1
|
Bällgren F, Hu Y, Li S, van de Beek L, Hammarlund-Udenaes M, Loryan I. Region-independent active CNS net uptake of marketed H +/OC antiporter system substrates. Front Cell Neurosci 2024; 18:1493644. [PMID: 39534684 PMCID: PMC11554538 DOI: 10.3389/fncel.2024.1493644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The pyrilamine-sensitive proton-coupled organic cation (H+/OC) antiporter system facilitates the active net uptake of several marketed organic cationic drugs across the blood-brain barrier (BBB). This rare phenomenon has garnered interest in the H+/OC antiporter system as a potential target for CNS drug delivery. However, analysis of pharmacovigilance data has uncovered a significant association between substrates of the H+/OC antiporter and neurotoxicity, particularly drug-induced seizures (DIS) and mood- and cognitive-related adverse events (MCAEs). This preclinical study aimed to elucidate the CNS regional disposition of H+/OC antiporter substrates at therapeutically relevant plasma concentrations to uncover potential pharmacokinetic mechanisms underlying DIS and MCAEs. Here, we investigated the neuropharmacokinetics of pyrilamine, diphenhydramine, bupropion, tramadol, oxycodone, and memantine. Using the Combinatory Mapping Approach for Regions of Interest (CMA-ROI), we characterized the transport of unbound drugs across the BBB in specific CNS regions, as well as the blood-spinal cord barrier (BSCB) and the blood-cerebrospinal fluid barrier (BCSFB). Our findings demonstrated active net uptake across the BBB and BSCB, with unbound ROI-to-plasma concentration ratio, Kp,uu,ROI, values consistently exceeding unity in all assessed regions. Despite minor regional differences, no significant distinctions were found when comparing the whole brain to investigated regions of interest, indicating region-independent active transport. Furthermore, we observed intracellular accumulation via lysosomal trapping for all studied drugs. These results provide new insights into the CNS regional neuropharmacokinetics of these drugs, suggesting that while the brain uptake is region-independent, the active transport mechanism enables high extracellular and intracellular drug concentrations, potentially contributing to neurotoxicity. This finding emphasizes the necessity of thorough neuropharmacokinetic evaluation and neurotoxicity profiling in the development of drugs that utilize this transport pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Irena Loryan
- Department of Pharmacy, Faculty of Pharmacy, Translational Pharmacokinetics-Pharmacodynamics Group, Translational Pharmacokinetics Pharmacodynamics (tPKPD), Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Wittern CI, Schröder S, Jensen O, Brockmöller J, Gebauer L. Comprehensive characterization of the OCT1 phenylalanine-244-alanine substitution reveals highly substrate-dependent effects on transporter function. J Biol Chem 2024; 300:107835. [PMID: 39342994 DOI: 10.1016/j.jbc.2024.107835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Organic cation transporters (OCTs) can transport structurally highly diverse substrates. The molecular basis of this extensive polyspecificity has been further elucidated by cryo-EM. Apparently, in addition to negatively charged amino acids, aromatic residues may contribute to substrate binding and substrate selectivity. In this study, we provide a comprehensive characterization of phenylalanine 244 in OCT1 function. We analyzed the uptake of 144 OCT1 substrates for the phenylalanine 244 to alanine substitution compared to WTOCT1. This substitution had highly substrate-specific effects ranging from transport reduced to 10% of WT activity up to 8-fold increased transport rates. Four percent of substrates showed strongly increased uptake (>200% of WT) whereas 39% showed strongly reduced transport (<50% of WT). Particularly with larger, more hydrophobic, and more aromatic substrates, the Phe244Ala substitution resulted in higher transport rates and lower inhibition of the transporter. In contrast, substrates with a lower molecular weight and less aromatic rings showed generally decreased uptake rates. A comparison of our data to available transport kinetic data demonstrates that generally, high-affinity low-capacity substrates show increased uptake by the Phe244Ala substitution, whereas low-affinity high-capacity substrates are characterized by reduced transport rates. Altogether, our study provides the first comprehensive characterization of the functional role of an aromatic amino acid within the substrate translocation pathway of OCT1. The pleiotropic function further highlights that phenylalanine 244 interacts in a highly specific manner with OCT1 substrates and inhibitors.
Collapse
Affiliation(s)
- Carla Isabel Wittern
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Sophie Schröder
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Ole Jensen
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Lukas Gebauer
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
3
|
Fardel O, Moreau A, Carteret J, Denizot C, Le Vée M, Parmentier Y. The Competitive Counterflow Assay for Identifying Drugs Transported by Solute Carriers: Principle, Applications, Challenges/Limits, and Perspectives. Eur J Drug Metab Pharmacokinet 2024; 49:527-539. [PMID: 38958896 DOI: 10.1007/s13318-024-00902-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
The identification of substrates for solute carriers (SLCs) handling drugs is an important challenge, owing to the major implication of these plasma membrane transporters in pharmacokinetics and drug-drug interactions. In this context, the competitive counterflow (CCF) assay has been proposed as a practical and less expensive approach than the reference functional uptake assays for discriminating SLC substrates and non-substrates. The present article was designed to summarize and discuss key-findings about the CCF assay, including its principle, applications, challenges and limits, and perspectives. The CCF assay is based on the decrease of the steady-state accumulation of a tracer substrate in SLC-positive cells, caused by candidate substrates. Reviewed data highlight the fact that the CCF assay has been used to identify substrates and non-substrates for organic cation transporters (OCTs), organic anion transporters (OATs), and organic anion transporting polypeptides (OATPs). The performance values of the CCF assay, calculated from available CCF study data compared with reference functional uptake assay data, are, however, rather mitigated, indicating that the predictability of the CCF method for assessing SLC-mediated transportability of drugs is currently not optimal. Further studies, notably aimed at standardizing the CCF assay and developing CCF-based high-throughput approaches, are therefore required in order to fully precise the interest and relevance of the CCF assay for identifying substrates and non-substrates of SLCs.
Collapse
Affiliation(s)
- Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35043, Rennes, France.
| | - Amélie Moreau
- Institut de R&D Servier, Paris-Saclay, 20 route 128, 91190, Gif-sur-Yvette, France
| | - Jennifer Carteret
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, 35043, Rennes, France
| | - Claire Denizot
- Institut de R&D Servier, Paris-Saclay, 20 route 128, 91190, Gif-sur-Yvette, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, 35043, Rennes, France
| | - Yannick Parmentier
- Institut de R&D Servier, Paris-Saclay, 20 route 128, 91190, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Vieira LS, Seguin RP, Xu L, Wang J. Interaction and Transport of Benzalkonium Chlorides by the Organic Cation and Multidrug and Toxin Extrusion Transporters. Drug Metab Dispos 2024; 52:312-321. [PMID: 38307853 PMCID: PMC10955720 DOI: 10.1124/dmd.123.001625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Humans are chronically exposed to benzalkonium chlorides (BACs) from environmental sources. The U.S. Food and Drug Administration (FDA) has recently called for additional BAC safety data, as these compounds are cytotoxic and have great potential for biochemical interactions. Biodistribution studies revealed that BACs extensively distribute to many tissues and accumulate at high levels, especially in the kidneys, but the underlying mechanisms are unclear. In this study, we characterized the interactions of BACs of varying alkyl chain length (C8 to C14) with the human organic cation transporters (hOCT1-3) and multidrug and toxin extrusion proteins (hMATE1/2K) with the goal to identify transporters that could be involved in BAC disposition. Using transporter-expressing cell lines, we showed that all BACs are inhibitors of hOCT1-3 and hMATE1/2K (IC50 ranging 0.83-25.8 μM). Further, the short-chain BACs (C8 and C10) were identified as substrates of these transporters. Interestingly, although BAC C8 displayed typical Michaelis-Menten kinetics, C10 demonstrated a more complex substrate-inhibition profile. Transwell studies with transfected Madin-Darby canine kidney cells revealed that intracellular accumulation of basally applied BAC C8 and C10 was substantially higher (8.2- and 3.7-fold, respectively) in hOCT2/hMATE1 double-transfected cells in comparison with vector-transfected cells, supporting a role of these transporters in mediating renal accumulation of these compounds in vivo. Together, our results suggest that BACs interact with hOCT1-3 and hMATE1/2K as both inhibitors and substrates and that these transporters may play important roles in tissue-specific accumulation and potential toxicity of short-chain BACs. Our findings have important implications for understanding human exposure and susceptibility to BACs due to environmental exposure. SIGNIFICANCE STATEMENT: Humans are systemically exposed to benzalkonium chlorides (BACs). These compounds broadly distribute through tissues, and their safety has been questioned by the FDA. Our results demonstrate that hOCT2 and hMATE1 contribute to the renal accumulation of BAC C8 and C10 and that hOCT1 and hOCT3 may be involved in the tissue distribution of these compounds. These findings can improve our understanding of BAC disposition and toxicology in humans, as their accumulation could lead to biochemical interactions and deleterious effects.
Collapse
Affiliation(s)
- Letícia Salvador Vieira
- Department of Pharmaceutics (L.S.V., J.W.), Department of Medicinal Chemistry (R.P.S., L.X.), and Department of Environmental and Occupational Health Sciences, School of Public Health (L.X.), University of Washington, Seattle, Washington
| | - Ryan P Seguin
- Department of Pharmaceutics (L.S.V., J.W.), Department of Medicinal Chemistry (R.P.S., L.X.), and Department of Environmental and Occupational Health Sciences, School of Public Health (L.X.), University of Washington, Seattle, Washington
| | - Libin Xu
- Department of Pharmaceutics (L.S.V., J.W.), Department of Medicinal Chemistry (R.P.S., L.X.), and Department of Environmental and Occupational Health Sciences, School of Public Health (L.X.), University of Washington, Seattle, Washington
| | - Joanne Wang
- Department of Pharmaceutics (L.S.V., J.W.), Department of Medicinal Chemistry (R.P.S., L.X.), and Department of Environmental and Occupational Health Sciences, School of Public Health (L.X.), University of Washington, Seattle, Washington
| |
Collapse
|
5
|
An H, Fang J, Wang M, Lin H, Sun Y, Hu B, He Z, Ge Z, Wei Y. Stereoselective study of fluoxetine and norfluoxetine across the blood-brain barrier mediated by organic cation transporter 1/3 in rats using an enantioselective UPLC-MS/MS method. Chirality 2023; 35:983-992. [PMID: 37464916 DOI: 10.1002/chir.23613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Fluoxetine (FLT) is a widely used antidepressant in clinical practice, which can be metabolized into active norfluoxetine (NFLT) in vivo. The stereoselectivity of FLT and NFLT enantiomers across the blood-brain barrier (BBB) is still to be clarified. In this study, accurate and reliable UPLC-MS/MS enantioselective analysis was established in rat plasma and brain. The characteristics of FLT and NFLT enantiomers across the BBB were studied by chemical knockout of rat transporters. We found that the dominant enantiomers of FLT and NFLT were S-FLT and R-NFLT, respectively, both in plasma and in brain. The FLT and NFLT enantiomers showed significant stereoselectivity across the BBB, and S-FLT and S-NFLT were the dominant configurations across the BBB. Chemical knockout of organic cation transporter 1 (OCT1) and OCT3 can affect the ratio of plasma FLT and NFLT enantiomers into the brain, suggesting that OCT1/3 is stereoselective for FLT and NFLT transport across the BBB.
Collapse
Affiliation(s)
- Hai An
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jinjun Fang
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Min Wang
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haiyang Lin
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yingying Sun
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bingying Hu
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhisheng He
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhen Ge
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yang Wei
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Pan Y, Zhang Y, Ouyang H, Gong T, Zhang Z, Cao X, Fu Y. Targeted Delivery of Celastrol via Chondroitin Sulfate Derived Hybrid Micelles for Alleviating Symptoms in Nonalcoholic Fatty Liver Disease. ACS APPLIED BIO MATERIALS 2023; 6:4877-4893. [PMID: 37890075 DOI: 10.1021/acsabm.3c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is caused by an accumulation of excess fat in the liver leading to oxidative stress and liver cell injury, as well as overproduction of inflammatory cytokines. CD44 has been identified as a potential therapeutic target in the development of NAFLD to nonalcoholic steatohepatitis. Here, chondroitin sulfate (CS) is selected to construct a CD44-targeted delivery system for the treatment of NAFLD. Specifically, two CS-derived amphiphilic materials including CS conjugated with either 4-aminophenylboronic acid pinacol ester (CS-PBE) or phenformin (CS-PFM) were synthesized, respectively. The presence of PBE moieties on CS-PBE rendered the vehicle with enhanced loading capacity and scavenging potential against reactive oxygen species, while the presence of guanidine moieties on CS-PFM enhanced the internalization of vehicles in the differentiated hepatocytes. Next, celastrol (CLT) was encapsulated in the hybrid micelle to afford CS-Hybrid/CLT, which demonstrates sufficient stability, enhanced cellular uptake efficiencies in differentiated HepG2 cells, and therapeutic potential to alleviate lipid accumulation in differentiated HepG2 cells. In a high-fat-diet-induced NAFLD rat model, CS-Hybrid/CLT micelles demonstrated the capacity to dramatically decrease hepatic lipid accumulation and free fatty acid levels with greatly improved pathologic liver histology and downregulated hepatic inflammation levels. These results suggest that CS-based amphiphilic micelles may offer a promising strategy to effectively deliver therapeutic cargos to the liver for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yi Pan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yunxiao Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hongling Ouyang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xi Cao
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Grade 3 Pharmaceutical Chemistry Laboratory of State Administrate of Traditional Chinese Medicine, Hefei 230022, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Maane M, Xiu F, Bellstedt P, Kullak-Ublick GA, Visentin M. Characterization of ligand-induced thermal stability of the human organic cation transporter 2 (OCT2). Front Pharmacol 2023; 14:1154213. [PMID: 37007010 PMCID: PMC10061065 DOI: 10.3389/fphar.2023.1154213] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction: The human organic cation transporter 2 (OCT2) is involved in the transport of endogenous quaternary amines and positively charged drugs across the basolateral membrane of proximal tubular cells. In the absence of a structure, the progress in unraveling the molecular basis of OCT2 substrate specificity is hampered by the unique complexity of OCT2 binding pocket, which seemingly contains multiple allosteric binding sites for different substrates. Here, we used the thermal shift assay (TSA) to better understand the thermodynamics governing OCT2 binding to different ligands.Methods: Molecular modelling and in silico docking of different ligands revealed two distinct binding sites at OCT2 outer part of the cleft. The predicted interactions were assessed by cis-inhibition assay using [3H]1-methyl-4-phenylpyridinium ([3H]MPP+) as a model substrate, or by measuring the uptake of radiolabeled ligands in intact cells. Crude membranes from HEK293 cells harboring human OCT2 (OCT2-HEK293) were solubilized in n-Dodecyl-β-D-Maltopyranoside (DDM), incubated with the ligand, heated over a temperature gradient, and then pelleted to remove heat-induced aggregates. The OCT2 in the supernatant was detected by western blot.Results: Among the compounds tested, cis-inhibition and TSA assays showed partly overlapping results. Gentamicin and methotrexate (MTX) did not inhibit [3H]MPP+ uptake but significantly increased the thermal stabilization of OCT2. Conversely, amiloride completely inhibited [3H]MPP+ uptake but did not affect OCT2 thermal stabilization. [3H]MTX intracellular level was significantly higher in OCT2-HEK293 cells than in wild type cells. The magnitude of the thermal shift (ΔTm) did not provide information on the binding. Ligands with similar affinity showed markedly different ΔTm, indicating different enthalpic and entropic contributions for similar binding affinities. The ΔTm positively correlated with ligand molecular weight/chemical complexity, which typically has high entropic costs, suggesting that large ΔTm reflect a larger displacement of bound water molecules.Discussion: In conclusion, TSA might represent a viable approach to expand our knowledge on OCT2 binding descriptors.
Collapse
Affiliation(s)
- Max Maane
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Fangrui Xiu
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peter Bellstedt
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- *Correspondence: Michele Visentin,
| |
Collapse
|
8
|
Redeker KEM, Jensen O, Gebauer L, Meyer-Tönnies MJ, Brockmöller J. Atypical Substrates of the Organic Cation Transporter 1. Biomolecules 2022; 12:1664. [PMID: 36359014 PMCID: PMC9687798 DOI: 10.3390/biom12111664] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 10/29/2023] Open
Abstract
The human organic cation transporter 1 (OCT1) is expressed in the liver and mediates hepatocellular uptake of organic cations. However, some studies have indicated that OCT1 could transport neutral or even anionic substrates. This capability is interesting concerning protein-substrate interactions and the clinical relevance of OCT1. To better understand the transport of neutral, anionic, or zwitterionic substrates, we used HEK293 cells overexpressing wild-type OCT1 and a variant in which we changed the putative substrate binding site (aspartate474) to a neutral amino acid. The uncharged drugs trimethoprim, lamivudine, and emtricitabine were good substrates of hOCT1. However, the uncharged drugs zalcitabine and lamotrigine, and the anionic levofloxacin, and prostaglandins E2 and F2α, were transported with lower activity. Finally, we could detect only extremely weak transport rates of acyclovir, ganciclovir, and stachydrine. Deleting aspartate474 had a similar transport-lowering effect on anionic substrates as on cationic substrates, indicating that aspartate474 might be relevant for intra-protein, rather than substrate-protein, interactions. Cellular uptake of the atypical substrates by the naturally occurring frequent variants OCT1*2 (methionine420del) and OCT1*3 (arginine61cysteine) was similarly reduced, as it is known for typical organic cations. Thus, to comprehensively understand the substrate spectrum and transport mechanisms of OCT1, one should also look at organic anions.
Collapse
Affiliation(s)
- Kyra-Elisa Maria Redeker
- Institute of Clinical Pharmacology, University Medical Centre Göttingen, 37075 Göttingen, Germany
| | - Ole Jensen
- Institute of Clinical Pharmacology, University Medical Centre Göttingen, 37075 Göttingen, Germany
| | - Lukas Gebauer
- Institute of Clinical Pharmacology, University Medical Centre Göttingen, 37075 Göttingen, Germany
| | - Marleen Julia Meyer-Tönnies
- Department of General Pharmacology, Institute of Pharmacology, Centre of Drug Absorption and Transport (C-DAT), University Medical Centre Greifswald, 17487 Greifswald, Germany
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Centre Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
9
|
Nies AT, Schaeffeler E, Schwab M. Hepatic solute carrier transporters and drug therapy: Regulation of expression and impact of genetic variation. Pharmacol Ther 2022; 238:108268. [DOI: 10.1016/j.pharmthera.2022.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
|
10
|
Schnegelberger RD, Steiert B, Sandoval PJ, Hagenbuch B. Using a competitive counterflow assay to identify novel cationic substrates of OATP1B1 and OATP1B3. Front Physiol 2022; 13:969363. [PMID: 36160869 PMCID: PMC9493024 DOI: 10.3389/fphys.2022.969363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/08/2022] [Indexed: 12/15/2022] Open
Abstract
OATP1B1 and OATP1B3 are two drug transporters that mediate the uptake of multiple endo- and xenobiotics, including many drugs, into human hepatocytes. Numerous inhibitors have been identified, and for some of them, it is not clear whether they are also substrates. Historically radiolabeled substrates or LC-MS/MS methods were needed to test for transported substrates, both of which can be limiting in time and money. However, the competitive counterflow (CCF) assay originally described for OCT2 and, more recently, for OCT1, OATP2B1, and OATP1A2 does not require radiolabeled substrates or LC-MS/MS methods and, as a result, is a more cost-effective approach to identifying substrates of multidrug transporters. We used a CCF assay based on the stimulated efflux of the common model substrate estradiol-17β-glucuronide (E17βG) and tested 30 compounds for OATP1B1- and OATP1B3-mediated transport. Chinese Hamster Ovary (CHO) cells stably expressing OATP1B1 or OATP1B3 were preloaded with 10 nM [3H]-estradiol-17β-glucuronide. After the addition of known substrates like unlabeled estradiol-17β-glucuronide, estrone-3-sulfate, bromosulfophthalein, protoporphyrin X, rifampicin, and taurocholate to the outside of the preloaded CHO cells, we observed efflux of [3H]-estradiol-17β-glucuronide due to exchange with the added compounds. Of the tested 30 compounds, some organic cation transporter substrates like diphenhydramine, metformin, and salbutamol did not induce [3H]-estradiol-17β-glucuronide efflux, indicating that the two OATPs do not transport them. However, 22 (for OATP1B1) and 16 (for OATP1B3) of the tested compounds resulted in [3H]-estradiol-17β-glucuronide efflux, suggesting that they are OATP substrates. Among these compounds, we further tested clarithromycin, indomethacin, reserpine, and verapamil and confirmed that they are substrates of the two OATPs. These results demonstrate that the substrate spectrum of the well-characterized organic anion transporting polypeptides includes several organic cations. Furthermore, as for other drug uptake transporters, the CCF assay is an easy-to-use screening tool to identify novel OATP substrates.
Collapse
|
11
|
Meyer MJ, Schreier PCF, Basaran M, Vlasova S, Seitz T, Brockmöller J, Zdrazil B, Tzvetkov MV. Amino acids in transmembrane helix 1 confer major functional differences between human and mouse orthologs of the polyspecific membrane transporter OCT1. J Biol Chem 2022; 298:101974. [PMID: 35469921 PMCID: PMC9130538 DOI: 10.1016/j.jbc.2022.101974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 01/04/2023] Open
Abstract
Organic cation transporter 1 (OCT1) is a membrane transporter that affects hepatic uptake of cationic and weakly basic drugs. OCT1 transports structurally highly diverse substrates. The mechanisms conferring this polyspecificity are unknown. Here, we analyzed differences in transport kinetics between human and mouse OCT1 orthologs to identify amino acids that contribute to the polyspecificity of OCT1. Following stable transfection of HEK293 cells, we observed more than twofold differences in the transport kinetics of 22 out of 28 tested substrates. We found that the β2-adrenergic drug fenoterol was transported with eightfold higher affinity but at ninefold lower capacity by human OCT1. In contrast, the anticholinergic drug trospium was transported with 11-fold higher affinity but at ninefold lower capacity by mouse Oct1. Using human–mouse chimeric constructs and site-directed mutagenesis, we identified nonconserved amino acids Cys36 and Phe32 as responsible for the species-specific differences in fenoterol and trospium uptake. Substitution of Cys36 (human) to Tyr36 (mouse) caused a reversal of the affinity and capacity of fenoterol but not trospium uptake. Substitution of Phe32 to Leu32 caused reversal of trospium but not fenoterol uptake kinetics. Comparison of the uptake of structurally similar β2-adrenergics and molecular docking analyses indicated the second phenol ring, 3.3 to 4.8 Å from the protonated amino group, as essential for the affinity for fenoterol conferred by Cys36. This is the first study to report single amino acids as determinants of OCT1 polyspecificity. Our findings suggest that structure–function data of OCT1 is not directly transferrable between substrates or species.
Collapse
Affiliation(s)
- Marleen J Meyer
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Pascale C F Schreier
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Mert Basaran
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Stefaniia Vlasova
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Tina Seitz
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Göttingen, Germany
| | - Barbara Zdrazil
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Mladen V Tzvetkov
- Department of General Pharmacology, Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
12
|
Ameijeiras Rodríguez C, Henriques SC, Sancho-Araiz A, Trocóniz IF, Almeida L, Silva NE. Untangling Absorption Mechanisms and Variability in Bioequivalence Studies Using Population Analysis. Pharm Res 2021; 38:2047-2063. [PMID: 34932170 DOI: 10.1007/s11095-021-03136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/04/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Both inter-individual (IIV) and inter-occasion (IOV) variabilities are observed in bioequivalence studies. High IOV may be a cause of problems on the demonstration of bioequivalence, despite strict measures are taken to control it. The objective of this study is to investigate further means of controlling IIV by optimizing study design of crossover studies. METHODS Data from 18 bioequivalence studies were used to develop population pharmacokinetics (popPK) models to characterize the absorption and disposition processes of 14 drugs, to estimate IOV for each drug substance and to evaluate possible correlations with biopharmaceutical properties of drug substances, classified in accordance to the Biopharmaceutics Drug Disposition Classification System (BDDCS). RESULTS Plasma-pharmacokinetics profiles for the 14 drugs analyzed were successfully described using popPK. The pharmacokinetic parameters that showed greater variability were first-order rate constant of absorption, duration of the zero-order absorption process, relative bioavailability and time of latency. ISCV% estimated for Cmax seems to correlate with the log-Dose-Number for Class 1, 2 and 3, despite no direct correlation was observed between popPK model residual variability (RUV) and ISCV%. Nevertheless, higher RUV estimates were observed for Class 2 drugs in comparison to Class 1 and 3. CONCLUSION Pharmacokinetic parameters related to drug absorption showed greater variability. Ingestion of the IMP along with 240 mL of water showed to standardize gastric emptying. Given the dependency between Cmax variability and dose-solubility ratio, for classes 2 and 4, ad libitum water intake may increase Cmax and AUC ISCV%. A water ingestion standardization until the expected Tmax of the drug is suggested.
Collapse
Affiliation(s)
| | | | - Aymara Sancho-Araiz
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Iñaki F Trocóniz
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Luis Almeida
- MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal.,BlueClinical, Porto, Portugal
| | - Nuno Elvas Silva
- BlueClinical, Porto, Portugal.,Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
13
|
Gebauer L, Arul Murugan N, Jensen O, Brockmöller J, Rafehi M. Molecular basis for stereoselective transport of fenoterol by the organic cation transporters 1 and 2. Biochem Pharmacol 2021; 197:114871. [PMID: 34902340 DOI: 10.1016/j.bcp.2021.114871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022]
Abstract
Stereoselectivity is important in many pharmacological processes but its impact on drug membrane transport is scarcely understood. Recent studies showed strong stereoselective effects in the cellular uptake of fenoterol by the organic cation transporters OCT1 and OCT2. To provide possible molecular explanations, homology models were developed and the putative interactions between fenoterol enantiomers and key residues explored in silico through computational docking, molecular dynamics simulations, and binding free energy calculations as well as in vitro by site-directed mutagenesis and cellular uptake assays. Our results suggest that the observed 1.9-fold higher maximum transport velocity (vmax) for (R,R)- over (S,S)-fenoterol in OCT1 is because the enantiomers bind to two distinct binding sites. Mutating PHE355 and ILE442, predicted to interact with (R,R)-fenoterol, reduced the vmax ratio to 1.5 and 1.3, respectively, and to 1.2 in combination. Mutating THR272, predicted to interact with (S,S)-fenoterol, slightly increased stereoselectivity (vmax ratio of 2.2), while F244A resulted in a 35-fold increase in vmax and a lower affinity (29-fold higher Km) for (S,S)-fenoterol. Both enantiomers of salbutamol, for which almost no stereoselectivity was observed, were predicted to occupy the same binding pocket as (R,R)-fenoterol. Unlike for OCT1, both fenoterol enantiomers bind in the same region in OCT2 but in different conformations. Mutating THR246, predicted to interact with (S,S)-fenoterol in OCT2, led to an 11-fold decreased vmax. Altogether, our mutagenesis results correlate relatively well with our computational predictions and thereby provide an experimentally-corroborated hypothesis for the strong and contrasting enantiopreference in fenoterol uptake by OCT1 and OCT2.
Collapse
Affiliation(s)
- Lukas Gebauer
- Institute of Clinical Pharmacology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - N Arul Murugan
- Department of Computer Science, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, S-10044 Stockholm, Sweden
| | - Ole Jensen
- Institute of Clinical Pharmacology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Muhammad Rafehi
- Institute of Clinical Pharmacology, University Medical Center Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|
14
|
Wang M, Sun Y, Hu B, He Z, Chen S, Qi D, An H, Wei Y. Organic Cation Transporters are Involved in Fluoxetine Transport Across the Blood-Brain Barrier in Vivo and in Vitro. Curr Drug Deliv 2021; 19:508-517. [PMID: 34238184 DOI: 10.2174/1567201818666210708122326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The research and development of drugs for the treatment of central nervous system diseases faces many challenges at present. One of the most important questions to be answered is, how does the drug cross the blood-brain barrier to get to the target site for pharmacological action. Fluoxetine is widely used in clinical antidepressant therapy. However, the mechanism by which fluoxetine passes through the BBB also remains unclear. Under physiological pH conditions, fluoxetine is an organic cation with a relatively small molecular weight (<500), which is in line with the substrate characteristics of organic cation transporters (OCTs). Therefore, this study aimed to investigate the interaction of fluoxetine with OCTs at the BBB and BBB-associated efflux transporters. This is of great significance for fluoxetine to better treat depression. Moreover, it can provide a theoretical basis for clinical drug combinations. METHODS In vitro BBB model was developed using human brain microvascular endothelial cells (hCMEC/D3), and the cellular accumulation was tested in the presence or absence of transporter inhibitors. In addition, an in vivo trial was performed in rats to investigate the effect of OCTs on the distribution of fluoxetine in the brain tissue. Fluoxetine concentration was determined by a validated UPLC-MS/MS method. RESULTS The results showed that amantadine (an OCT1/2 inhibitor) and prazosin (an OCT1/3 inhibitor) significantly decreased the cellular accumulation of fluoxetine (P <.001). Moreover, we found that N-methylnicotinamide (an OCT2 inhibitor) significantly inhibited the cellular uptake of 100 and 500 ng/mL fluoxetine (P <.01 and P <.05 respectively). In contrast, corticosterone (an OCT3 inhibitor) only significantly inhibited the cellular uptake of 1000 ng/mL fluoxetine (P <.05). The P-glycoprotein (P-gp) inhibitor, verapamil, and the multidrug resistance resistance-associated proteins (MRPs) inhibitor, MK571, significantly decreased the cellular uptake of fluoxetine. However, intracellular accumulation of fluoxetine was not significantly changed when fluoxetine was incubated with the breast cancer resistance protein (BCRP) inhibitor Ko143. Furthermore, in vivo experiments proved that corticosterone and prazosin significantly inhibited the brain-plasma ratio of fluoxetine at 5.5 h and 12 h, respectively. CONCLUSION OCTs might play a significant role in the transport of fluoxetine across the BBB. In addition, P-gp, BCRP, and MRPs seemed not to mediate the efflux transport of fluoxetine.
Collapse
Affiliation(s)
- Min Wang
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, China
| | - Yingying Sun
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, China
| | - Bingying Hu
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, China
| | - Zhisheng He
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, China
| | - Shanshan Chen
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, China
| | - Dake Qi
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, China
| | - Hai An
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, China
| | - Yang Wei
- Zhejiang Key Laboratory of Neuropsychiatric Drug Research, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), No.182, Tianmu Shan Road, 310013 Hangzhou, China
| |
Collapse
|
15
|
Meyer MJ, Tzvetkov MV. OCT1 Polyspecificity-Friend or Foe? Front Pharmacol 2021; 12:698153. [PMID: 34149437 PMCID: PMC8206551 DOI: 10.3389/fphar.2021.698153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marleen J Meyer
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| | - Mladen V Tzvetkov
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
16
|
Haberkorn B, Fromm MF, König J. Transport of Drugs and Endogenous Compounds Mediated by Human OCT1: Studies in Single- and Double-Transfected Cell Models. Front Pharmacol 2021; 12:662535. [PMID: 33967805 PMCID: PMC8100673 DOI: 10.3389/fphar.2021.662535] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Organic Cation Transporter 1 (OCT1, gene symbol: SLC22A1) is predominately expressed in human liver, localized in the basolateral membrane of hepatocytes and facilitates the uptake of endogenous compounds (e.g. serotonin, acetylcholine, thiamine), and widely prescribed drugs (e.g. metformin, fenoterol, morphine). Furthermore, exogenous compounds such as MPP+, ASP+ and Tetraethylammonium can be used as prototypic substrates to study the OCT1-mediated transport in vitro. Single-transfected cell lines recombinantly overexpressing OCT1 (e.g., HEK-OCT1) were established to study OCT1-mediated uptake and to evaluate transporter-mediated drug-drug interactions in vitro. Furthermore, double-transfected cell models simultaneously overexpressing basolaterally localized OCT1 together with an apically localized export protein have been established. Most of these cell models are based on polarized grown MDCK cells and can be used to analyze transcellular transport, mimicking the transport processes e.g. during the hepatobiliary elimination of drugs. Multidrug and toxin extrusion protein 1 (MATE1, gene symbol: SLC47A1) and the ATP-driven efflux pump P-glycoprotein (P-gp, gene symbol: ABCB1) are both expressed in the canalicular membrane of human hepatocytes and are described as transporters of organic cations. OCT1 and MATE1 have an overlapping substrate spectrum, indicating an important interplay of both transport proteins during the hepatobiliary elimination of drugs. Due to the important role of OCT1 for the transport of endogenous compounds and drugs, in vitro cell systems are important for the determination of the substrate spectrum of OCT1, the understanding of the molecular mechanisms of polarized transport, and the investigation of potential drug-drug interactions. Therefore, the aim of this review article is to summarize the current knowledge on cell systems recombinantly overexpressing human OCT1.
Collapse
Affiliation(s)
- Bastian Haberkorn
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
17
|
Zhou S, Zeng S, Shu Y. Drug-Drug Interactions at Organic Cation Transporter 1. Front Pharmacol 2021; 12:628705. [PMID: 33679412 PMCID: PMC7925875 DOI: 10.3389/fphar.2021.628705] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
The interaction between drugs and various transporters is one of the decisive factors that affect the pharmacokinetics and pharmacodynamics of drugs. The organic cation transporter 1 (OCT1) is a member of the Solute Carrier 22A (SLC22A) family that plays a vital role in the membrane transport of organic cations including endogenous substances and xenobiotics. This article mainly discusses the drug-drug interactions (DDIs) mediated by OCT1 and their clinical significance.
Collapse
Affiliation(s)
- Shiwei Zhou
- Key Laboratory of Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.,Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, MD, United States.,Department of Thyroid Surgery, The Second Xiangya Hospital, Central South University, Hunan, China
| | - Sujuan Zeng
- Key Laboratory of Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Yan Shu
- Key Laboratory of Oral Medicine, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China.,Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, MD, United States
| |
Collapse
|
18
|
Abstract
Inhibitors of Na+/Cl- dependent high affinity transporters for norepinephrine (NE), serotonin (5-HT), and/or dopamine (DA) represent frequently used drugs for treatment of psychological disorders such as depression, anxiety, obsessive-compulsive disorder, attention deficit hyperactivity disorder, and addiction. These transporters remove NE, 5-HT, and/or DA after neuronal excitation from the interstitial space close to the synapses. Thereby they terminate transmission and modulate neuronal behavioral circuits. Therapeutic failure and undesired central nervous system side effects of these drugs have been partially assigned to neurotransmitter removal by low affinity transport. Cloning and functional characterization of the polyspecific organic cation transporters OCT1 (SLC22A1), OCT2 (SLC22A2), OCT3 (SLC22A3) and the plasma membrane monoamine transporter PMAT (SLC29A4) revealed that every single transporter mediates low affinity uptake of NE, 5-HT, and DA. Whereas the organic transporters are all located in the blood brain barrier, OCT2, OCT3, and PMAT are expressed in neurons or in neurons and astrocytes within brain areas that are involved in behavioral regulation. Areas of expression include the dorsal raphe, medullary motoric nuclei, hypothalamic nuclei, and/or the nucleus accumbens. Current knowledge of the transport of monoamine neurotransmitters by the organic cation transporters, their interactions with psychotropic drugs, and their locations in the brain is reported in detail. In addition, animal experiments including behavior tests in wildtype and knockout animals are reported in which the impact of OCT2, OCT3, and/or PMAT on regulation of salt intake, depression, mood control, locomotion, and/or stress effect on addiction is suggested.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute of Anatomy and Cell Biology, University Würzburg, Würzburg, Germany.
| |
Collapse
|
19
|
Ruggiero MJ, Malhotra S, Fenton AW, Swint-Kruse L, Karanicolas J, Hagenbuch B. A clinically relevant polymorphism in the Na +/taurocholate cotransporting polypeptide (NTCP) occurs at a rheostat position. J Biol Chem 2020; 296:100047. [PMID: 33168628 PMCID: PMC7948949 DOI: 10.1074/jbc.ra120.014889] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/22/2020] [Accepted: 11/09/2020] [Indexed: 12/28/2022] Open
Abstract
Conventionally, most amino acid substitutions at “important” protein positions are expected to abolish function. However, in several soluble-globular proteins, we identified a class of nonconserved positions for which various substitutions produced progressive functional changes; we consider these evolutionary “rheostats”. Here, we report a strong rheostat position in the integral membrane protein, Na+/taurocholate (TCA) cotransporting polypeptide, at the site of a pharmacologically relevant polymorphism (S267F). Functional studies were performed for all 20 substitutions (S267X) with three substrates (TCA, estrone-3-sulfate, and rosuvastatin). The S267X set showed strong rheostatic effects on overall transport, and individual substitutions showed varied effects on transport kinetics (Km and Vmax) and substrate specificity. To assess protein stability, we measured surface expression and used the Rosetta software (https://www.rosettacommons.org) suite to model structure and stability changes of S267X. Although buried near the substrate-binding site, S267X substitutions were easily accommodated in the Na+/TCA cotransporting polypeptide structure model. Across the modest range of changes, calculated stabilities correlated with surface-expression differences, but neither parameter correlated with altered transport. Thus, substitutions at rheostat position 267 had wide-ranging effects on the phenotype of this integral membrane protein. We further propose that polymorphic positions in other proteins might be locations of rheostat positions.
Collapse
Affiliation(s)
- Melissa J Ruggiero
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shipra Malhotra
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Center for Computational Biology, University of Kansas, Lawrence, Kansas, USA
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - John Karanicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
20
|
Meyer MJ, Tuerkova A, Römer S, Wenzel C, Seitz T, Gaedcke J, Oswald S, Brockmöller J, Zdrazil B, Tzvetkov MV. Differences in Metformin and Thiamine Uptake between Human and Mouse Organic Cation Transporter 1: Structural Determinants and Potential Consequences for Intrahepatic Concentrations. Drug Metab Dispos 2020; 48:1380-1392. [PMID: 33037045 DOI: 10.1124/dmd.120.000170] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022] Open
Abstract
The most commonly used oral antidiabetic drug, metformin, is a substrate of the hepatic uptake transporter OCT1 (gene name SLC22A1). However, OCT1 deficiency leads to more pronounced reductions of metformin concentrations in mouse than in human liver. Similarly, the effects of OCT1 deficiency on the pharmacokinetics of thiamine were reported to differ between human and mouse. Here, we compared the uptake characteristics of metformin and thiamine between human and mouse OCT1 using stably transfected human embryonic kidney 293 cells. The affinity for metformin was 4.9-fold lower in human than in mouse OCT1, resulting in a 6.5-fold lower intrinsic clearance. Therefore, the estimated liver-to-blood partition coefficient is only 3.34 in human compared with 14.4 in mouse and may contribute to higher intrahepatic concentrations in mice. Similarly, the affinity for thiamine was 9.5-fold lower in human than in mouse OCT1. Using human-mouse chimeric OCT1, we showed that simultaneous substitution of transmembrane helices TMH2 and TMH3 resulted in the reversal of affinity for metformin. Using homology modeling, we suggest several explanations, of which a different interaction of Leu155 (human TMH2) compared with Val156 (mouse TMH2) with residues in TMH3 had the strongest experimental support. In conclusion, the contribution of human OCT1 to the cellular uptake of thiamine and especially of metformin may be much lower than that of mouse OCT1. This may lead to an overestimation of the effects of OCT1 on hepatic concentrations in humans when using mouse as a model. In addition, comparative analyses of human and mouse orthologs may help reveal mechanisms of OCT1 transport. SIGNIFICANCE STATEMENT: OCT1 is a major hepatic uptake transporter of metformin and thiamine, but this study reports strong differences in the affinity for both compounds between human and mouse OCT1. Consequently, intrahepatic metformin concentrations could be much higher in mice than in humans, impacting metformin actions and representing a strong limitation of using rodent animal models for predictions of OCT1-related pharmacokinetics and efficacy in humans. Furthermore, OCT1 transmembrane helices TMH2 and TMH3 were identified to confer the observed species-specific differences in metformin affinity.
Collapse
Affiliation(s)
- Marleen J Meyer
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany (M.J.M., S.R., C.W., S.O., M.V.T.); Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria (A.T., B.Z.); and Department of General, Visceral, and Pediatric Surgery (J.G.) and Institute of Clinical Pharmacology (T.S., J.B.), University Medical Center Göttingen, Göttingen, Germany
| | - Alzbeta Tuerkova
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany (M.J.M., S.R., C.W., S.O., M.V.T.); Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria (A.T., B.Z.); and Department of General, Visceral, and Pediatric Surgery (J.G.) and Institute of Clinical Pharmacology (T.S., J.B.), University Medical Center Göttingen, Göttingen, Germany
| | - Sarah Römer
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany (M.J.M., S.R., C.W., S.O., M.V.T.); Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria (A.T., B.Z.); and Department of General, Visceral, and Pediatric Surgery (J.G.) and Institute of Clinical Pharmacology (T.S., J.B.), University Medical Center Göttingen, Göttingen, Germany
| | - Christoph Wenzel
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany (M.J.M., S.R., C.W., S.O., M.V.T.); Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria (A.T., B.Z.); and Department of General, Visceral, and Pediatric Surgery (J.G.) and Institute of Clinical Pharmacology (T.S., J.B.), University Medical Center Göttingen, Göttingen, Germany
| | - Tina Seitz
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany (M.J.M., S.R., C.W., S.O., M.V.T.); Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria (A.T., B.Z.); and Department of General, Visceral, and Pediatric Surgery (J.G.) and Institute of Clinical Pharmacology (T.S., J.B.), University Medical Center Göttingen, Göttingen, Germany
| | - Jochen Gaedcke
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany (M.J.M., S.R., C.W., S.O., M.V.T.); Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria (A.T., B.Z.); and Department of General, Visceral, and Pediatric Surgery (J.G.) and Institute of Clinical Pharmacology (T.S., J.B.), University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Oswald
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany (M.J.M., S.R., C.W., S.O., M.V.T.); Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria (A.T., B.Z.); and Department of General, Visceral, and Pediatric Surgery (J.G.) and Institute of Clinical Pharmacology (T.S., J.B.), University Medical Center Göttingen, Göttingen, Germany
| | - Jürgen Brockmöller
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany (M.J.M., S.R., C.W., S.O., M.V.T.); Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria (A.T., B.Z.); and Department of General, Visceral, and Pediatric Surgery (J.G.) and Institute of Clinical Pharmacology (T.S., J.B.), University Medical Center Göttingen, Göttingen, Germany
| | - Barbara Zdrazil
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany (M.J.M., S.R., C.W., S.O., M.V.T.); Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria (A.T., B.Z.); and Department of General, Visceral, and Pediatric Surgery (J.G.) and Institute of Clinical Pharmacology (T.S., J.B.), University Medical Center Göttingen, Göttingen, Germany
| | - Mladen V Tzvetkov
- Institute of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine Greifswald, Greifswald, Germany (M.J.M., S.R., C.W., S.O., M.V.T.); Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria (A.T., B.Z.); and Department of General, Visceral, and Pediatric Surgery (J.G.) and Institute of Clinical Pharmacology (T.S., J.B.), University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
21
|
Abstract
The organic cation transporters (OCTs) OCT1, OCT2, OCT3, novel OCT (OCTN)1, OCTN2, multidrug and toxin exclusion (MATE)1, and MATE kidney-specific 2 are polyspecific transporters exhibiting broadly overlapping substrate selectivities. They transport organic cations, zwitterions, and some uncharged compounds and operate as facilitated diffusion systems and/or antiporters. OCTs are critically involved in intestinal absorption, hepatic uptake, and renal excretion of hydrophilic drugs. They modulate the distribution of endogenous compounds such as thiamine, L-carnitine, and neurotransmitters. Sites of expression and functions of OCTs have important impact on energy metabolism, pharmacokinetics, and toxicity of drugs, and on drug-drug interactions. In this work, an overview about the human OCTs is presented. Functional properties of human OCTs, including identified substrates and inhibitors of the individual transporters, are described. Sites of expression are compiled, and data on regulation of OCTs are presented. In addition, genetic variations of OCTs are listed, and data on their impact on transport, drug treatment, and diseases are reported. Moreover, recent data are summarized that indicate complex drug-drug interaction at OCTs, such as allosteric high-affinity inhibition of transport and substrate dependence of inhibitor efficacies. A hypothesis about the molecular mechanism of polyspecific substrate recognition by OCTs is presented that is based on functional studies and mutagenesis experiments in OCT1 and OCT2. This hypothesis provides a framework to imagine how observed complex drug-drug interactions at OCTs arise. Finally, preclinical in vitro tests that are performed by pharmaceutical companies to identify interaction of novel drugs with OCTs are discussed. Optimized experimental procedures are proposed that allow a gapless detection of inhibitory and transported drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute of Anatomy and Cell Biology and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
22
|
Baidya ATK, Ghosh K, Amin SA, Adhikari N, Nirmal J, Jha T, Gayen S. In silico modelling, identification of crucial molecular fingerprints, and prediction of new possible substrates of human organic cationic transporters 1 and 2. NEW J CHEM 2020. [DOI: 10.1039/c9nj05825g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cation membrane transporters are crucial to regulate movement of foreign molecules within the body. The present study found out structural fingerprints within molecules to be recognized as substrate/non-substrate against these transporters.
Collapse
Affiliation(s)
- Anurag T. K. Baidya
- Laboratory of Drug Design and Discovery
- Department of Pharmaceutical Sciences
- Dr H. S. Gour University
- Sagar
- India
| | - Kalyan Ghosh
- Laboratory of Drug Design and Discovery
- Department of Pharmaceutical Sciences
- Dr H. S. Gour University
- Sagar
- India
| | - Sk. Abdul Amin
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata
| | - Nilanjan Adhikari
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata
| | - Jayabalan Nirmal
- Translational Pharmaceutics Laboratory
- Department of Pharmacy
- BITS-Pilani
- Hyderabad Campus
- Hyderabad 500078
| | - Tarun Jha
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery
- Department of Pharmaceutical Sciences
- Dr H. S. Gour University
- Sagar
- India
| |
Collapse
|
23
|
Sandoval PJ, Morales M, Secomb TW, Wright SH. Kinetic basis of metformin-MPP interactions with organic cation transporter OCT2. Am J Physiol Renal Physiol 2019; 317:F720-F734. [PMID: 31313952 DOI: 10.1152/ajprenal.00152.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Organic cation transporter 2 (OCT2) clears the blood of cationic drugs. Efforts to understand OCT2 selectivity as a means to predict the potential of new molecular entities (NMEs) to produce unwanted drug-drug interactions typically assess the influence of the NMEs on inhibition of transport. However, the identity of the substrate used to assess transport activity can influence the quantitative profile of inhibition. Metformin and 1-methyl-4-phenylpyridinium (MPP), in particular, display markedly different inhibitory profiles, with IC50 values for inhibition of MPP transport often being more than fivefold greater than IC50 values for the inhibition of metformin transport by the same compound, suggesting that interaction of metformin and MPP with OCT2 cannot be restricted to competition for a single binding site. Here, we determined the kinetic basis for the mutual inhibitory interaction of metformin and MPP with OCT2 expressed in Chinese hamster ovary cells. Although metformin did produce simple competitive inhibition of MPP transport, MPP was a mixed-type inhibitor of metformin transport, decreasing the maximum rate of mediated substrate transport and increasing the apparent Michaelis constant (Ktapp) for OCT2-mediated metformin transport. Furthermore, whereas the IC50 value for metformin's inhibition of MPP transport did not differ from the Ktapp value for metformin transport, the IC50 value for MPP's inhibition of metformin transport was less than its Ktapp value for transport. The simplest model to account for these observations required the influence of a distinct inhibitory site for MPP that, when occupied, decreases the translocation of substrate. These observations underscore the complexity of ligand interaction with OCT2 and argue for use of multiple substrates to obtain the needed kinetic assessment of NME interactions with OCT2.
Collapse
Affiliation(s)
| | - Mark Morales
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Stephen H Wright
- Department of Physiology, University of Arizona, Tucson, Arizona
| |
Collapse
|
24
|
Türková A, Zdrazil B. Current Advances in Studying Clinically Relevant Transporters of the Solute Carrier (SLC) Family by Connecting Computational Modeling and Data Science. Comput Struct Biotechnol J 2019; 17:390-405. [PMID: 30976382 PMCID: PMC6438991 DOI: 10.1016/j.csbj.2019.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/18/2023] Open
Abstract
Organic anion and cation transporting proteins (OATs, OATPs, and OCTs), as well as the Multidrug and Toxin Extrusion (MATE) transporters of the Solute Carrier (SLC) family are playing a pivotal role in the discovery and development of new drugs due to their involvement in drug disposition, drug-drug interactions, adverse drug effects and related toxicity. Computational methods to understand and predict clinically relevant transporter interactions can provide useful guidance at early stages in drug discovery and design, especially if they include contemporary data science approaches. In this review, we summarize the current state-of-the-art of computational approaches for exploring ligand interactions and selectivity for these drug (uptake) transporters. The computational methods discussed here by highlighting interesting examples from the current literature are ranging from semiautomatic data mining and integration, to ligand-based methods (such as quantitative structure-activity relationships, and combinatorial pharmacophore modeling), and finally structure-based methods (such as comparative modeling, molecular docking, and molecular dynamics simulations). We are focusing on promising computational techniques such as fold-recognition methods, proteochemometric modeling or techniques for enhanced sampling of protein conformations used in the context of these ADMET-relevant SLC transporters with a special focus on methods useful for studying ligand selectivity.
Collapse
Affiliation(s)
- Alžběta Türková
- Department of Pharmaceutical Chemistry, Divison of Drug Design and Medicinal Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Barbara Zdrazil
- Department of Pharmaceutical Chemistry, Divison of Drug Design and Medicinal Chemistry, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|