1
|
Ling F, Xie W, Kui X, Cai Y, He M, Ma J. miR-141-3p inhibited BPA-induced proliferation and migration of lung cancer cells through PTGER4. Cytotechnology 2025; 77:28. [PMID: 39741890 PMCID: PMC11683044 DOI: 10.1007/s10616-024-00692-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025] Open
Abstract
The chemical substance bisphenol A (BPA) is widely used in household products, and its effect on human health has frequently been the focus of research. The aim of this study was to explore the potential molecular regulatory mechanism of BPA on the proliferation and migration of lung cancer cells. In this study, the H1299 and A549 lung cancer cell lines were selected as the study objects. The cells were treated with different concentrations of BPA (0, 0.1, 1, or 10 μM), and cell viability, proliferation, and migration were evaluated by CCK-8, EdU, clonogenic, and scratch test assays. Western blotting and RT‒qPCR were used to detect the expression of related proteins and genes. Our findings indicated that BPA markedly enhanced both the proliferation and migration capacities of lung cancer cells. In BPA-treated lung cancer cells, the level of miR-141-3p was decreased, PTGER4 expression was significantly increased, and PTGER4 knockdown reduced BPA-induced lung cancer cell proliferation and migration. In addition, miR-141-3p can target and negatively regulate the expression of PTGER4 and further inhibit PI3K/AKT signaling pathway activation and MMPs expression. Moreover, PTGER4 overexpression weakened the inhibitory effect of the miR-141-3p mimic on the proliferation and migration of lung cancer cells. In conclusion, miR-141-3p can inhibit the proliferation and migration of BPA-induced lung cancer cells by downregulating PTGER4, providing a new potential target for the treatment and prevention of lung cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00692-5.
Collapse
Affiliation(s)
- Feng Ling
- Thoracic Surgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101 Yunnan China
| | - Wenbo Xie
- Digestive System Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101 Yunnan China
| | - Xiang Kui
- Pathology Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101 Yunnan China
| | - Yuyin Cai
- Thoracic Surgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101 Yunnan China
| | - Meng He
- Thoracic Surgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101 Yunnan China
| | - Jianqiang Ma
- Thoracic Surgery Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101 Yunnan China
| |
Collapse
|
2
|
Lai X, Zhang Y, Li M, Yu S, Wang S, Zhang S, Niu H, Chen L, Lan X, Zhang J, Chen S. HGF/c-Met Promotes Breast Cancer Tamoxifen Resistance Through the EZH2/HOTAIR-miR-141/200a Feedback Signaling Pathway. Mol Carcinog 2025. [PMID: 39853766 DOI: 10.1002/mc.23878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025]
Abstract
Tamoxifen is one of the most frequently used endocrine medications for the treatment of estrogen receptor-positive (ER + ) breast cancer (BC). Unfortunately, tamoxifen resistance (TR) brings more challenges to the clinical treatment, and the mechanisms of TR have not yet been fully clarified. HGF/c-Met is closely associated with cancer metastasis, but whether it is involved in TR remains unclear. In our study, we found that the activation of HGF/c-Met was crucial for TR maintenance. Synergistic interaction with HOTAIR and EZH2 accelerated HGF expression by repressing miR-141/200a. Additionally, HGF/c-Met activated NF-κB, forming a positive feedback loop of EZH2/HOTAIR-miR-141/200a-HGF/c-Met-NF-κB. Our findings indicated that HGF/c-Met functioned as an important biomarker for TR, and HGF/c-Met inhibition provided a novel approach to TR treatment.
Collapse
Affiliation(s)
- Xiaofeng Lai
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (The 900TH Hospital), Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, China
| | - Yuan Zhang
- Department of Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Mengyang Li
- The Faculty of Hepatopancreatobiliary Surgery, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shentong Yu
- Department of Pathology, 900TH Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Shuiliang Wang
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (The 900TH Hospital), Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, China
| | - Shenghang Zhang
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (The 900TH Hospital), Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, China
| | - Huimin Niu
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (The 900TH Hospital), Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, China
| | - Li Chen
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (The 900TH Hospital), Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, China
| | - Xiaopeng Lan
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (The 900TH Hospital), Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, China
| | - Jian Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, China
| | - Suning Chen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Sharma A, Singh P, Jha R, Almatroodi SA, Alrumaihi F, Rahmani AH, Alharbi HO, Dohare R, Syed MA. Exploring the role of miR-200 family in regulating CX3CR1 and CXCR1 in lung adenocarcinoma tumor microenvironment: implications for therapeutic intervention. Sci Rep 2023; 13:16333. [PMID: 37770496 PMCID: PMC10539366 DOI: 10.1038/s41598-023-43484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/25/2023] [Indexed: 09/30/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common malignant subtype of lung cancer (LC). miR-200 family is one of the prime miR regulators of epithelial-mesenchymal transition (EMT) and worst overall survival (OS) in LC patients. The study aimed to identify and validate the key differentially expressed immune-related genes (DEIRGs) regulated by miR-200 family which may serve for therapeutic aspects in LUAD tumor microenvironment (TME) by affecting cancer progression, invasion, and metastasis. The study identified differentially expressed miRNAs (DEMs) in LUAD, consisting of hsa-miR-200a-3p and hsa-miR-141-5p, respectively. Two highest-degree subnetwork motifs identified from 3-node miRNA FFL were: (i) miR-200a-3p-CX3CR1-SPIB and (ii) miR-141-5p-CXCR1-TBX21. TIMER analysis showed that the expression levels of CX3CR1 and CXCR1 were significantly positively correlated with infiltrating levels of M0-M2 macrophages and natural killer T (NKT) cells. The OS of LUAD patients was significantly affected by lower expression levels of hsa-miR-200a-3p, CX3CR1 and SPIB. These DEIRGs were validated using the human protein atlas (HPA) web server. Further, we validated the regulatory role of hsa-miR-200a-3p in an in-vitro indirect co-culture model using conditioned media from M0, M1 and M2 polarized macrophages (THP-1) and LUAD cell lines (A549 and H1299 cells). The results pointed out the essential role of hsa-miR-200a-3p regulated CX3CL1 and CX3CR1 expression in progression of LC TME. Thus, the study augments a comprehensive understanding and new strategies for LUAD treatment where miR-200 family regulated immune-related genes, especially chemokine receptors, which regulate the metastasis and invasion of LUAD, leading to the worst associated OS.
Collapse
Affiliation(s)
- Archana Sharma
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Rishabh Jha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Hajed Obaid Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
4
|
Lu XS, Huang ML, Chen LB, Liu SC, Huang ZX, Liu SM. SCARA5 as a downstream factor of PCAT29, inhibits proliferation, migration, and invasion of bladder cancer. Genomics 2023; 115:110667. [PMID: 37315873 DOI: 10.1016/j.ygeno.2023.110667] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/27/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Scavenger receptor class A, member 5 (SCARA5) has been identified a novel tumor suppressor in several cancers. However, the functional and underlying mechanism of SCARA5 in bladder cancer (BC) need investigation. Here, we found SCARA5 expression was downregulated in both BC tissues and cell lines. Low SCARA5 in BC tissues was associated with a shorter overall survival. Moreover, SCARA5 overexpression reduced BC cell viability, colony formation, invasion, and migration. Further investigation demonstrated that the expression of SCARA5 was negatively regulated by miR-141. Furthermore, the long non-coding RNA prostate cancer associated transcript 29 (PCAT29) inhibited the proliferation, invasion, and migration of BC cells by sponging miR-141. Luciferase activity assays revealed that PCAT29 targeted miR-141 and miR-141 targeted SCARA5. In conclusion, SCARA5, as a downstream factor of the PCAT29/miR-141 axis, inhibited the proliferation, migration, and invasion of BC cells. These findings provide novel insights into the detailed molecular mechanisms of BC development.
Collapse
Affiliation(s)
- Xin-Sheng Lu
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Meng-Long Huang
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Li-Bo Chen
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shu-Cheng Liu
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhong-Xin Huang
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shi-Min Liu
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
5
|
Recent strategies for electrochemical sensing detection of miRNAs in lung cancer. Anal Biochem 2023; 661:114986. [PMID: 36384188 DOI: 10.1016/j.ab.2022.114986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
MicroRNAs (miRNAs) associated with lung cancer are diversifying. MiR-21, Let-7, and miR-141 are common diagnostic targets. Some new lung cancer miRNAs, such as miR-25, miR-145, and miR-126, have received increasing attention. Although various techniques are available for the analysis of lung cancer miRNAs, electrochemistry has been recognized for its high sensitivity, low cost, and rapid response. However, how to realize the signal amplification is one of the most important contents in the design of electrochemical biosensors. Herein, we mainly introduce the amplification strategy based on enzyme-free amplification and signal conversion, including non-linear HCR, catalytic hairpin assembly (CHA), electrochemiluminescence (ECL), and Faraday cage. Furthermore, new progress has emerged in the fields of nanomaterials, low oxidation potential, and simultaneous detection of multiple targets. Finally, we summarize some new challenges that electrochemical techniques may encounter in the future, such as improving single-base discrimination ability, shortening electrochemical detection time, and providing real body fluid samples assay.
Collapse
|
6
|
Bahado-Singh R, Vlachos KT, Aydas B, Gordevicius J, Radhakrishna U, Vishweswaraiah S. Precision Oncology: Artificial Intelligence and DNA Methylation Analysis of Circulating Cell-Free DNA for Lung Cancer Detection. Front Oncol 2022; 12:790645. [PMID: 35600397 PMCID: PMC9114890 DOI: 10.3389/fonc.2022.790645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Background Lung cancer (LC) is a leading cause of cancer-deaths globally. Its lethality is due in large part to the paucity of accurate screening markers. Precision Medicine includes the use of omics technology and novel analytic approaches for biomarker development. We combined Artificial Intelligence (AI) and DNA methylation analysis of circulating cell-free tumor DNA (ctDNA), to identify putative biomarkers for and to elucidate the pathogenesis of LC. Methods Illumina Infinium MethylationEPIC BeadChip array analysis was used to measure cytosine (CpG) methylation changes across the genome in LC. Six different AI platforms including support vector machine (SVM) and Deep Learning (DL) were used to identify CpG biomarkers and for LC detection. Training set and validation sets were generated, and 10-fold cross validation performed. Gene enrichment analysis using g:profiler and GREAT enrichment was used to elucidate the LC pathogenesis. Results Using a stringent GWAS significance threshold, p-value <5x10-8, we identified 4389 CpGs (cytosine methylation loci) in coding genes and 1812 CpGs in non-protein coding DNA regions that were differentially methylated in LC. SVM and three other AI platforms achieved an AUC=1.00; 95% CI (0.90-1.00) for LC detection. DL achieved an AUC=1.00; 95% CI (0.95-1.00) and 100% sensitivity and specificity. High diagnostic accuracies were achieved with only intragenic or only intergenic CpG loci. Gene enrichment analysis found dysregulation of molecular pathways involved in the development of small cell and non-small cell LC. Conclusion Using AI and DNA methylation analysis of ctDNA, high LC detection rates were achieved. Further, many of the genes that were epigenetically altered are known to be involved in the biology of neoplasms in general and lung cancer in particular.
Collapse
Affiliation(s)
- Ray Bahado-Singh
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, United States
| | - Kyriacos T Vlachos
- Department of Biomedical Sciences, Wayne State School of Medicine, Basic Medical Sciences, Detroit, MI, United States
| | - Buket Aydas
- Department of Healthcare Analytics, Meridian Health Plans, Detroit, MI, United States
| | | | - Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, United States
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Beaumont Research Institute, Royal Oak, MI, United States
| |
Collapse
|
7
|
Functional mechanism and clinical implications of miR-141 in human cancers. Cell Signal 2022; 95:110354. [PMID: 35550172 DOI: 10.1016/j.cellsig.2022.110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022]
Abstract
Cancer is caused by the abnormal proliferation of local tissue cells under the control of many oncogenic factors. MicroRNAs (miRNAs) are a class of evolutionarily conserved, approximately 22-nucleotide noncoding small RNAs that influence transcriptional regulationby binding to the 3'-untranslated region of target messenger RNA. As a member of the miRNA family, miR-141 acts as a suppressor or an oncomiR in various cancers and regulates cancer cell proliferation, apoptosis, invasion, and metastasis through a variety of signaling pathways, such as phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) and constitutive activation of nuclear factor-κB (NF-κB). Target gene validation and pathway analysis have provided mechanistic insight into the role of this miRNA in different tissues. This review also outlines novel findings that suggest miR-141 may be useful as a noninvasive biomarker and as a therapeutic target in several cancers.
Collapse
|
8
|
Shi L, Sun HJ, Zeng JJ, Liang ZQ, Lin YH, Huang SN, Zeng JH, Yang L, Chen H, Luo J, Wei KL. Evaluation of miR-141-3p over-expression in ovarian cancer. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
9
|
Xin X, Duan L, Yang H, Yu H, Bao Y, Jia D, Wu N, Qiao Y. miR-141-3p regulates saturated fatty acid-induced cardiomyocyte apoptosis through Notch1/PTEN/AKT pathway via targeting PSEN1. ENVIRONMENTAL TOXICOLOGY 2022; 37:741-753. [PMID: 34897970 DOI: 10.1002/tox.23439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
It has been reported that miR-141-3p levels are markedly upregulated in the cardiomyocytes of obese rats induced by a high-fat diet. However, the role of miR-141-3p in myocardial lipotoxicity remains elusive. In the present study, the role of miR-141-3p in lipotoxic injury of H9c2 cells induced by palmitic acid (PA) and its possible mechanisms were assessed. The results indicated that miR-141-3p was significantly upregulated in PA-induced cardiomyocytes. miR-141-3p inhibitor enhanced the cell viability, reduced the release of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), and troponin I (CTN-I), decreased cell apoptosis rate, and repressed the activation of mitochondrial apoptosis pathway in PA-treated H9c2, whereas treatment with miR-141-3p mimics resulted in the opposite effects. Mechanistically, it was further revealed that miR-141-3p could specifically bind to presenilin 1 (PSEN1) 3'UTR, and upregulating miR-141-3p levels reduced the expression of PSEN1, thereby inhibiting the activation of the Notch1/PTEN/AKT pathway. Additionally, inhibition of Notch1/AKT signaling pathway by its inhibitor could abrogate the effect of miR-141-3p on mitochondrial-mediated apoptosis induced by PA. In conclusion, the present study demonstrates that miR-141-3p regulates saturated fatty acid-induced cardiomyocyte apoptosis through Notch1/PTEN/AKT pathway via targeting PSEN1, which gains a new insight into the mechanisms of myocardial lipotoxic injury.
Collapse
Affiliation(s)
- Xin Xin
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Liaoning, China
| | - Lian Duan
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Liaoning, China
| | - Huimin Yang
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Liaoning, China
| | - Hang Yu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Liaoning, China
| | - Yandong Bao
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Liaoning, China
| | - Dalin Jia
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Liaoning, China
| | - Nan Wu
- The Central Laboratory, The First Affiliated Hospital of China Medical University, Liaoning, China
| | - Ying Qiao
- The Central Laboratory, The First Affiliated Hospital of China Medical University, Liaoning, China
| |
Collapse
|
10
|
A Novel Prognostic Model Based on Seven Necroptosis-Related miRNAs for Predicting the Overall Survival of Patients with Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3198590. [PMID: 35372581 PMCID: PMC8972154 DOI: 10.1155/2022/3198590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/11/2022] [Indexed: 12/21/2022]
Abstract
Lung adenocarcinoma (LUAD) remains one of the leading causes of cancer-related deaths worldwide. This study is aimed at constructing a risk scoring model based on necroptosis-related miRNAs to predict prognosis of LUAD. Expression profile of miRNA in LUAD was downloaded from The Cancer Genome Atlas (TCGA) database. We screened the differentially expressed necroptosis-related miRNAs between LUAD patients and normal samples, thus constructed a seven miRNA-based risk stratification on the basis of the TGCA cohort. This risk stratification was prove to be effective in predicting the overall survival (OS) of patients with LUAD. Furthermore, we constructed a nomogram model based on the combination of risk characteristics and clinicopathological features, which was also prove to be accurate and efficient in predicting OS of LUAD patients. Functional enrichment analyses on the targeted genes of these miRNAs with prognostic value were carried out. Results indicated that these targeted genes were closely related to the development and metastasis of tumors. In summary, our research has developed a prognostic model based on the expression of miRNAs related to necroptosis. This model might be used to predict the prognosis of LUAD accurately, which might be helpful in improving treatment efficacy of LUAD.
Collapse
|
11
|
Ge J, Liu M, Zhang Y, Xie L, Shi Z, Wang G. SNHG10/miR-141-3p/WTAP axis promotes osteosarcoma proliferation and migration. J Biochem Mol Toxicol 2022; 36:e23031. [PMID: 35274397 DOI: 10.1002/jbt.23031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/25/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022]
Abstract
LncRNAs have been suggested to participate in the growth and metastasis of cancer through a variety of molecular mechanisms. Recently, SNHG10, a newly discovered lncRNA, is reported to play a role of an oncogene in osteosarcoma (OS) genesis. Nonetheless, the mechanism underlying OS remains unclear. The present work found that SNHG10 expression increased within OS cells and tissues, while suppressing its expression decreased OS cell proliferation, migration, invasion, but increased their apoptosis. As for the mechanism, we confirmed that SNHG10 could bind to miR-141-3p, while the latter could bind to WTAP. SNHG10 upregulated WTAP through decreasing miR-141-3p expression. More importantly, SNHG10 deletion remarkably reduced proliferation, migration, and invasion of cells, but accelerated their apoptosis. However, when cells were subjected to miR-141-3p inhibitor cotransfection or overexpressed WTAP, these effects were partially recovered. In summary, this study suggested that the expression of SNHG10 markedly elevated within OS, and the SNHG10/miR-141-3p/WTAP axis facilitated OS progression.
Collapse
Affiliation(s)
- Jiejie Ge
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Meng Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuchao Zhang
- Department of Genetics, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Linsen Xie
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Zhisong Shi
- Department of Orthopedic Surgery, Zhumadian Central Hospital, Zhumadian, China
| | - Guanghui Wang
- Department of Orthopedic Surgery, Zhumadian Central Hospital, Zhumadian, China
| |
Collapse
|
12
|
Dong H, Jiang G, Zhang J, Kang Y. LncRNA OIP5-AS1 Promotes the Proliferation and Migration of Vascular Smooth Muscle Cells via Regulating miR-141-3p/HMGB1 Pathway. Am J Med Sci 2022; 363:538-547. [DOI: 10.1016/j.amjms.2022.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/11/2022] [Accepted: 02/11/2022] [Indexed: 11/24/2022]
|
13
|
Huang H, Yang C, Zhang Q, Zhuo T, Li X, Li N, Zhu L, Luo C, Gan J, Wu Y. Long non-coding RNA FAM83A antisense RNA 1 (lncRNA FAM83A-AS1) targets microRNA-141-3p to regulate lung adenocarcinoma cell proliferation, migration, invasion, and epithelial-mesenchymal transition progression. Bioengineered 2022; 13:4964-4977. [PMID: 35164653 PMCID: PMC8973779 DOI: 10.1080/21655979.2022.2037871] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The current paper investigates how long non-coding RNA (lncRNA) FAM83A antisense RNA 1 (lncRNA FAM83A-AS1) affected the epithelial-mesenchymal transformation (EMT), growth, invasion and migration of lung adenocarcinoma (LUAD) via targeting miRNA-141-3p. The GEPIA and ENCORI databases were used to analyze differences in lncRNA FAM83A-AS1 levels within LUAD samples. FAM83A-AS1 and miR-141-3p levels were assessed using qRT-PCR among 30 LUAD samples and surrounding normal tissues. In addition, we analyzed how FAM83A-AS1 affected proliferation, invasion, migration, and EMT processes of LUAD cells by targeting miR-141-3p through EdU, CCK-8 assay, scratch assay, transwell migration and invasion assay, immunofluorescence (IF) staining and WB assay. MicroRNAs targeting FAM83A-AS1 were screened using AnnoLnc2 and identified by RT-qPCR. Dual-luciferase assays were utilized to evaluate the connection between FAM83A-AS1 and miR-141-3p. FAM83A-AS1 expression was remarkably raised in lung cancer cells and tissue samples; however, miR-141-3p level markedly reduced relative to healthy samples. FAM83A-AS1 silencing suppressed EMT, growth, invasion and migration of LUAD cells. MiR-141-3p was the possible FAM83A-AS1 binding target negatively associated with FAM83A-AS1. The miR-141-3p inhibitor partly abolished the FAM83A-AS1 knockdown-induced inhibition on EMT, cell growth, invasion and migration in LUAD cells. In addition, miR-141-3p down-regulation abolished the inhibition of E-box-bound zinc finger protein 1 and 2 protein production following FAM83A-AS1 knockdown. According to our results, FAM83A-AS1/miR-141-3p axis plays an important role in LUAD occurrence and development. FAM83A-AS1 sponged miR-141-3p to down-regulate the level of the latter within LUAD and thereby encouraging LUAD development and suggesting a possible novel therapeutic approach for LUAD.
Collapse
Affiliation(s)
- Hongyu Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chuyi Yang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qichen Zhang
- Department of the Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ting Zhuo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaohong Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Nijiao Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lu Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chenyang Luo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinyan Gan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanbin Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Giannos P, Kechagias KS, Gal A. Identification of Prognostic Gene Biomarkers in Non-Small Cell Lung Cancer Progression by Integrated Bioinformatics Analysis. BIOLOGY 2021; 10:1200. [PMID: 34827193 PMCID: PMC8615219 DOI: 10.3390/biology10111200] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 01/06/2023]
Abstract
The progression of non-small cell lung cancer (NSCLC) is linked to epithelial-mesenchymal transition (EMT), a biologic process that enables tumor cells to acquire a migratory phenotype and resistance to chemo- and immunotherapies. Discovery of novel biomarkers in NSCLC progression is essential for improved prognosis and pharmacological interventions. In the current study, we performed an integrated bioinformatics analysis on gene expression datasets of TGF-β-induced EMT in NSCLC cells to identify novel gene biomarkers and elucidate their regulation in NSCLC progression. The gene expression datasets were extracted from the NCBI Gene Expression Omnibus repository, and differentially expressed genes (DEGs) between TGF-β-treated and untreated NSCLC cells were retrieved. A protein-protein interaction network was constructed and hub genes were identified. Functional and pathway enrichment analyses were conducted on module DEGs, and a correlation between the expression levels of module genes and survival of NSCLC patients was evaluated. Prediction of interactions of the biomarker genes with transcription factors and miRNAs was also carried out. We described four protein clusters in which DEGs were associated with ubiquitination (Module 1), regulation of cell death and cell adhesions (Module 2), oxidation-reduction reactions of aerobic respiration (Module 3) and mitochondrial translation (Module 4). From the module genes, we identified ten prognostic gene biomarkers in NSCLC. Low expression levels of KCTD6, KBTBD7, LMO7, SPSB2, RNF19A, FOXA2, DHTKD1, CDH1 and PDHB and high expression level of KLHL25 were associated with reduced overall survival of NSCLC patients. Most of these biomarker genes were involved in protein ubiquitination. The regulatory network of the gene biomarkers revealed their interaction with tumor suppressor miRNAs and transcription factors involved in the mechanisms of cancer progression. This ten-gene prognostic signature can be useful to improve risk prediction and therapeutic strategies in NSCLC. Our analysis also highlights the importance of deregulation of ubiquitination in EMT-associated NSCLC progression.
Collapse
Affiliation(s)
- Panagiotis Giannos
- School of Applied Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ, UK
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Konstantinos S. Kechagias
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, UK;
| | - Annamaria Gal
- School of Applied Sciences, University of Brighton, Lewes Road, Brighton BN2 4GJ, UK
| |
Collapse
|
15
|
Yang LJ, Gao L, Guo YN, Liang ZQ, Li DM, Tang YL, Liu YH, Gao WJ, Zeng JJ, Shi L, Wei KL, Chen G. Upregulation of microRNA miR-141-3p and its prospective targets in endometrial carcinoma: a comprehensive study. Bioengineered 2021; 12:2941-2956. [PMID: 34180758 PMCID: PMC8806562 DOI: 10.1080/21655979.2021.1943111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The clinicopathological value of microRNA-141-3p (miR-141-3p) and its prospective target genes in endometrial carcinoma (EC) remains unclear. The present study determined the expression level of miR-141-3p in EC via quantitative real-time PCR (RT-qPCR). RT-qPCR showed a markedly higher expression level of miR-141-3p in EC tissues than in non-EC endometrium tissues (P < 0.0001). The microarray and miRNA-seq data revealed upregulation of miR-141-3p. Integrated analysis based on 675 cases of EC and 63 controls gave a standardized mean difference of 1.737, confirmed the upregulation of miR-141-3p. The Kaplan-Meier survival curve showed that a higher expression of miR-141-3p positively corelated with a poorer prognosis. Combining the predicted targets and downregulated genes in EC, we obtained 271 target genes for miR-141-3p in EC. Two potential targets, PPP1R12A and PPP1R12B, were downregulated at both the mRNA and protein levels. This study indicates that the overexpression of miR-141-3p may play an important part in the carcinogenesis of EC. The overexpression of miR-141-3p may be a risk factor for the prognosis of patients with EC.
Collapse
Affiliation(s)
- Lin-Jie Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Li Gao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Yi-Nan Guo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Zi-Qian Liang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Dong-Ming Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Yu-Lu Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Yi-Hong Liu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Wan-Jing Gao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Jing-Jing Zeng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Lin Shi
- Department of Pathology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Kang-Lai Wei
- Department of Pathology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P. R. China
| |
Collapse
|
16
|
Tong SJ, Zhang XY, Guo HF, Yang J, Qi YP, Lu S. Study on effects of miR-141-3p in proliferation, migration, invasion and apoptosis of colon cancer cells by inhibiting Bcl2. Clin Transl Oncol 2021; 23:2526-2535. [PMID: 34086253 DOI: 10.1007/s12094-021-02653-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/24/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE This study aimed to investigate the relationship between miR-141-3p and B lymphocyte-2 gene (Bcl2) gene and its biological behavior on colon cancer cell line SW480. METHODS qRT-PCR was used to detect the expression level of miR-141-3p in colon cancer tissues and adjacent tissues, as well as in colon cancer cell line and normal human colonic epithelial cell line FHC. MTT assay, wound assay, and Transwell demonstrated the effects of miR-141-3p on colon cancer proliferation, migration and invasion. Targetscan7.1 predictive software and dual luciferase reporter assays were used to detect the targeted regulation of miR-141-3p on the apoptosis-related gene Bcl2. MTT assay, wound assay, Transwell and flow cytometry were used to detect the effect of Bcl2 on miR-141-3p on colon cancer proliferation, migration, invasion and apoptosis. RESULTS Compared with adjacent tissues, the expression of miR-141-3p in colon cancer tissues was significantly down-regulated. Colon cancer patients with low expression of miR-141-3p had poorer prognosis. Compared with normal colonic epithelial cells, miR-141-3p expression was significantly down-regulated in colon cancer cell lines, and overexpression of miR-141-3p significantly attenuated the proliferation, migration and invasion of colon cancer cells. Knockdown of miR-141-3p significantly promoted the proliferation, migration and invasion of colon cancer cells. miR-141-3p targets the negative regulation of Bcl2. Knockdown of Bcl2 significantly attenuated the promotion of miR-141-3p inhibitor on proliferation, migration and invasion of colon cancer cells and inhibition of apoptosis. Knockdown of Bcl2 significantly enhanced the inhibition effect of miR-141-3p inhibitor on proliferation, migration and invasion of colon cancer cells. CONCLUSIONS In conclusion, miR-141-3p can inhibit the cancer by regulating Bcl2, and miR-141-3p has the potential to become a potential therapeutic target for colon cancer.
Collapse
Affiliation(s)
- S J Tong
- Ward 1, Department of General Surgery, The Third Affiliated Hospital of Qiqihaer Medical University, No. 27 Taishun Street, Tiefeng District, Qiqihaer City, 161000, Heilongjiang Province, China
| | - X Y Zhang
- Department of Stomatology, The Third Affiliated Hospital of Qiqihaer Medical University, Qiqihaer City, 161000, China
| | - H F Guo
- Ward 1, Department of General Surgery, The Third Affiliated Hospital of Qiqihaer Medical University, No. 27 Taishun Street, Tiefeng District, Qiqihaer City, 161000, Heilongjiang Province, China
| | - J Yang
- Ward 1, Department of General Surgery, The Third Affiliated Hospital of Qiqihaer Medical University, No. 27 Taishun Street, Tiefeng District, Qiqihaer City, 161000, Heilongjiang Province, China
| | - Y P Qi
- Ward 1, Department of General Surgery, The Third Affiliated Hospital of Qiqihaer Medical University, No. 27 Taishun Street, Tiefeng District, Qiqihaer City, 161000, Heilongjiang Province, China
| | - S Lu
- Ward 1, Department of General Surgery, The Third Affiliated Hospital of Qiqihaer Medical University, No. 27 Taishun Street, Tiefeng District, Qiqihaer City, 161000, Heilongjiang Province, China.
| |
Collapse
|
17
|
Lu XS, Huang ML, Chen LB, Liu SC, Huang ZX, Liu SM. WITHDRAWN: SCARA5 regulated by MEG3/miR-141 axis attenuates proliferation, migration and invasion of bladder cancer. Life Sci 2021:119619. [PMID: 34015283 DOI: 10.1016/j.lfs.2021.119619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 01/04/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Xin-Sheng Lu
- Department of Urology, the First Affiliated Hospital, University of South China, Hengyang 421000, Hunan Province, China
| | - Meng-Long Huang
- Department of Urology, the First Affiliated Hospital, University of South China, Hengyang 421000, Hunan Province, China
| | - Li-Bo Chen
- Department of Urology, the First Affiliated Hospital, University of South China, Hengyang 421000, Hunan Province, China
| | - Shu-Cheng Liu
- Department of Urology, the First Affiliated Hospital, University of South China, Hengyang 421000, Hunan Province, China
| | - Zhong-Xin Huang
- Department of Urology, the First Affiliated Hospital, University of South China, Hengyang 421000, Hunan Province, China
| | - Shi-Min Liu
- Department of Urology, the First Affiliated Hospital, University of South China, Hengyang 421000, Hunan Province, China.
| |
Collapse
|
18
|
Zhang C, Cao J, Lv W, Mou H. CircRNA_100395 Carried by Exosomes From Adipose-Derived Mesenchymal Stem Cells Inhibits the Malignant Transformation of Non-Small Cell Lung Carcinoma Through the miR-141-3p-LATS2 Axis. Front Cell Dev Biol 2021; 9:663147. [PMID: 33842488 PMCID: PMC8027360 DOI: 10.3389/fcell.2021.663147] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/05/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE The specific purpose of this study is to investigate the impact exosomes from adipose-derived mesenchymal stem cell (AMSC) has on non-small cell lung carcinoma (NSCLC) and the relative applications. METHODS circ_100395, miR-141-3p, and LATS2 were expressed and detected in NSCLC and paracancerous tissues as well as NSCLC cell lines. Pearson correlation analysis, Dual-Luciferase Reporter Assay and RNA pull-down assay were used to validate their expression and interaction, respectively. After isolation and culture of AMSCs, exosomes were extracted and identified. EdU, epithelial-mesenchymal transition (EMT), and cell colony formation assay were used to distinguish the biological activity of the cells. Expression Hippo/YAP signalling pathway-related proteins were measured by western blotting. Subsequently, tumour volume and weight were confirmed based on xenograft nude mice models, Ki-67 and LATS2 expression was observed by immunohistochemistry. RESULTS circ_100395 was lowly expressed in NSCLC tissues or cells. The negative correlations and interactions were confirmed between circ_100395 and miR-141-3p, miR-141-3p, and LATS2. AMSC-derived exosomes with overexpression of circ_100395 (exo-circ_100395) significantly inhibited the biological activity as well as EMT of H1650 cells and Hippo/YAP signalling pathway activity. In addition, exo-circ_100395 markedly reduced tumour volume and weight as well as Ki-67 and LASP1 expression in vivo. However, overexpressed miR-141-3p or knocked down LATS2 alleviated the above effects. CONCLUSION Exo-circ_100395 can increase LATS2 expression by sponging miR-141-3p to regulate Hippo/YAP signalling pathway, thereby inhibiting NSCLC malignant transformation.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinlin Cao
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wang Lv
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haibo Mou
- Department of Medical Oncology, Shulan (Hangzhou) Hospital, Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
19
|
Parol M, Gzil A, Bodnar M, Grzanka D. Systematic review and meta-analysis of the prognostic significance of microRNAs related to metastatic and EMT process among prostate cancer patients. J Transl Med 2021; 19:28. [PMID: 33413466 PMCID: PMC7788830 DOI: 10.1186/s12967-020-02644-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
The ability of tumor cells to spread from their origin place and form secondary tumor foci is determined by the epithelial-mesenchymal transition process. In epithelial tumors such as prostate cancer (PCa), the loss of intercellular interactions can be observed as a change in expression of polarity proteins. Epithelial cells acquire ability to migrate, what leads to the formation of distal metastases. In recent years, the interest in miRNA molecules as potential future treatment options has increased. In tumor microenvironment, miRNAs have the ability to regulate signal transduction pathways, where they can act as suppressors or oncogenes. MiRNAs are secreted by cancer cells, and the changes in their expression levels are closely related to a cancer progression, including epithelial-mesenchymal transition. These molecules offer new diagnostic and therapeutic possibilities. Therapeutics which make use of synthesized RNA fragments and mimic or block miRNAs affected in PCa, may lead to inhibition of tumor progression and even disease re-emission. Based on appropriate qualification criteria, we conducted a selection process to identify scientific articles describing miRNAs and their relation to epithelial-mesenchymal transition in PCa patients. The studies were published in English on Pubmed, Scopus and the Web of Science before August 08, 2019. Hazard ratios (HRs) and 95% confidence intervals (CI) as well as total Gleason score were used to assess the concordance between miRNAs and presence of metastases. A total of 13 studies were included in our meta-analysis, representing 1608 PCa patients and 15 miRNA molecules. Our study clarifies a relationship between the clinicopathological features of PCa and the aberrant expression of several miRNA as well as the complex mechanism of miRNA molecules involvement in the induction and promotion of the metastatic mechanism in PCa.
Collapse
Affiliation(s)
- Martyna Parol
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| | - Arkadiusz Gzil
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 9 Curie-Sklodowskiej Street, 85-094 Bydgoszcz, Poland
| |
Collapse
|
20
|
Yu M, Tian Y, Wu M, Gao J, Wang Y, Liu F, Sheng S, Huo S, Bai J. A comparison of mRNA and circRNA expression between squamous cell carcinoma and adenocarcinoma of the lungs. Genet Mol Biol 2020; 43:e20200054. [PMID: 33196759 PMCID: PMC7654371 DOI: 10.1590/1678-4685-gmb-2020-0054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/05/2020] [Indexed: 02/01/2023] Open
Abstract
Lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) are the two major subtypes of non-small-cell lung cancer (NSCLC). This study aimed to compare mRNA and circRNA expression patterns between LUSC and LUAD. Cancer tissues from 8 LUSC patients and 12 LUAD patients were collected to obtain mRNA and circRNA expression profiles. The differentially expressed mRNAs (DEmRNAs) and circRNAs (DE-circRNAs) between LUSC and LUAD were screened. Afterwards, miRNA-DEcircRNA pairs and miRNA-DEmRNA pairs were predicted to construct a competing endogenous RNAs (ceRNAs) network, followed by functional enrichment analysis and survival analysis. In total, 635 DEmRNAs and 245 DEcircRNAs were obtained. The ceRNA analysis revealed that genes, such as EPHA2, EPHA7, NTRK2, CDK6, hsa_circ_027570, hsa_circ_006089, and hsa-circ_035997, had distinct expression patterns between LUSC and LUAD. Also, functional enrichment analysis indicated that DEmRNAs were mainly enriched in ERK1 and ERK2 cascade. Survival analyses suggested that STXBP1 and PMEPA1 were associated the prognosis of with both LUAD and LUSC, whereas EPHA2 and CDK6 might serve as prognostic factors for LUSC and LUAD, respectively. In conclusion, genes such as EPHA2, EPHA7, NTRK2, and CDK6 had different patterns in the two major histological subtypes of NSCLC. Notably, EPHA2 and CDK6 might be considered as potential therapeutic targets for LUSC and LUAD, respectively.
Collapse
Affiliation(s)
- Min Yu
- Shaanxi Provincial People's Hospital, Department of Oncology Medicine, Xi'an, Shaanxi, China
| | - Yingxuan Tian
- Shaanxi Provincial People's Hospital, Department of Elderly Respiratory Medicine, Xi'an, Shaanxi, China.,Shaanxi Provincial People's Hospital, Xi'an Medical College, Department of Elderly Medicine, Xi'an, Shaanxi, China
| | - Min Wu
- Shaanxi Provincial People's Hospital, Department of Elderly Respiratory Medicine, Xi'an, Shaanxi, China
| | - Jinglong Gao
- Shaanxi Provincial People's Hospital, Department of Elderly Medicine, Xi'an, Shaanxi, China
| | - Yuan Wang
- Shaanxi Provincial People's Hospital, Department of Preventive Health Section, Xi'an, Shaanxi, China
| | - Fuqiang Liu
- Shaanxi Provincial People's Hospital, Cardiovascular Department, Xi'an, Shaanxi, China
| | - Sen Sheng
- University of Arkansas for Medical Science, Neurology Department, Little Rock, AR, USA
| | - Shufen Huo
- Shaanxi Provincial People's Hospital, Department of Elderly Respiratory Medicine, Xi'an, Shaanxi, China
| | - Jun Bai
- Shaanxi Provincial People's Hospital, Department of Oncology Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
21
|
Mir-141-3p Regulates Apoptosis and Mitochondrial Membrane Potential via Targeting Sirtuin1 in a 1-Methyl-4-Phenylpyridinium in vitro Model of Parkinson's Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7239895. [PMID: 33204711 PMCID: PMC7666638 DOI: 10.1155/2020/7239895] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/24/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
Objectives Parkinson's disease (PD) is a common neurodegenerative disease characterized by the loss of midbrain dopaminergic neurons in the substantia nigra. The present study investigated miR-141-3p/sirtuin1 (SIRT1) activity in a 1-methyl-4-phenylpyridinium- (MPP+-) induced PC12-cell model of PD. Methods PC12 cells were exposed to MMP+ following induction of differentiation by nerve growth factor (NGF). miR-141-3p and SIRT1 expressions were examined using RT-qPCR and western blot. Cell viability was evaluated using the MTT assay. Apoptosis percentage, reactive oxygen species (ROS) production, and mitochondrial membrane potential (Δψm) were evaluated using flow cytometry. Expression of Nuclear factor-kappa B- (NF-κB-) related proteins was determined by western blot. Bioinformatic analysis, RT-qPCR, and luciferase reporter assay were used to confirm the interaction between miR-141-3p and SIRT1. Results miR-141-3p was upregulated, and SIRT1 was downregulated in MPP+-treated PC12 cells. MPP+ treatment also upregulated nitric oxide synthase 1 (Nos1) and α-synuclein. miR-141-3p induced apoptosis, oxidative stress, mitochondrial dysfunction, and downregulated the SIRT1 mRNA expression. The luciferase reporter assay showed that SIRT1 was the target of miR-141-3p. SIRT1 transfection attenuated apoptosis, ROS production and maintained Δψm. SIRT1 also downregulated Nos1, tumor necrosis factor-α (TNF-α), interleukin 1 beta (IL-1β), interleukin 6(IL-6) and upregulated B cell lymphoma 2 (Bcl-2) protein. In addition, SIRT1 activator resveratrol blocked the effects of miR-141-3p mimic on Nos1, α-synuclein, and mitochondrial membrane potential. SIRT1 inhibitor sirtinol reversed the biological effects of miR-141-3p. Conclusion Increased miR-141-3p induced apoptosis, oxidative stress, and mitochondrial dysfunction in MPP+-treated PC12 cells by directly targeting the SIRT1 expression. Our study provided a potential therapeutic strategy for PD.
Collapse
|
22
|
Liu X, Wang C. Long non-coding RNA ATB is associated with metastases and promotes cell invasion in colorectal cancer via sponging miR-141-3p. Exp Ther Med 2020; 20:261. [PMID: 33199986 PMCID: PMC7664613 DOI: 10.3892/etm.2020.9391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) serve crucial roles in cancer development and progression. lncRNA-activated by transforming growth factor-β (lncRNA-ATB) mediates cell proliferation. However, the association between lncRNA-ATB and human colorectal cancer (CRC) is not completely understood. Therefore, the present study aimed to investigate the role of lncRNA-ATB in CRC, as well as the underlying mechanism. 50 pairs of tumor tissues and adjacent normal tissues from patients with primary CRC were collected. The expression of lncRNA-ATB and microRNA (miR)-141-3p in CRC tissues, adjacent normal tissues and cell lines was detected using reverse transcription-quantitative PCR. CCK-8, colony formation, Transwell, western blot, dual luciferase reporter gene, RNA immunoprecipitation and immunohistochemistry staining assays were conducted to assess the biological function of lncRNA-ATB and miR-141-3p in CRC progression. lncRNA-ATB was upregulated in CRC tissues and cell lines compared with healthy tissues and cells, respectively. Moreover, high expression of lncRNA-ATB was significantly associated with advanced TNM stage and metastasis in CRC. In addition, the results indicated that lncRNA-ATB expression predicted the prognosis and overall survival of patients with CRC. Compared with small interfering RNA-negative control, lncRNA-ATB knockdown inhibited CRC cell proliferation, migration and invasion, whereas, compared with vector, lncRNA-ATB overexpression promoted CRC cell proliferation, migration and invasion. Furthermore, the in vivo experiment suggested that lncRNA-ATB knockdown inhibited tumor growth. The results also indicated that lncRNA-ATB may contribute to CRC progression via binding to tumor suppressor microRNA-141-3p. Collectively, the present study suggested a crucial role of lncRNA-ATB in CRC tumorigenesis, suggesting that lncRNA-ATB may serve as an important marker for the diagnosis and development of CRC.
Collapse
Affiliation(s)
- Xianming Liu
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Cunchuan Wang
- Department of Gastrointestinal Surgery, Guangzhou Overseas Chinese Hospital, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
23
|
LncRNA MALAT1 promotes wound healing via regulating miR-141-3p/ZNF217 axis. Regen Ther 2020; 15:202-209. [PMID: 33426220 PMCID: PMC7770423 DOI: 10.1016/j.reth.2020.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/16/2020] [Accepted: 09/25/2020] [Indexed: 01/22/2023] Open
Abstract
Background The process of wound healing is complex. Increasing evidences have shown that lncRNA MALAT1 is abundant in fibroblasts and may be engaged in wound healing process. Therefore, we explored the mechanism of MALAT1 affecting wound healing. Methods The expression levels of MALAT1, miR-141-3p as well as ZNF217 in human fibroblast cells (HFF-1) were quantified by qRT-PCR. HFF-1 proliferation was measured by MTT, while migration was detected by wound healing assay. SMAD2 activation and matrix proteins expression were detected by western blotting. The interaction between miR-141-3p and MALAT1 or ZNF217 was further confirmed using the luciferase reporter gene assay. In vivo wound healing was assessed by full-thickness wound healing model on C57BL/6 mice. Result Knockdown of MALAT1 as well as overexpression miR-141-3p remarkably inhibited the proliferation, migration and matrix protein expression in HFF-1 cells. MALAT1 directly targeted and inhibited the expression of miR-141-3p. MiR-141-3p suppressed the activation of TGF-β2/SMAD2 signaling pathway by targeting ZNF217. Knockdown of MALAT1 inhibited wound healing process in mice. Conclusions MALAT1 up-regulates ZNF217 expression by targeting miR-141-3p, thus enhances the activity of TGF-β2/SMAD2 signaling pathway and promotes wound healing process. This investigation shed new light on the understanding of the role of MALAT1 in wound healing, and may provide potential target for the diagnosis or therapy of chronic wounds.
Collapse
Key Words
- ECM, extra cellular matrix
- ELISA, enzyme linked immunosorbent assay
- EMT, epithelial mesenchymal transition
- HFF-1, human fibroblast cells
- MALAT1
- MALAT1, metastasis-associated lung adenocarcinoma transcript 1
- MTT, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide
- PVDF, polyvinylidene fluoride
- SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- TGF-β2, Transforming Growth Factor-β2
- Wound healing
- ZEB1, E-box binding homeobox 1
- ZNF217
- ZNF217, zinc-finger protein 217
- lncRNA, long non-coding RNA
- miR-141-3p
- qRT-PCR, quantitative real-time PCR
Collapse
|
24
|
Sun S, Ma J, Xie P, Wu Z, Tian X. Hypoxia-responsive miR-141-3p is involved in the progression of breast cancer via mediating the HMGB1/HIF-1α signaling pathway. J Gene Med 2020; 22:e3230. [PMID: 32436353 PMCID: PMC7685107 DOI: 10.1002/jgm.3230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Background Hypoxia‐responsive miRs have been frequently reported in the growth of various malignant tumors. The present study aimed to investigate whether hypoxia‐responsive miR‐141–3p was implicated in the pathogenesis of breast cancer via mediating the high‐mobility group box protein 1 (HMGB1)/hypoxia‐inducible factor (HIF)‐1α signaling pathway. Materials and methods miRs expression profiling was filtrated by miR microarray assays. Gene and protein expression levels, respectively, were examined by a quantitative reverse transcriptase‐polymerase chaion reaction and western blotting. Cell migration and invasion were analyzed using a transwell assay. Cell growth was determined using nude‐mouse transplanted tumor experiments. Results miR‐141–3p was observed as a hypoxia‐responsive miR in breast cancer. miR‐141–3p was down‐regulated in breast cancer specimens and could serve as an independent prognostic factor for predicting overall survival in breast cancer patients. In addition, the overexpression of miR‐141–3p could inhibit hypoxia‐induced cell migration and impede human breast cancer MDA‐MB‐231 cell growth in vivo. Mechanistically, the hypoxia‐related HMGB1/HIF‐1α signaling pathway might be a possible target of miR‐141–3p with respect to preventing the development of breast cancer. Conclusions Our finding provides a new mechanism by which miR‐141–3p could prevent hypoxia‐induced breast tumorigenesis via post‐transcriptional repression of the HMGB1/HIF‐1α signaling pathway.
Collapse
Affiliation(s)
- Shanping Sun
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.,Department of Breast and Thyroid Surgery, Liaocheng People's Hospital, Liaocheng, Shandong Province, China
| | - Jinglin Ma
- Department of Breast and Thyroid Surgery, Liaocheng People's Hospital, Liaocheng, Shandong Province, China
| | - Panpan Xie
- Department of Breast and Thyroid Surgery, Liaocheng People's Hospital, Liaocheng, Shandong Province, China
| | - Zhen Wu
- Department of Breast and Thyroid Surgery, Liaocheng People's Hospital, Liaocheng, Shandong Province, China
| | - Xingsong Tian
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
25
|
Cheng X, Tian P, Zheng W, Yan X. Piplartine attenuates the proliferation of hepatocellular carcinoma cells via regulating hsa_circ_100338 expression. Cancer Med 2020; 9:4265-4273. [PMID: 32281302 PMCID: PMC7300402 DOI: 10.1002/cam4.3043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/12/2020] [Accepted: 03/01/2020] [Indexed: 12/11/2022] Open
Abstract
Researches have pointed that piplartine inhibits the proliferation of hepatocellular carcinoma (HCC) cells, however, the underlying mechanisms has not been well defined. Currently, more and more studies have pointed out that circRNAs can regulate tumor cell proliferation, involve in the tumorigenesis mechanism of various tumors. In this study, we explored whether piplartine may participate in the development of HCC through the regulation of ability of HCC cell proliferation by circRNA. Based on the chip analysis, we selected candidate circRNAs that are highly correlated with HCC. CircRNA expression in OSCC cells treated with piplartine was detected by qRT-PCR. We found that only the expression of hsa_circ_100338 (circ-100338) was observably reduced. The expression characteristics of circ-100338 in HCC cell lines were also verified by qRT-PCR. Subsequently, whether or notcirc-100338 can regulate ZEB1 via competitively binding to miR-141-3p was determined by the RIP assay and dual luciferase reporter gene assay. The effect of the circ-100338/miR-141-3p/ZEB1 axis on the proliferation of HCC cell was tested by EdU and CCK-8 assay. Results showed that circ-100338 expression was observably increased in HCC cell lines. Simultaneously, circ-100338 can regulate the expression of ZEB1by competitively binding to miR-141-3p. Moreover high expression of circ-100338 can stimulate the proliferation of HCC cells. Our current study revealed that circ-100338 played as a ceRNA in promoting the progression of HCC by sponging miR-141-3p, while piplartine can participate in the development of HCC by inhibiting the expression of circ-100338.
Collapse
Affiliation(s)
- Xiaoli Cheng
- Department of PharmacyBao'an Maternal and Child Health HospitalJinan UniversityShenzhenChina
| | - Pan Tian
- Department of PharmacyBao'an Maternal and Child Health HospitalJinan UniversityShenzhenChina
| | - Wengzhong Zheng
- Department of AnesthesiologyBao'an Maternal and Child Health HospitalJinan UniversityShenzhenChina
| | - Xuetao Yan
- Department of AnesthesiologyBao'an Maternal and Child Health HospitalJinan UniversityShenzhenChina
| |
Collapse
|
26
|
Li J, Zou X. MiR-652 serves as a prognostic biomarker in gastric cancer and promotes tumor proliferation, migration, and invasion via targeting RORA. Cancer Biomark 2020; 26:323-331. [PMID: 31524147 DOI: 10.3233/cbm-190361] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE MicroRNAs (miRNAs) have been reported to be involved in tumorigenesis. The aim of this study was to investigate the functional role and prognostic value of miR-652 in gastric cancer (GC). METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the expression levels of miR-652 in human GC tissue samples and GC cell lines. The Kaplan-Meier survival curves and Cox regression analysis were performed to measure the prognostic value of miR-652 in GC. The tumor cell proliferation capacity was estimated by MTT assay, and cell migration and invasion were assessed by Transwell assays. The luciferase reporter assay was performed to confirm the target gene of miR-652. RESULTS MiR-652 was significantly elevated in GC tissues and cell lines (all P< 0.001). And the expression level of miR-652 was significantly associated with TNM stage and lymph node metastasis (all P< 0.05). GC patients with high expression of miR-652 had a shorter overall survival rate than those with low miR-652 expression (log-rank P< 0.001). The miR-652 and TNM stage were proven to be independent prognostic predictors for the GC patients. Overexpressing miR-652 could enhance cell proliferation, migration and invasion (all P< 0.01). RORA was proved to be the target gene of miR-652. CONCLUSION MiR-652 functions as an oncogene in GC and promotes tumor progression via targeting RORA. MiR-652 might be a novel predictive marker for the poor prognosis of GC patients.
Collapse
|
27
|
Long non-coding RNA ATB promotes human non-small cell lung cancer proliferation and metastasis by suppressing miR-141-3p. PLoS One 2020; 15:e0229118. [PMID: 32092085 PMCID: PMC7039450 DOI: 10.1371/journal.pone.0229118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 01/22/2023] Open
Abstract
Long noncoding RNA activated by transforming growth factor-β (lncRNA-ATB) plays a critical role in progression of several cancers. In this study, lncRNA-ATB was significantly up-regulated in NSCLC tissues and cell lines, and high lncRNA-ATB expression indicated poor prognosis. Knockdown of lncRNA-ATB suppressed NSCLC cell growth, colony formation, migration, invasion and reversed epithelial-mesenchymal transition. In vivo study showed that silencing lncRNA-ATB inhibited tumor growth. Further mechanism studies demonstrated that lncRNA-ATB was a target of miR-141-3p. MiR-141-3p expression was negatively related to lncRNA-ATB expression in NSCLC tissues. These results suggested that inhibiting lncRNA-ATB might be an approach for NSCLC treatment.
Collapse
|
28
|
Bao J, Li X, Li Y, Huang C, Meng X, Li J. MicroRNA-141-5p Acts as a Tumor Suppressor via Targeting RAB32 in Chronic Myeloid Leukemia. Front Pharmacol 2020; 10:1545. [PMID: 32038235 PMCID: PMC6987442 DOI: 10.3389/fphar.2019.01545] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-141-5p (miR-141-5p), an important member of the miR-200 family, has been reported to be involved in cellular proliferation, migration, invasion, and drug resistance in different kinds of human malignant tumors. However, the role and function of miR-141-5p in chronic myeloid leukemia (CML) are unclear. In this current study, we found that the level of miR-141-5p was significantly decreased in peripheral blood cells from CML patients compared with normal blood cells and human leukemic cell line (K562 cells) compared with normal CD34+ cells, but was remarkably elevated in patients after treatment with nilotinib or imatinib. Suppression of miR-141-5p promoted K562 cell proliferation and migration in vitro. As expected, overexpression of miR-141-5p weakened K562 cell proliferation, migration, and promoted cell apoptosis. A xenograft model in nude mice showed that overexpression of miR-141-5p markedly suppressed tumor growth in vivo. Mechanistic studies suggested that RAB32 was the potential target of miR-141-5p, and silencing of RAB32 suppressed the proliferation and migration of K562 cells and promoted cell apoptosis. Taken together, our study demonstrates that miR-141-5p plays an important role in the activation of K562 cells in vitro and may act as a tumor suppressor via targeting RAB32 in the development of CML.
Collapse
Affiliation(s)
- Jing Bao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.,Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaofeng Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Yuhuan Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiaoming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
29
|
MiR-200 family and cancer: From a meta-analysis view. Mol Aspects Med 2019; 70:57-71. [DOI: 10.1016/j.mam.2019.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
|
30
|
Zhou R, Mo W, Wang S, Zhou W, Chen X, Pan S. miR-141-3p and TRAF5 Network Contributes to the Progression of T-Cell Acute Lymphoblastic Leukemia. Cell Transplant 2019; 28:59S-65S. [PMID: 31722554 PMCID: PMC7016468 DOI: 10.1177/0963689719887370] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Numerous lines of evidence have shown that microRNAs (miRNAs) play a vital role in regulating the progression in many types of cancers, including T cell acute lymphoblastic leukemia (T-ALL). In this study, the potential underlying mechanism and functional role of miR-141-3p in T-ALL cells were determined. We found that the expression level of miR-141-3p was significantly downregulated, while that of tumor necrosis factor receptor-associated factor 5 (TRAF5) was strongly upregulated in tissues from patients with T-ALL compared with healthy controls. Subsequently, upregulation of miR-141-3p significantly repressed T-ALL cell proliferation and promoted cell apoptosis. Conversely, downregulation of miR-141-3p significantly inhibited cell apoptosis and enhanced T-ALL cell proliferation. We also verified that TRAF5 was the direct target of miR-141-3p in T-ALL cells. Additionally, TRAF5 overexpression significantly repressed cell apoptosis and increased T-ALL cell proliferation. In summary, miR-141-3p regulates T-ALL cell progression by directly targeting TRAF5, and may serve as a potential therapeutic target for T-ALL.
Collapse
Affiliation(s)
- Ruiqing Zhou
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wenjian Mo
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wei Zhou
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaowei Chen
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shiyi Pan
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
31
|
Fang M, Liu Y, Liu Q, Qian L. Alpinumisoflavone Inhibits Tumor Growth and Metastasis in Papillary Thyroid Cancer via Upregulating miR-141-3p. Anat Rec (Hoboken) 2019; 303:1842-1850. [PMID: 31513359 DOI: 10.1002/ar.24264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 01/22/2023]
Abstract
Alpinumisoflavone (AIF) as a principal active ingredient of traditional Chinese herb Derris eriocarpa exerts a broad spectrum of anticancer activities against solid tumors. However, little is known about the effect of AIF on papillary thyroid cancer (PTC). Objectives of this study are to investigate the effect of AIF on cell growth, apoptosis, and metastasis of PTC cells and uncover its underlying mechanisms. Results showed that AIF treatment notably suppressed cell viability, migration, invasion, and epithelial-mesenchymal transition (EMT) process, as well as induced apoptotic cell death. In addition, microarray analysis results revealed that miR-141-3p level was dramatically elevated upon AIF insulation, suggesting that miR-141-3p may mediate the suppressive role of AIF against PTC. Moreover, miR-141-3p knockdown effectively reversed the effects of AIF on cell growth, migration, invasion, and EMT, while promoted PTC cell apoptosis escape. Furthermore, in vivo findings also confirmed that the antigrowth and antimetastasis activities of AIF were, at least partly, mediated by upregulation of miR-141-3p. Overall, AIF could serve as a potential anticancer compound for PTC treatment. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:1842-1850, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Ming Fang
- Department of Endocrinology, Yifu Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yu Liu
- Department of Endocrinology, Yifu Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Qing Liu
- Department of Endocrinology, Yifu Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Li Qian
- Department of Endocrinology, Yifu Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
32
|
Huang B, Yu H, Li Y, Zhang W, Liu X. Upregulation of long noncoding TNFSF10 contributes to osteoarthritis progression through the miR-376-3p/FGFR1 axis. J Cell Biochem 2019; 120:19610-19620. [PMID: 31297857 DOI: 10.1002/jcb.29267] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is a common joint disease with high morbidity, but there is still no definitive treatment for it. Long noncoding RNAs (lncRNAs) have been confirmed to play key roles in OA progression. This work was done to investigate the roles and action mechanism of lncRNA TNFSF10 in OA. The messenger RNA levels of TNFSF10 in articular cartilage samples from patients or chondrocytes were detected by Quantitative real-time PCR assay (qRT-PCR). The effects of TNFSF10 on chondrocytes were evaluated on the basis of cell growth, apoptosis, and inflammation. Then, the interaction between TNFSF10 and miR-376-3p was explored by dual-luciferase reporter test, RNA-binding protein immunoprecipitation, and RNA pull-down assay. Finally, various cell experiments, Western blot analysis, and qRT-PCR were performed to study the interaction among TNFSF10, miR-376-3p, and fibroblast growth factor receptor 1 (FGFR1). It was found that TNFSF10 was upregulated in OA cartilages and stimulated cell proliferation, antiapoptosis, and inflammation for chondrocytes. In addition, TNFSF10 acted as a competing endogenous RNA to downregulate miR-376-3p, and the influence of TNFSF10 on chondrocytes was partly reversed by miR-376-3p. Moreover, FGFR1, as a target of miR-376-3p, had reversal functions on the outcomes mediated by miR-376-3p. The further analysis displayed that there was a negative relationship between TNFSF10 and miR-376-3p as well as miR-376-3p and FGFR1, while FGFR1 was positively related with TNFSF10. Altogether, TNFSF10 overexpression probably stimulated proliferation and inflammation, and inhibited apoptosis by regulating the miR-376-3p/FGFR1 axis, implying that its increase contributed to OA progression. Our study provided a new potential biomarker or therapeutic target-TNFSF10, which was helpful to develop an efficient approach to cure OA.
Collapse
Affiliation(s)
- Bingzhe Huang
- Orthopaedic Medical Center, The 2nd Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Haichi Yu
- Orthopaedic Medical Center, The 2nd Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Yingzhi Li
- Orthopaedic Medical Center, The 2nd Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Wei Zhang
- Orthopaedic Medical Center, The 2nd Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Xiaoning Liu
- Orthopaedic Medical Center, The 2nd Hospital of Jilin University, Changchun, Jilin, P. R. China
| |
Collapse
|
33
|
Wang R, Li G, Zhuang G, Sun S, Song Z. Overexpression of microRNA-423-3p indicates poor prognosis and promotes cell proliferation, migration, and invasion of lung cancer. Diagn Pathol 2019; 14:53. [PMID: 31164163 PMCID: PMC6549275 DOI: 10.1186/s13000-019-0831-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Lung cancer is one of the common malignant tumors worldwide with high incidence and mortality. MicroRNA-423-3p (miR-423-3p) acts as an oncogene in several types of cancers. The aim of this study is to reveal the clinical significance and biological function of miR-423-3p in lung cancer. METHODS The expression of miR-423-3p was detected in lung cancer specimens by reverse transcription-quantitative polymerase chain reaction (qRT-PCR) assay. Kaplan-Meier survival and Cox regression analyses were used to investigate the prognostic significance of miR-423-3p in lung cancer. CCK-8 and Transwell assays were used to determine the functional role of miR-423-3p in lung cancer. RESULTS We observed that miR-423-3p was significantly upregulated in lung cancer tissues and cell lines. Overexpression of miR-423-3p was significantly associated with lymph node metastasis, TNM stage, and poor prognosis. Multivariate Cox regression analysis results showed that miR-423-3p was an independent prognostic indicator for lung cancer patients. Results of functional analyses revealed that overexpression of miR-423-3p promoted cell proliferation, migration, and invasion in lung cancer cells. CONCLUSIONS These results indicated that miR-423-3p acts as an oncogene and promotes cell proliferation migration, and invasion of lung cancer. And miR-423-3p may serve as a potential prognostic biomarker and therapeutic target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Rukun Wang
- Department of Thoracic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, 261061, Shandong, China
| | - Gaofeng Li
- Department of Thyroid and Breast Surgery, Weifang Cancer Hospital, Weifang, 261041, Shandong, China
| | - Guoyan Zhuang
- Department of Outpatient, Weifang Cancer Hospital, Weifang, 261041, Shandong, China
| | - Shuying Sun
- Department of Nursing, Weifang Cancer Hospital, Weifang, 261041, Shandong, China
| | - Zhihui Song
- Department of Thoracic Surgery, Weifang Cancer Hospital, Weifang, 261041, Shandong, China.
| |
Collapse
|
34
|
MiR-141–3p inhibits cell proliferation, migration and invasion by targeting TRAF5 in colorectal cancer. Biochem Biophys Res Commun 2019; 514:699-705. [DOI: 10.1016/j.bbrc.2019.05.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/01/2019] [Indexed: 11/23/2022]
|
35
|
miR-141-3p affects apoptosis and migration of endometrial stromal cells by targeting KLF-12. Pflugers Arch 2019; 471:1055-1063. [DOI: 10.1007/s00424-019-02283-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 01/06/2023]
|