1
|
Sharma S, Chikhale R, Shinde N, Khan AM, Gupta VK. Targeting dormant phenotype acquired mycobacteria using natural products by exploring its important targets: In vitro and in silico studies. Front Cell Infect Microbiol 2023; 13:1111997. [PMID: 37033483 PMCID: PMC10080046 DOI: 10.3389/fcimb.2023.1111997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The dormant phenotype of Mycobacterium tuberculosis that develops during infection poses a major challenge in disease treatment, since these bacilli show tolerance to front-line drugs. An in vitro hypoxia dormancy model was established, which produced phenotypically dormant Mycobacterium smegmatis after prolonged incubation under conditions of low oxygen, low pH, and nutrient limitation. Bacilli in this model displayed the classical dormancy characters, including loss of acid fastness, altered morphology, and, most importantly, tolerance to front-line drugs. The dormant form of M. smegmatis was treated with drugs and phytomolecules. Three phytomolecules exhibited activity against dormant bacilli, as shown by lack of regrowth in solid and liquid media. Further investigation of dormancy-active hits was carried out using in silico approaches to understand the druggable targets of these phytomolecules in dormant bacilli. For this study, molecular docking, molecular dynamics simulations (MDS), and molecular mechanics-generalized born solvent accessibility (MM-GBSA)-based binding energy (ΔGbind) calculations were performed. Five different targets, namely, isocitrate lyase (ICL), GMP synthase, LuxR, DosR, and serine/threonine protein kinase (STPK), from M. smegmatis and M. tuberculosis were studied in details. DosR and STPK were found to be the common targets in both the species that were more prone to the phytomolecules. The standard DosR inhibitor, HC104A, showed a lower dock score and binding energy of -4.27 and -34.50 kcal/mol, respectively, compared to the natural products under study. The phytomolecule, icariin, showed better docking score (dock score = -5.92 kcal/mol with and binding energy ΔGbind= -52.96 kcal/mol) with DosR compared to known DosR inhibitor, HC104A (dock score = -4.27 kcal/mol and binding energy ΔGbind = -34.50 kcal/mol). Similarly, the known STPK inhibitor MRCT67127 showed a lower dock score and binding energy of -4.25 and -29.43 kcal/mol, respectively, compared to the phytomolecule, icariin (dock score = -5.74 kcal/mol and ΔGbind= -43.41 kcal/mol). These compounds might ultimately lead to new therapeutics or may be useful as adjuvants to the first-line drugs to reduce the lengthy anti-TB therapy in the future.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Rupesh Chikhale
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
- Department of Pharmaceutical & Biological Chemistry, School of Pharmacy, University College London, London, United Kingdom
| | - Nivedita Shinde
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - A M Khan
- Division of Clinical Trials and Implementation Research, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Vivek Kumar Gupta
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| |
Collapse
|
2
|
Rocha NKR, Themoteo R, Brentani H, Forlenza OV, De Paula VDJR. Neuronal-Glial Interaction in a Triple-Transgenic Mouse Model of Alzheimer's Disease: Gene Ontology and Lithium Pathways. Front Neurosci 2020; 14:579984. [PMID: 33335468 PMCID: PMC7737403 DOI: 10.3389/fnins.2020.579984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Neuronal-glial interactions are critical for brain homeostasis, and disruption of this process may lead to excessive glial activation and inadequate pro-inflammatory responses. Abnormalities in neuronal-glial interactions have been reported in the pathophysiology of Alzheimer’s disease (AD), where lithium has been shown to exert neuroprotective effects, including the up-regulation of cytoprotective proteins. In the present study, we characterize by Gene Ontology (GO) the signaling pathways related to neuronal-glial interactions in response to lithium in a triple-transgenic mouse model of AD (3×-TgAD). Mice were treated for 8 months with lithium carbonate (Li) supplemented to chow, using two dose ranges to yield subtherapeutic working concentrations (Li1, 1.0 g/kg; and Li2, 2.0 g/kg of chow), or with standard chow (Li0). The hippocampi were removed and analyzed by proteomics. A neuronal-glial interaction network was created by a systematic literature search, and the selected genes were submitted to STRING, a functional network to analyze protein interactions. Proteomics data and neuronal-glial interactomes were compared by GO using ClueGo (Cytoscape plugin) with p ≤ 0.05. The proportional effects of neuron-glia interactions were determined on three GO domains: (i) biological process; (ii) cellular component; and (iii) molecular function. The gene ontology of this enriched network of genes was further stratified according to lithium treatments, with statistically significant effects observed in the Li2 group (as compared to controls) for the GO domains biological process and cellular component. In the former, there was an even distribution of the interactions occurring at the following functions: “positive regulation of protein localization to membrane,” “regulation of protein localization to cell periphery,” “oligodendrocyte differentiation,” and “regulation of protein localization to plasma membrane.” In cellular component, interactions were also balanced for “myelin sheath” and “rough endoplasmic reticulum.” We conclude that neuronal-glial interactions are implicated in the neuroprotective response mediated by lithium in the hippocampus of AD-transgenic mice. The effect of lithium on homeostatic pathways mediated by the interaction between neurons and glial cells are implicated in membrane permeability, protein synthesis and DNA repair, which may be relevant for the survival of nerve cells amidst AD pathology.
Collapse
Affiliation(s)
- Nicole Kemberly R Rocha
- Laboratório de Psicobiologia (LIM23), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Themoteo
- Laboratorio de Neurociencias (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Helena Brentani
- Laboratório de Psicobiologia (LIM23), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Orestes V Forlenza
- Laboratorio de Neurociencias (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Vanessa De Jesus Rodrigues De Paula
- Laboratório de Psicobiologia (LIM23), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Laboratorio de Neurociencias (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Villela AD, Rodrigues-Junior VS, Pinto AFM, Falcão VCDA, Sánchez-Quitian ZA, Eichler P, Bizarro CV, Basso LA, Santos DS. Construction of Mycobacterium tuberculosis cdd knockout and evaluation of invasion and growth in macrophages. Mem Inst Oswaldo Cruz 2017; 112:785-789. [PMID: 29091140 PMCID: PMC5661903 DOI: 10.1590/0074-02760170105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/30/2017] [Indexed: 12/26/2022] Open
Abstract
Cytidine deaminase (MtCDA), encoded by cdd gene (Rv3315c), is the only enzyme identified in nucleotide biosynthesis pathway of Mycobacterium tuberculosis that is able to recycle cytidine and deoxycytidine. An M. tuberculosis knockout strain for cdd gene was obtained by allelic replacement. Evaluation of mRNA expression validated cdd deletion and showed the absence of polar effect. MudPIT LC-MS/MS data indicated thymidine phosphorylase expression was decreased in knockout and complemented strains. The cdd disruption does not affect M. tuberculosis growth both in Mid- dlebrook 7H9 and in RAW 264.7 cells, which indicates that cdd is not important for macrophage invasion and virulence.
Collapse
Affiliation(s)
- Anne Drumond Villela
- Pontifícia Universidade Católica do Rio Grande do Sul, Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Porto Alegre, RS, Brasil
| | - Valnês S Rodrigues-Junior
- Pontifícia Universidade Católica do Rio Grande do Sul, Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Porto Alegre, RS, Brasil
| | - Antônio Frederico Michel Pinto
- Pontifícia Universidade Católica do Rio Grande do Sul, Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Porto Alegre, RS, Brasil
| | - Virgínia Carla de Almeida Falcão
- Pontifícia Universidade Católica do Rio Grande do Sul, Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Porto Alegre, RS, Brasil.,Pontifícia Universidade Católica do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brasil
| | - Zilpa Adriana Sánchez-Quitian
- Pontifícia Universidade Católica do Rio Grande do Sul, Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Porto Alegre, RS, Brasil.,Pontifícia Universidade Católica do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brasil
| | - Paula Eichler
- Pontifícia Universidade Católica do Rio Grande do Sul, Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Porto Alegre, RS, Brasil
| | - Cristiano Valim Bizarro
- Pontifícia Universidade Católica do Rio Grande do Sul, Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Porto Alegre, RS, Brasil.,Pontifícia Universidade Católica do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brasil
| | - Luiz Augusto Basso
- Pontifícia Universidade Católica do Rio Grande do Sul, Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Porto Alegre, RS, Brasil.,Pontifícia Universidade Católica do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brasil.,Pontifícia Universidade Católica do Rio Grande do Sul, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Porto Alegre, RS, Brasil
| | - Diógenes Santiago Santos
- Pontifícia Universidade Católica do Rio Grande do Sul, Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Porto Alegre, RS, Brasil.,Pontifícia Universidade Católica do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brasil
| |
Collapse
|