
|
44
|
Shi Y, Zhong L, Chen K, Fan Y, Xie K, Zhang J, Dai J, Hu Y. Sanguinarine attenuates hydrogen peroxide-induced toxicity in liver of Monopterus albus: Role of oxidative stress, inflammation and apoptosis. FISH & SHELLFISH IMMUNOLOGY 2022; 125:190-199. [PMID: 35569777 DOI: 10.1016/j.fsi.2022.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
In aquatic animals, hydrogen peroxide (H2O2), which is a source of oxidative stress, can cause physiological dysfunction, inflammation, and death. Sanguinarine (SAN) is a plant extract known to improve antioxidant and immune capacity. However, the roles of SAN in H2O2-induced liver tissue toxicity is unclear. The effects on hepatic oxidative damage, inflammatory response, and apoptosis were investigated by feeding rice field eel with 0, 375, and 750 μg/kg of SAN for eight weeks and then intraperitoneally injected with H2O2. The results showed that after 24 h of H2O2 injection, the activities of ALT and AST in serum were significantly increased, oxidative damage and inflammatory response occurred in the liver, and apoptosis was induced, which indicated that H2O2 induced liver damage in rice field eel. However, dietary supplemented with 375 or 750 μg/kg SAN significantly decreased the activities of ALT and AST in serum, and significantly increased the antioxidant function (decreased ROS, MDA, and antioxidant enzymes levels, downregulated antioxidant-related gene expression, and inhibited the transcription level of nrf2). The addition of SAN at 375 or 750 μg/kg ameliorated H2O2-induced inflammatory response of liver (upregulated tgf-β1 mRNA expression, downregulated il-1β, il-6, il-8, and il-12β mRNA expression, and inhibited the transcription levels of tlr-3 tlr-7, and nf-κb). In addition, dietary supplemented with 375 or 750 μg/kg SAN alleviated the apoptosis of liver induced by H2O2 (downregulated bax mRNA expression, upregulated caspase3 mRNA expression, and reduced the number of apoptotic cells by TUNEL staining). Overall, these results suggested that SAN could alleviate the liver injury in rice field eel induced by H2O2, mainly by improving antioxidant capacity, alleviating inflammatory response and inhibiting apoptosis, and the effect of 750 μg/kg SAN addition is better than 375 μg/kg.
Collapse
Affiliation(s)
- Yong Shi
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Lei Zhong
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China; Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Kaijian Chen
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China; Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Kai Xie
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Junzhi Zhang
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Jihong Dai
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Hu
- Hunan Research Center of Engineering Technology for Utilization of Distinctive Aquatic Resource, Hunan Agricultural University, Changsha, 410128, China; Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
45
|
Thirumurthi NA, Raghunath A, Balasubramanian S, Perumal E. Evaluation of Maghemite Nanoparticles-Induced Developmental Toxicity and Oxidative Stress in Zebrafish Embryos/Larvae. Biol Trace Elem Res 2022; 200:2349-2364. [PMID: 34297274 DOI: 10.1007/s12011-021-02830-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022]
Abstract
Maghemite nanoparticles ([Formula: see text] NPs) have a wide array of applications in various industries including biomedical field. There is an absence of legislation globally for the regulation of the production, use, and disposal of such NPs as they are eventually dumped into the environment where these NPs might affect the living systems. This study evaluates the effect of the [Formula: see text] NP-induced developmental toxicity in zebrafish embryos/larvae. The commercially available Fe2O3 NPs were purchased, and zebrafish embryos toxicity test was done by exposing embryos to various concentrations of [Formula: see text] NPs at 1 hpf and analyzed at 96 hpf. Based on the LC50 value (60.17 ppm), the sub-lethal concentrations of 40 and 60 ppm were used for further experiments. Hatching, lethality, developmental malformations, and heartbeat rate were measured in the control and treated embryos/larvae. The ionic Fe content in the media, and the larvae was quantified using ICP-MS and AAS. The biomolecular alterations in the control and treated groups were analyzed using FT-IR. The Fe ions present in the larvae were visualized using SEM-EDXS. In situ detection of AChE and apoptotic bodies was done using staining techniques. Biochemical markers (total protein content, AChE, and Na+ K+-ATPase) along with oxidants and antioxidants were assessed. A significant decrease in the heartbeat rate and hatching delay was observed in the treated groups affecting the developmental processes. Teratogenic analysis showed increased developmental deformity incidence in treated groups in a dose-dependent manner. The accumulation of Fe was evidenced from the ICP-MS, AAS, and SEM-EDXS. Alterations in AChE and Na+ K+-ATPase activity were observed along with an increment in the oxidants level with a concomitant decrease in antioxidant enzymes. These results show [Formula: see text] NP exposure leads to developmental malformation and results in the alteration of redox homeostasis.
Collapse
Affiliation(s)
| | - Azhwar Raghunath
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | | | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India.
| |
Collapse
|
46
|
Xing P, Zhang Y, Chi Q, Li S. Zinc Alleviates Arsenic-Induced Inflammation and Apoptosis in the Head Kidney of Common Carp by Inhibiting Oxidative Stress and Endoplasmic Reticulum Stress. Biol Trace Elem Res 2022; 200:2380-2390. [PMID: 34287812 DOI: 10.1007/s12011-021-02837-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/11/2021] [Indexed: 12/31/2022]
Abstract
Arsenic (As) pollution is ubiquitous in water, which shows immunotoxicity to aquatic organisms. As an indispensable regulator of gene transcription and enzymatic modification, zinc (Zn) may play a preventive and therapeutic effect on As toxicity. The purpose of this study was to investigate the interactions of As and Zn on the head kidney of common carp Cyprinus carpio. Herein the carp were treated alone or in combination with waterborne As3+ (2.83 mg/L) and/or Zn2+ (1 mg/L). Results suggested a head kidney-toxic effect of As exposure, which was manifested by the histopathological damage of the head kidney, elevation of nuclear translocation of pro-inflammatory nuclear factor-kappa light chain enhancer of B cells (NF-κB), and blockage of the anti-oxidative nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. The global activation of three endoplasmic reticulum (ER) stress pathways led to the execution of programmed cell death, including ER apoptosis mediated by C/EBP-homologous protein (CHOP), death receptor-mediated exogenous cell apoptosis, and the endogenous apoptosis executed by Caspases9. The combined application of Zn can significantly improve the histopathological damage of the head kidney, the imbalance of the antioxidant system, and the apoptosis outcomes due to ER stress. In conclusion, this study indicates that Zn has an antagonistic effect on the head kidney injury of common carp induced by sub-chronic As exposure. The results of this study provide basic data for the risk assessment of As accumulation in an aquatic environment and a reference for the use of Zn preparation in aquaculture.
Collapse
Affiliation(s)
- Pengcheng Xing
- College of International Culture and Education, Northeast Agricultural University, Harbin, 150030, China
| | - Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
47
|
Nazir S, Ali MN, Tantray JA, Baba IA, Jan A, Popescu SM, Paray BA, Gulnaz A. Study of Ultrastructural Abnormalities in the Renal Cells of Cyprinus carpio Induced by Toxicants. TOXICS 2022; 10:177. [PMID: 35448438 PMCID: PMC9027223 DOI: 10.3390/toxics10040177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022]
Abstract
Transmission Electron Microscopic (TEM) assessments were performed on the renal cells of common carp Cyprinus carpio to observe the deleterious effects of two organophosphate insecticides, Phorate and Dimethoate. Pesticides such as Phorate and Dimethoate often pollute aquatic systems where they may negatively impact fish, but so far, the ultrastructural toxicity of these pesticides remains poorly understood. Here, we use Transmission Electron Microscopy (TEM) to determine how acute exposure to sublethal concentrations of these two pesticides may affect the renal cells of common carp Cyprinus carpio. For each insecticide, the fish were divided in four experimental conditions: a control and three different exposure concentrations of the pesticide. The Phorate treated fish were exposed to three sublethal concentrations of 0.2 mg/L, 0.4 mg/L, 0.6 mg/L for a duration of 24, 48 & 72 h. The dimethoate treated fish were exposed to three sublethal concentrations of 0.005 mL/L, 0.01 mL/L, 0.015 mL/L for a duration of 24, 48 and 72 h. The two-dimensional transmission electron microscopy revealed ultrastructural abnormalities in the treated fish renal cells when exposed to two toxicants including deformation in the glomerulus, vacuolization of cytoplasm, degenerative nucleus and damaged mitochondria. Furthermore, the ultrastructural abnormalities were more prominent with the increase in the concentrations of both the insecticides and also with their exposure period. Overall, these results provide important baseline data on the ultrastructural toxicity of Phorate and Dimethoate and will allow important follow-up studies to further elucidate the underlying cellular mechanisms of pesticide toxicity in wildlife.
Collapse
Affiliation(s)
- Sumayya Nazir
- Department of Zoology, University of Kashmir, Srinagar 190006, J&K, India
| | - Md. Niamat Ali
- Cytogenetics and Molecular Biology Research Laboratory, Centre of Research for Development (CORD), University of Kashmir, Srinagar 190006, J&K, India
| | - Javeed Ahmad Tantray
- Department of Zoology, Central University of Kashmir, Ganderbal 191201, J&K, India;
| | - Irfan Akram Baba
- Department of Livestock Production and Management (LPM), Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Shalimar, Srinagar 190025, J&K, India;
| | - Arizo Jan
- Division of Fisheries Resource Management, Faculty of Fisheries, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Shalimar, Srinagar 190025, J&K, India;
| | - Simona Mariana Popescu
- Department of Biology and Environmental Engineering, University of Craiova, 13, A.I. Cuza, 200585 Craiova, Romania;
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Aneela Gulnaz
- College of Pharmacy, Woosuk University, Wanju-gun 55338, Korea;
| |
Collapse
|
48
|
Sharma R, Jindal R. In vivo genotoxic effects of commercial grade cypermethrin on fish peripheral erythrocytes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:204-214. [PMID: 35527348 DOI: 10.1002/em.22484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/14/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The study explicates the genotoxic effects of commercial grade cypermethrin on peripheral erythrocytes of Catla catla, chronically exposed to two environmentally relevant concentrations. The fish was treated with sub-lethal concentrations 0.12 μg/L and 0.41 μg/L (1/10th and /1/3rd of 96 h LC50 ) of cypermethrin for 45 days. DNA damage in the exposed fish was assessed using alkaline comet assay, presence of micronuclei (MN), erythrocyte nuclear and cytoplasmic abnormalities. Exposure to cypermethrin induced a dose-dependent increase in percent DNA damage, micronucleus frequency and erythrocyte abnormalities. Nuclear anomalies such as notched nuclei, lobed nuclei, bridged nuclei, and deformed nuclei; and cytoplasmic anomalies like anisochromasia, vacuolated cytoplasm, lobed cells, and echinocytes were observed. The findings revealed the genotoxic potential of commercial formulations pyrethroid cypermethrin at concentrations found in the environment and their potential deleterious effects on nontarget aquatic organisms.
Collapse
Affiliation(s)
- Ritu Sharma
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, India
| | - Rajinder Jindal
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, India
| |
Collapse
|
49
|
Fu Z, Han F, Huang K, Zhang J, Qin JG, Chen L, Li E. Impact of imidacloprid exposure on the biochemical responses, transcriptome, gut microbiota and growth performance of the Pacific white shrimp Litopenaeus vannamei. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127513. [PMID: 34687996 DOI: 10.1016/j.jhazmat.2021.127513] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The widespread use of neonicotinoid insecticides, such as imidacloprid, in agriculture is one of the key factors for the drop in the survival of invertebrates, including decapod crustaceans. However, there is currently a lack of comprehensive studies on the chronic toxicity mechanisms in decapod crustaceans. Here, the concentration-dependent effects of imidacloprid on the physiology and biochemistry, gut microbiota and transcriptome of L. vannamei , and the interaction between imidacloprid, gut microbiota and genes were studied. Imidacloprid caused oxidative stress, leading to reduced growth and to immunity and tissue damage in L. vannamei . Imidacloprid increased the gut pathogenic microbiota abundance and broke the steady state of the gut microbiota interaction network, resulting in microbiota function disorders. Chronic imidacloprid exposure induced overall transcriptome changes in L. vannamei . Specifically, imidacloprid caused a large number of differentially expressed genes (DEGs) to be significantly downregulated. The inhibition of autophagy-related pathways revealed the toxic process of imidacloprid to L. vannamei . The changes in phase I and II detoxification gene expression clarified the formation of a detoxification mechanism in L. vannamei . The disturbance of circadian rhythm (CLOCK) caused by imidacloprid is one of the reasons for the increase in gut pathogenic microbiota abundance.
Collapse
Affiliation(s)
- Zhenqiang Fu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Fenglu Han
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Kaiqi Huang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia
| | - Liqiao Chen
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
50
|
Mona MH, El-Khodary GM, Abdel-Halim KY, Omran NE, Abd El-Aziz KK, El-Saidy SA. Histopathological alterations induced by marine environmental pollutants on the bivalve Cerastoderma glaucum (Bruguière 1789) from Temsah Lake, Suez Canal, Egypt. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9971-9989. [PMID: 34510354 DOI: 10.1007/s11356-021-14966-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Bivalves are considered a main consumed matrix for coastal communities worldwide and classified as hyperaccumulators of pollutants. The present study aims to determine some micro-organisms, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and okadaic acid (OA) levels in Cerastoderma glaucum collected from Temsah Lake, Egypt, and their induction through histopathological damage and caspase-3 protein expression. During the autumn, it was found different types of biological and chemical pollutants, especially benzo[a]pyrene (BaP) that accumulated in C. glaucum soft tissues and exceeded the safety limit for shellfish consumption. Dioxin-like PCB3 was predominant in C. glaucum soft tissues during autumn, but the total levels of PCBs in these tissues have not exceeded the permissible limit. Chlorophyll-a (Chl. a), nutrient concentrations, and Prorocentrum lima dinoflagellates in the water significantly increased during autumn. High P. lima abundance was confirmed by high OA in the soft tissues during this season compared to the other seasons. The measured contaminants may render C. glaucum more susceptible to bacterial and fungal infections. The autumn season showed a significant increase in the colony-forming units (CFU). C. glaucum showed calcification abnormalities and adhering of abnormal brown organic material to the inner surface of the shell valves, which was related to poor water conditions and Vibrio infection. Damages or injuries on gills and digestive gland tissues indicated an impact of the pollutants on C. glaucum. Also, high expressions of caspase-3 were recorded in these tissues during all the seasons. So, C. glaucum cockles, collected from Temsah Lake, may induce serious diseases to consumers, especially when eaten raw or insufficient cooking.
Collapse
Affiliation(s)
- Mohamed H Mona
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Gihan M El-Khodary
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Khaled Y Abdel-Halim
- Mammalian & Aquatic Toxicology Department, Central Agriculural Pesticides Laboratory (CAPL), Agricultural Research Center (ARC),12618-Dokki, Giza, Egypt.
| | - Nahla E Omran
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | | | - Salwa A El-Saidy
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|