1
|
Yang Y, Yao Z, Sun Y, Nie Y, Zhang Y, Li Z, Luo Z, Zhang W, Wang X, Du Y, Zhang W, Qin L, Sang H, Lai Y. 3D-printed manganese dioxide incorporated scaffold promotes osteogenic-angiogenic coupling for refractory bone defect by remodeling osteo-regenerative microenvironment. Bioact Mater 2025; 44:354-370. [PMID: 39539517 PMCID: PMC11558641 DOI: 10.1016/j.bioactmat.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The treatment of refractory bone defects is a major clinical challenge, especially in steroid-associated osteonecrosis (SAON), which is characterized by insufficient osteogenesis and angiogenesis. Herin, a microenvironment responsiveness scaffold composed of poly-L-lactide (PLLA), and manganese dioxide (MnO2) nanoparticles is designed to enhance bone regeneration by scavenging endogenous reactive oxygen species (ROS) and modulating immune microenvironment in situ. A catalase-like catalytic reaction between MnO2 and endogenous hydrogen peroxide (H2O2) generated at the bone defect area, which typically becomes acidic and ROS-rich, triggers on-demand release of oxygen and Mn2+, significantly ameliorating inflammatory response by promoting M2-type polarization of macrophages, reprograming osteoimmune microenvironment conducive to angiogenesis and osteogenesis. Furthermore, the fundamental mechanisms were explored through transcriptome sequencing analysis, revealing that PLLA/MnO2 scaffolds (PMns) promote osteogenic differentiation by upregulating the TGF-β/Smad signaling pathway in human bone marrow mesenchymal stem cells (hBMSCs). Overall, the PMns exhibit superior immunomodulatory, excellent osteogenic-angiogenic properties and promising candidates as bone graft substitutes for therapy clinical refractory bone defects.
Collapse
Affiliation(s)
- Yipei Yang
- Department of Orthopedic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510500, China
| | - Zhenyu Yao
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuanyi Sun
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yangyi Nie
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yuanchi Zhang
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ziyue Li
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, 510500, China
| | - Zhiheng Luo
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenjing Zhang
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiao Wang
- Department of Orthopedic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510500, China
| | - Yuhan Du
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wei Zhang
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ling Qin
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
- CAS-HK Joint Lab of Biomaterials, Shenzhen, 518055, China
| | - Hongxun Sang
- Department of Orthopedic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510500, China
| | - Yuxiao Lai
- Centre for Translational Medicine Research & Development, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS-HK Joint Lab of Biomaterials, Shenzhen, 518055, China
| |
Collapse
|
2
|
Xu Z, Zhang X, Shan Q, Zhu W, Jiang S, Li R, Wu X, Huo M, Ying B, Chen C, Chen X, Zhang K, Chen W, Chen J. Fluorocarbon-Functionalized Polymerization-Induced Self-Assembly Nanoparticles Alleviate Hypoxia to Enhance Sonodynamic Cancer Therapy. Adv Healthc Mater 2025; 14:e2403251. [PMID: 39487634 DOI: 10.1002/adhm.202403251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2024] [Revised: 10/11/2024] [Indexed: 11/04/2024]
Abstract
Sonodynamic therapy (SDT) is an ultrasound-based, noninvasive cancer treatment that targets tumor cells by triggering reactive oxygen species production. However, the limited accumulation of sonosensitizers and the insufficient supply of O2 to the hypoxic environment at the tumor site greatly limit the effectiveness of SDT. To address these issues, positively charged porphyrin-containing nanoparticles (NPs) from self-assembling of fluorocarbon/polyethylene glycol amphiphilic block copolymer, which is synthesized through reversible addition-fragmentation chain transfer polymerization, are constructed. The NPs with fluorocarbon core and positively charged hydrophilic shells not only stabilize the sonosensitizer and improve its cellular uptake, but also act as an O2 carrier alleviating the hypoxic tumor environment. In vitro and in vivo experiments demonstrate that the NPs effectively deliver O2 to the tumor and supply sufficient O2 to Renca cells after ultrasound treatment. Consequently, the NPs inhibit hypoxia-induced resistance to SDT and significantly produce reactive oxygen species by activated porphyrin moieties, inducing apoptosis in cancer cells. These oxygen-enhanced sonosensitizer NPs hold promise for cancer therapies such as photodynamic therapy, radiotherapy, and chemotherapy by overcoming hypoxia-induced resistance.
Collapse
Affiliation(s)
- Zhikang Xu
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xuanxuan Zhang
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Qianyun Shan
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Wei Zhu
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Shangxu Jiang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Rumei Li
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xiaojin Wu
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Meng Huo
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Bin Ying
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Chen Chen
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xiaoting Chen
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Kai Zhang
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Jian Chen
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| |
Collapse
|
3
|
Zhao X, Fan Z, Zhou J, Li Y, Zhu W, Su S, Xia J. An alternative way to break the matrix barrier: an experimental study of a LIFU-mediated, visualizable targeted nanoparticle synergistic amplification for the treatment of malignant fibroblasts. Front Bioeng Biotechnol 2024; 12:1486369. [PMID: 39564102 PMCID: PMC11574418 DOI: 10.3389/fbioe.2024.1486369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
Malignant fibroblasts (MFs) are widely present in various diseases and are characterized by connective tissue proliferation; these cells act as a physical barrier that severely limits drug delivery and affects disease outcomes. Based on this, we constructed the smart, integrated, theranostic, targeted lipid nanoprobe HMME-RG3@PFH to overcome the bottleneck in the early diagnosis and treatment of MF-related diseases. The protein glucose transporter protein 1 (GLUT-1) is overexpressed on MFs, and its ideal substrate, ginsenoside RG3 (RG3), significantly enhances the targeted uptake of HMME-RG3@PFH by MFs in a hypoxic environment and endows the nanomaterial with stealthiness to prolong its circulation. Perfluorohexane (PFH), a substance that can undergo phase change, was encapsulated in the lipid core and vaporized for ultrasound-enhanced imaging under low-intensity focused ultrasound (LIFU) irradiation. Moreover, hematoporphyrin monomethyl ether (HMME) was loaded into the lipid bilayer for photoacoustic molecular imaging and sonodynamic therapy (SDT) of MFs under the combined effects of LIFU. Additionally, HMME-RG3@PFH instantaneously burst during visualization to promote targeted drug delivery. In addition, the increased number of exposed RG3 fragments can regulate the MFs to enter a quiescent state. Overall, this nanoplatform ultimately achieves dual-modal imaging with targeted and precise drug release for visualization and synergistic amplification therapy, providing a new possibility for the early diagnosis and precise treatment of MF-related diseases.
Collapse
Affiliation(s)
- Xiangzhi Zhao
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhengchao Fan
- Department of Ultrasound, Sichuan Provincial Second Hospital of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junan Zhou
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Li
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Weiwei Zhu
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Song Su
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jizhu Xia
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
McHale AP, Nomikou N. Nanotechnology-based platforms for effective and versatile sonodynamic therapy in cancer treatment. Nanomedicine (Lond) 2024; 19:2251-2255. [PMID: 39404050 PMCID: PMC11488090 DOI: 10.1080/17435889.2024.2396274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 10/20/2024] Open
Affiliation(s)
| | - Nikolitsa Nomikou
- Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, UK
| |
Collapse
|
5
|
Qiao Y, Tang X, Qiuju X, Zhang G. Enzyme-loaded manganese-porphyrin metal-organic nanoframeworks for oxygen-evolving photodynamic therapy of hypoxic cells. Heliyon 2024; 10:e33902. [PMID: 39071555 PMCID: PMC11282992 DOI: 10.1016/j.heliyon.2024.e33902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Photodynamic therapy (PDT) is attracting great attention for cancer treatments, while its therapeutic efficacy is limited by unsatisfactory photosensitizers and hypoxic tumor microenvironment (TME). To address these problems, we have developed catalase-loaded manganese-porphyrin frameworks (CAT@MnPFs) for catalytically-assisted PDT of cancer cells. CAT@MnPFs were constructed by the assembly of Mn2+ ions and PpIX into MnPFs and the subsequent loading of catalase. Under 650 nm light irradiation, the porphyrin (Protoporphyrin IX) within the structure of CAT@MnPFs can convert oxygen (O2) into singlet oxygen (1O2), showing the photodynamic effect. Importantly, the loaded catalase can decompose hydrogen peroxide (H2O2) into O2 with a huge elevation of O2 level (13.22 mg L-1) in 600 s, thus promoting 1O2 generation via PDT. As a result, CAT@MnPFs combined with 650 nm light can effectively ablate cancer cells due to the catalase-assisted oxygen-evolving PDT, showing a high therapeutic efficacy. Meanwhile, after the incubation with CAT@MnPFs, unobvious damage can be found in normal and red blood cells. Thus, the obtained CAT@MnPFs integrate the advantage of photosensitizers and catalase for oxygen-evolving PDT, which can provide some insight for treating hypoxic cells.
Collapse
Affiliation(s)
- Yang Qiao
- Department of Hematology and Oncology, Wenzhou Medical University affiliated Huangyan Hospital, The First People's Hospital of Taizhou, People's Republic of China
| | - Xiaowan Tang
- Department of Hematology and Oncology, Wenzhou Medical University affiliated Huangyan Hospital, The First People's Hospital of Taizhou, People's Republic of China
| | - Xu Qiuju
- The Third Affiliated Hospital of Harbin Medical University, 150 Haping Rd, Harbin, Heilongjiang Province, People's Republic of China
| | - Guangwen Zhang
- Department of Hematology and Oncology, Wenzhou Medical University affiliated Huangyan Hospital, The First People's Hospital of Taizhou, People's Republic of China
| |
Collapse
|
6
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
7
|
Zhang X, Yang Y, Yuan Y, Yue S, Zhao X, Yue Q, Zeng Q, Guo Q, Zhou X. Hyperpolarized 129Xe Atoms Sense the Presence of Drug Molecules in Nanohosts Revealed by Magnetic Resonance Imaging. Anal Chem 2024; 96:10152-10160. [PMID: 38818902 DOI: 10.1021/acs.analchem.3c05573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/01/2024]
Abstract
Assessing the effectiveness of nanomedicines involves evaluating the drug content at the target site. Currently, most research focuses on monitoring the signal responses from loaded drugs, neglecting the changes caused by the nanohosts. Here, we propose a strategy to quantitatively evaluate the content of loaded drugs by detecting the signal variations resulting from the alterations in the microenvironment of the nanohosts. Specifically, hyperpolarized (HP) 129Xe atoms are employed as probes to sense the nanohosts' environment and generate a specific magnetic resonance (MR) signal that indicates their accessibility. The introduction of drugs reduces the available space in the nanohosts, leading to a crowded microenvironment that hinders the access of the 129Xe atoms. By employing 129Xe atoms as a signal source to detect the alterations in the microenvironment, we constructed a three-dimensional (3D) map that indicated the concentration of the nanohosts and established a linear relationship to quantitatively measure the drug content within the nanohosts based on the corresponding MR signals. Using the developed strategy, we successfully quantified the uptake of the nanohosts and drugs in living cells through HP 129Xe MR imaging. Overall, the proposed HP 129Xe atom-sensing approach can be used to monitor alterations in the microenvironment of nanohosts induced by loaded drugs and provides a new perspective for the quantitative evaluation of drug presence in various nanomedicines.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqi Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaping Yuan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Wuhan 430071, China
| | - Sen Yue
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuchao Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Wuhan 430071, China
| | - Quer Yue
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Wuhan 430071, China
| | - Qingbin Zeng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Wuhan 430071, China
| | - Qianni Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Wuhan 430071, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Ji F, Shi C, Shu Z, Li Z. Nanomaterials Enhance Pyroptosis-Based Tumor Immunotherapy. Int J Nanomedicine 2024; 19:5545-5579. [PMID: 38882539 PMCID: PMC11178094 DOI: 10.2147/ijn.s457309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Pyroptosis, a pro-inflammatory and lytic programmed cell death pathway, possesses great potential for antitumor immunotherapy. By releasing cellular contents and a large number of pro-inflammatory factors, tumor cell pyroptosis can promote dendritic cell maturation, increase the intratumoral infiltration of cytotoxic T cells and natural killer cells, and reduce the number of immunosuppressive cells within the tumor. However, the efficient induction of pyroptosis and prevention of damage to normal tissues or cells is an urgent concern to be addressed. Recently, a wide variety of nanoplatforms have been designed to precisely trigger pyroptosis and activate the antitumor immune responses. This review provides an update on the progress in nanotechnology for enhancing pyroptosis-based tumor immunotherapy. Nanomaterials have shown great advantages in triggering pyroptosis by delivering pyroptosis initiators to tumors, increasing oxidative stress in tumor cells, and inducing intracellular osmotic pressure changes or ion imbalances. In addition, the challenges and future perspectives in this field are proposed to advance the clinical translation of pyroptosis-inducing nanomedicines.
Collapse
Affiliation(s)
- Fujian Ji
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Chunyu Shi
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Zhenbo Shu
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Zhongmin Li
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| |
Collapse
|
9
|
Li M, Liu Z, Tang J, Cheng L, Xue Y, Liu Y, Liu J. Facile Synthesis of a Multifunctional Porous Organic Polymer Nanosonosensitizer (mHM@HMME) for Enhanced Cancer Sonodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28104-28117. [PMID: 38769350 DOI: 10.1021/acsami.4c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/22/2024]
Abstract
Sonodynamic therapy (SDT), which involves the activation of sonosensitizers to generate cytotoxic reactive oxygen species under ultrasound irradiation, is a promising noninvasive modality for cancer treatment. However, the clinical translational application of SDT is impeded by the lack of efficient sonosensitizers, the inefficient accumulation of sonosensitizers at tumor sites, and the complicated immunosuppressive tumor microenvironment. Herein, we developed a facilely synthesized multifunctional porous organic polymer nanosonosensitizer (mHM@HMME) for enhanced SDT. Specifically, mHM@HMME nanosonosensitizers were prepared by incorporating chemotherapeutic mitoxantrone into the one-step synthesis process of disulfide bond containing porous organic polymers, followed by loading with organic sonosensitizer (HMME) and camouflaging with a cancer cell membrane. Due to the cancer cell membrane camouflage, this multifunctional mHM@HMME nanosonosensitizer showed prolonged blood circulation and tumor targeting aggregation. Under ultrasound irradiation, the mHM@HMME nanosonosensitizer exhibited a satisfactory SDT performance both in vitro and in vivo. Moreover, the potent SDT combined with glutathione-responsive drug release in tumor cells induced robust immunogenic cell death to enhance the antitumor effect of SDT in turn. Overall, this facilely synthesized multifunctional mHM@HMME nanosonosensitizer shows great potential application in enhanced SDT.
Collapse
Affiliation(s)
- Meiting Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| | - Zhuoyin Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| | - Junjie Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| | - LiLi Cheng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| | - Yifan Xue
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| | - Yadong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| | - Jie Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, People's Republic of China
| |
Collapse
|
10
|
Huang Y, Liu X, Zhu J, Chen Z, Yu L, Huang X, Dong C, Li J, Zhou H, Yang Y, Tan W. Enzyme Core Spherical Nucleic Acid That Enables Enhanced Cuproptosis and Antitumor Immune Response through Alleviating Tumor Hypoxia. J Am Chem Soc 2024; 146:13805-13816. [PMID: 38552185 DOI: 10.1021/jacs.3c14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/23/2024]
Abstract
Cuproptosis, a copper-dependent cell death process, has been confirmed to further activate the immune response and mediate the immune resistance. However, hypoxic tumor microenvironment hampers cuproptosis sensitivity and suppresses the body's antitumor immune response. Herein, we have successfully immobilized and functionalized catalase (CAT) with long single-stranded DNA containing polyvalent CpG sequences through rolling circle amplification (RCA) techniques, obtaining an enzyme-cored spherical nucleic acid nanoplatform (CAT-ecSNA-Cu) to deliver copper ions for cuproptosis. The presence of long-stranded DNA-protected CAT enhances mitochondrial respiration by catalyzing the conversion of H2O2 to O2, thereby sensitizing cuproptosis. Meanwhile, increased tumor oxygenation suppresses the expression of the hypoxia-inducible factor-1 (HIF-1) protein, resulting in the alleviation of the immunosuppressive tumor microenvironment. Of note, cuproptosis induces immunogenic cell death (ICD), which facilitates dendritic cell (DC) maturation and enhances antigen presentation through polyCpG-supported Toll-like receptor 9 (TLR9) activation. Furthermore, cuproptosis-induced PD-L1 upregulation in tumor cells complements checkpoint blockers (αPD-L1), enhancing antitumor immunity. The strategy of enhancing cuproptosis-mediated antitumor immune responses by alleviating hypoxia effectively promotes the activation and proliferation of effector T cells, ultimately leading to long-term immunity against cancer.
Collapse
Affiliation(s)
- Yuting Huang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Xueliang Liu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Jiawei Zhu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Zhejie Chen
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Lu Yu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Xin Huang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Chuhuang Dong
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Jiabei Li
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Huayuan Zhou
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200240, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200240, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
11
|
Wang N, Zhang Q, Wang Z, Liu Y, Yang S, Zhao X, Peng J. A chemo/chemodynamic nanoparticle based on hyaluronic acid induces ferroptosis and apoptosis for triple-negative breast cancer therapy. Carbohydr Polym 2024; 329:121795. [PMID: 38286559 DOI: 10.1016/j.carbpol.2024.121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
Triple-negative breast cancer (TNBC) poses a serious threat to women's life and health due to its high malignancy, strong invasiveness, and propensity for early recurrence and metastasis. Therefore, there is an urgent need to develop a highly effective and low-toxic TNBC treatment scheme to enhance the anti-cancer efficacy and prolong the survival of patients. In this work, we designed and synthesized a chemodynamic therapy (CDT) agent (HA-Fc-Mal). The chemo/chemodynamic (CT/CDT) nanoparticle (HCM@DOX) based on hyaluronic acid induces ferroptosis and apoptotic for TNBC therapy was constructed via self-assembled of HA-Fc-Mal and doxorubicin (DOX). HCM@DOX orderly realized the TNBC targeting, controlled DOX release, GSH depletion and induce ROS erupt. In vivo and in vitro experiments confirmed that HCM@DOX inhibited the growth of 4 T1 tumors through ferroptosis and apoptosis, and the tumor inhibition rate was as high as 81.87 %. In addition, HCM@DOX significantly inhibited lung metastasis and exhibited excellent biosafety. Overall, our findings offer a new strategy for TNBC therapy using a CT/CDT nanoparticle that induces ferroptosis and apoptosis.
Collapse
Affiliation(s)
- Ning Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Qiyu Zhang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhuoya Wang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yichao Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Sen Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xuerong Zhao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
12
|
Lee S, Yoo J, Bae G, Thangam R, Heo J, Park JY, Choi H, Kim C, An J, Kim J, Mun KR, Shin S, Zhang K, Zhao P, Kim Y, Kang N, Han SB, Kim D, Yoon J, Kang M, Kim J, Yang L, Karamikamkar S, Kim J, Zhu Y, Najafabadi AH, Song G, Kim DH, Lee KB, Oh SJ, Jung HD, Song HC, Jang WY, Bian L, Chu Z, Yoon J, Kim JS, Zhang YS, Kim Y, Jang HS, Kim S, Kang H. Photonic control of ligand nanospacing in self-assembly regulates stem cell fate. Bioact Mater 2024; 34:164-180. [PMID: 38343773 PMCID: PMC10859239 DOI: 10.1016/j.bioactmat.2023.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 10/28/2024] Open
Abstract
Extracellular matrix (ECM) undergoes dynamic inflation that dynamically changes ligand nanospacing but has not been explored. Here we utilize ECM-mimicking photocontrolled supramolecular ligand-tunable Azo+ self-assembly composed of azobenzene derivatives (Azo+) stacked via cation-π interactions and stabilized with RGD ligand-bearing poly(acrylic acid). Near-infrared-upconverted-ultraviolet light induces cis-Azo+-mediated inflation that suppresses cation-π interactions, thereby inflating liganded self-assembly. This inflation increases nanospacing of "closely nanospaced" ligands from 1.8 nm to 2.6 nm and the surface area of liganded self-assembly that facilitate stem cell adhesion, mechanosensing, and differentiation both in vitro and in vivo, including the release of loaded molecules by destabilizing water bridges and hydrogen bonds between the Azo+ molecules and loaded molecules. Conversely, visible light induces trans-Azo+ formation that facilitates cation-π interactions, thereby deflating self-assembly with "closely nanospaced" ligands that inhibits stem cell adhesion, mechanosensing, and differentiation. In stark contrast, when ligand nanospacing increases from 8.7 nm to 12.2 nm via the inflation of self-assembly, the surface area of "distantly nanospaced" ligands increases, thereby suppressing stem cell adhesion, mechanosensing, and differentiation. Long-term in vivo stability of self-assembly via real-time tracking and upconversion are verified. This tuning of ligand nanospacing can unravel dynamic ligand-cell interactions for stem cell-regulated tissue regeneration.
Collapse
Affiliation(s)
- Sungkyu Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jounghyun Yoo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Gunhyu Bae
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jeongyun Heo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jung Yeon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Honghwan Choi
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Chowon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jusung An
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jungryun Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Kwang Rok Mun
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seungyong Shin
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Yuri Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Nayeon Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dahee Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jiwon Yoon
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Misun Kang
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jihwan Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | | | - Jinjoo Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Soong Ju Oh
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun-Do Jung
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea
- Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyun-Cheol Song
- Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Woo Young Jang
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul, 02841, Republic of Korea
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering and Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Hong Kong, 518057, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, 02139, USA
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Ho Seong Jang
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Nano & Information Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Sehoon Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
13
|
Tao C, Yu N, Ren Q, Wen M, Qiu P, Niu S, Li M, Chen Z. Dressing and undressing MOF nanophotosensitizers to manipulate phototoxicity for precise therapy of tumors. Acta Biomater 2024; 177:444-455. [PMID: 38325709 DOI: 10.1016/j.actbio.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
Photodynamic therapy (PDT) is a clinically approved treatment for tumors, and it relies on the phototoxicity of photosensitizers by producing reactive oxygen species (ROS) to destroy cancer cells under light irradiation. However, such phototoxicity is a double-edged sword, which is also harmful to normal tissues. To manipulate phototoxicity and improve the therapy effect, herein we have proposed a dressing-undressing strategy for de-activating and re-activating therapy functions of photosensitizer nanoparticles. One kind of metal organic framework (PCN-224), which is composed of Zr(IV) cation and tetrakis (4-carboxyphenyl) porphyrin (TCPP), has been prepared as a model of photosensitizer, and it has size of ∼70 nm. These PCN-224 nanoparticles are subsequently coated with a mesoporous organic silica (MOS) shell containing tetrasulfide bonds (-S-S-S-S-), realizing the dressing of PCN-224. MOS shell has the thickness of ∼20 nm and thus can block 1O2 (diffusion distance: <10 nm), deactivating the phototoxicity and preventing the damage to skin and eyes. Furthermore, PCN-224@MOS can be used to load chemotherapy drug (DOX·HCl). When PCN-224@MOS-DOX are mixed with glutathione (GSH), MOS shell with -S-S-S-S- bonds can be reduced by GSH and then be decomposed, which results in the undressing and then confers the exposure of PCN-224 with good PDT function as well as the release of DOX. When PCN-224@MOS-DOX dispersion is injected into the mice and accumulated in the tumor, endogenous GSH also confers the undressing of PCN-224@MOS-DOX, realizing the in-situ activation of PDT and chemotherapy for tumor. Therefore, the present study not only demonstrates a general dressing-undressing strategy for manipulating phototoxicity of photosensitizers, but also provide some insights for precise therapy of tumors without side-effects. STATEMENT OF SIGNIFICANCE: Photosensitizers can generate reactive oxygen species (ROS) under light radiation to destroy cancer cells. However, this phototoxicity is a double-edged sword and also harmful to normal tissues such as the skin and eyes. To control phototoxicity and improve therapeutic efficacy, we prepared a PCN-224@MOS-DOX nanoplatform and proposed a dressing and undressing strategy to deactivate and reactivate the therapeutic function of the photosensitizer nanoparticles. The MOS shell can block the diffusion of 1O2, eliminate phototoxicity, and prevent damage to the skin and eyes. When injected into mice and accumulated in tumors, PCN-224@MOS-DOX dispersions are endowed with an endogenous GSH-driven undressing effect, achieving in situ activation of PDT and tumor chemotherapy.
Collapse
Affiliation(s)
- Cheng Tao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qian Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mei Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pu Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shining Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Maoquan Li
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai 200072, China.
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
14
|
Luo S, Shang Y, Qin Z, Zhou B, Lu C, Qu Y, Zhao J, Liang R, Zheng L, Luo S. A novel cartilage-targeting MOF-HMME-RGD sonosensitizer combined with sonodynamic therapy to enhance chondrogenesis and cartilage regeneration. Front Bioeng Biotechnol 2024; 12:1339530. [PMID: 38361795 PMCID: PMC10868594 DOI: 10.3389/fbioe.2024.1339530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Articular cartilage regeneration is still a difficult task due to the cartilage's weak capacity for self-healing and the effectiveness of the available therapies. The engineering of cartilage tissue has seen widespread use of stem cell-based therapies. However, efficient orientation of line-specific bone marrow mesenchymal stem cells (BMSCs) to chondrogenesis and maintenance of chondrogenic differentiation challenged stem cell-based therapy. Herein, we developed a Fe-based metal-organic framework (MOF) loaded with hematoporphyrin monomethyl ether (HMME) and cartilage-targeting arginine-aspartate-glycine (RGD) peptide to form MOF-HMME-RGD sonosensitizer to regulate BMSCs chondrogenic differentiation for cartilage regeneration via the modulation of reactive oxygen species (ROS). By using sonodynamic therapy (SDT), the MOF-HMME-RGD demonstrated favorable biocompatibility, could generate a modest amount of ROS, and enhanced BMSCs chondrogenic differentiation through increased accumulation of glycosaminoglycan, an ECM component specific to cartilage, and upregulated expression of key chondrogenic genes (ACAN, SOX9, and Col2a1). Further, transplanted BMSCs loading MOF-HMME-RGD combined with SDT enhanced cartilage regeneration for cartilage defect repair after 8 weeks into treatment. This synergistic strategy based on MOF nanoparticles provides an instructive approach to developing alternative sonosensitizers for cartilage regeneration combined with SDT.
Collapse
Affiliation(s)
- Shanchao Luo
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| | - Yifeng Shang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Bo Zhou
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chun Lu
- School of Materials and Environment, Guangxi Minzu University, Nanning, Guangxi, China
| | - Yangyang Qu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ruiming Liang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shixing Luo
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Orthopedics, The Ninth Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
15
|
Ko MJ, Min S, Hong H, Yoo W, Joo J, Zhang YS, Kang H, Kim DH. Magnetic nanoparticles for ferroptosis cancer therapy with diagnostic imaging. Bioact Mater 2024; 32:66-97. [PMID: 37822917 PMCID: PMC10562133 DOI: 10.1016/j.bioactmat.2023.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2023] [Revised: 09/06/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023] Open
Abstract
Ferroptosis offers a novel method for overcoming therapeutic resistance of cancers to conventional cancer treatment regimens. Its effective use as a cancer therapy requires a precisely targeted approach, which can be facilitated by using nanoparticles and nanomedicine, and their use to enhance ferroptosis is indeed a growing area of research. While a few review papers have been published on iron-dependent mechanism and inducers of ferroptosis cancer therapy that partly covers ferroptosis nanoparticles, there is a need for a comprehensive review focusing on the design of magnetic nanoparticles that can typically supply iron ions to promote ferroptosis and simultaneously enable targeted ferroptosis cancer nanomedicine. Furthermore, magnetic nanoparticles can locally induce ferroptosis and combinational ferroptosis with diagnostic magnetic resonance imaging (MRI). The use of remotely controllable magnetic nanocarriers can offer highly effective localized image-guided ferroptosis cancer nanomedicine. Here, recent developments in magnetically manipulable nanocarriers for ferroptosis cancer nanomedicine with medical imaging are summarized. This review also highlights the advantages of current state-of-the-art image-guided ferroptosis cancer nanomedicine. Finally, image guided combinational ferroptosis cancer therapy with conventional apoptosis-based therapy that enables synergistic tumor therapy is discussed for clinical translations.
Collapse
Affiliation(s)
- Min Jun Ko
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunsik Hong
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Woojung Yoo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital Harvard Medical School, Cambridge, MA, 02139, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, University of Illinois, Chicago, IL, 60607, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
16
|
Cheng P, Ming S, Cao W, Wu J, Tian Q, Zhu J, Wei W. Recent advances in sonodynamic therapy strategies for pancreatic cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1945. [PMID: 38403882 DOI: 10.1002/wnan.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/25/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Pancreatic cancer, a prevalent malignancy of the digestive system, has a poor 5-year survival rate of around 10%. Although numerous minimally invasive alternative treatments, including photothermal therapy and photodynamic therapy, have shown effectiveness compared with traditional surgical procedures, radiotherapy, and chemotherapy. However, the application of these alternative treatments is constrained by their depth of penetration, making it challenging to treat pancreatic cancer situated deep within the tissue. Sonodynamic therapy (SDT) has emerged as a promising minimally invasive therapy method that is particularly potent against deep-seated tumors such as pancreatic cancer. However, the unique characteristics of pancreatic cancer, including a dense surrounding matrix, high reductivity, and a hypoxic tumor microenvironment, impede the efficient application of SDT. Thus, to guide the evolution of SDT for pancreatic cancer therapy, this review addresses these challenges, examines current strategies for effective SDT enhancement for pancreatic cancer, and investigates potential future advances to boost clinical applicability. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shuai Ming
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Cao
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jixiao Wu
- School of Materials and Chemistry, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Qiwei Tian
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jing Zhu
- School of Materials and Chemistry, State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Wei Wei
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
17
|
Zhang X, Xu L, Li M, Chen X, Tang J, Zhang P, Wang Y, Chen B, Ren J, Liu J. Intelligent Ti3C2–Pt heterojunction with oxygen self-supply for augmented chemo-sonodynamic/immune tumor therapy. MATERIALS TODAY NANO 2023; 24:100386. [DOI: 10.1016/j.mtnano.2023.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 09/11/2023]
|
18
|
Tian H, Shang H, Chen Y, Wu B, Wang C, Wang X, Cheng W. Sonosensitizer Nanoplatforms Augmented Sonodynamic Therapy-Sensitizing Shikonin-Induced Necroptosis Against Hepatocellular Carcinoma. Int J Nanomedicine 2023; 18:7079-7092. [PMID: 38050474 PMCID: PMC10693983 DOI: 10.2147/ijn.s435104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023] Open
Abstract
Background Apoptosis resistance of hepatocellular carcinoma (HCC) often leads to treatment failure. Nonetheless, overcoming the resistance of HCC to apoptosis by inducing necroptosis of tumor cells to bypass the apoptotic pathway may be a promising treatment strategy. Sonodynamic therapy (SDT) has broad prospects in disease treatment because of its noninvasive characteristic and spatiotemporal control. The combination of SDT and shikonin in the treatment of HCC is expected to be a new tumor treatment method that can overcome apoptosis resistance. Methods In this study, the antitumor effect was evaluated using normal liver cell line WRL68, HCC cell line HepG2 and HepG2 xenograft mouse models. Indocyanine green (ICG) was loaded on nanobubbles (NBs) to construct ICG-loaded nanobubbles (ICG-NBs). Combined sonosensitizer nanoplatforms with ultrasound (US) to achieve efficient SDT, the combination of SDT and shikonin in treating HCC can activate shikonin-induced necroptosis. As a result, tumor cells that produced apoptosis resistance were destroyed by necroptosis. Results The results indicated a successful preparation of ICG-NBs with a uniform particle size of 273.0 ± 118.9 nm spherical structures. ICG-NB-mediated SDT, in combination with shikonin treatment, inhibited the viability, invasion, and migration of tumor cells. SDT + shikonin treatment group caused a substantial increase in necroptotic cells. The increased degree of tumor necrosis and the upregulated expression of receptor-interacting protein 3 kinase were observed in vivo studies, which indicated that the antitumor effect was accompanied by enhanced necroptosis in the SDT + shikonin treatment group. Conclusion ICG-NB-mediated SDT combined with shikonin inhibits the growth of HCC by increasing the necroptosis of tumor cells. Therefore, this combination therapy is a promising treatment strategy against the specific cancer.
Collapse
Affiliation(s)
- Huimin Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Haitao Shang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yichi Chen
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Chunyue Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Xiaodong Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| |
Collapse
|
19
|
Qiao X, Liang J, Qiu L, Feng W, Cheng G, Chen Y, Ding H. Ultrasound-activated nanosonosensitizer for oxygen/sulfate dual-radical nanotherapy. Biomaterials 2023; 301:122252. [PMID: 37542858 DOI: 10.1016/j.biomaterials.2023.122252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2023] [Revised: 07/04/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
An all-in-one therapy for cooperatively fighting cancer, infection and boosting wound repair is exceedingly demanded for patients with advanced superficial cancers or after surgical intervention to avoid multiple drug abuse and resultant adverse effects. Here, the ultrasound-activated nanosonosensitizer PHMP that integrated peroxymonosulfate (PMS) into the Pd-catalyzed hydrogenated mesoporous titanium dioxide (PHM) was dexterously designed for combined therapy of cancer and infected wound based on oxygen/sulfate dual-radical nanotherapy. Firstly, the PHM with single crystal structure and abundant oxygen deficiencies exhibited excellent ultrasound-excited reactive oxygen species (ROS) production for enhanced sonodynamic therapy (SDT) under the support of Pd nanozyme-mediated O2 supply. Simultaneously, the physically targeted ultrasound irradiation effectively transformed PMS loaded in the hollow cavities into distinct sulfate radical (•SO4-) with longer half-life and stronger oxidation, which remarkably enhanced the therapeutic efficacy of PHM-mediated SDT for cancer and bacteria. In addition, by embedding PHMP into the hydrogel, the enrichment of PHMP in the focal site was guaranteed, and meanwhile a moist and ventilated environment was created to speed up wound repair. The study broadens the potential of •SO4- in the therapeutic fields and contributes a simple and appealing tactic for the comprehensive treatment of cancer, infection and wound repair.
Collapse
Affiliation(s)
- Xiaohui Qiao
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Jing Liang
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Luping Qiu
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Guangwen Cheng
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, PR China.
| |
Collapse
|
20
|
Feng Y, Chen Q, Jin C, Ruan Y, Chen Q, Lin W, Zhu C, Zhang T, Zhang Y, Gao J, Mo J. Microwave-activated Cu-doped zirconium metal-organic framework for a highly effective combination of microwave dynamic and thermal therapy. J Control Release 2023; 361:102-114. [PMID: 37532150 DOI: 10.1016/j.jconrel.2023.07.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2023] [Revised: 06/27/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Percutaneous microwave ablation (PMA) is a thermoablative method used as a minimally invasive treatment for liver cancer. However, the application of PMA is limited by its insufficient ROS generation efficiency and thermal effects. Herein, a new microwave-activated Cu-doped zirconium metal-organic framework (MOF) (CuZr MOF) used for enhanced PMA has a significantly improved microwave sensitizing effect. Owing to the strong inelastic collisions between ions confined in numerous micropores, CuZr MOF has strong microwave sensitivity and high thermal conversion efficiency, which can significantly improve microwave thermal therapy (MTT). Moreover, because of the existence of Cu2+ ions, a further benefit of CuZr MOF is their Fenton-like activity, in particular, microwaves used as an excitation source for microwave dynamic therapy (MDT) can improve the Fenton-like reaction to maximize the synergistic effectiveness of cancer therapy. Importantly, CuZr MOF can inhibit the production of heat shock proteins (HSPs) by producing abundant ROS to enhance tumor destruction. Mechanistically, we found that CuZr MOF + MW treatment modulates ferroptosis-mediated tumor cell death by targeting the HMOX1/GPX4 axis. In summary, this study develops a novel CuZr MOF microwave sensitizer with great potential for synergistic treatment of liver cancer by MTT and MDT.
Collapse
Affiliation(s)
- Yifu Feng
- Department of Hepatobiliary, Taizhou Central Hospital, Taizhou University, Zhejiang 318000, China
| | - Qian Chen
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Chong Jin
- Department of Hepatobiliary, Taizhou Central Hospital, Taizhou University, Zhejiang 318000, China
| | - Yanyun Ruan
- Precision Medicine Center, Taizhou Central Hospital, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Weidong Lin
- Department of Hepatobiliary, Taizhou Central Hospital, Taizhou University, Zhejiang 318000, China
| | - Chumeng Zhu
- Precision Medicine Center, Taizhou Central Hospital, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200072, China
| | - Yang Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Precision Medicine Center, Taizhou Central Hospital, Taizhou University, Taizhou, Zhejiang 318000, China.
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200072, China.
| | - Jinggang Mo
- Department of Hepatobiliary, Taizhou Central Hospital, Taizhou University, Zhejiang 318000, China.
| |
Collapse
|
21
|
Jiang Z, Xiao W, Fu Q. Stimuli responsive nanosonosensitizers for sonodynamic therapy. J Control Release 2023; 361:547-567. [PMID: 37567504 DOI: 10.1016/j.jconrel.2023.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Sonodynamic therapy (SDT) has gained significant attention in the treatment of deep tumors and multidrug-resistant (MDR) bacterial infections due to its high tissue penetration depth, high spatiotemporal selectivity, and noninvasive therapeutic method. SDT combines low-intensity ultrasound (US) and sonosensitizers to produce lethal reactive oxygen species (ROS) and external damage, which is the main mechanism behind this therapy. However, traditional organic small-molecule sonosensitizers display poor water solubility, strong phototoxicity, and insufficient targeting ability. Inorganic sonosensitizers, on the other hand, have low ROS yield and poor biocompatibility. These drawbacks have hindered SDT's clinical transformation and application. Hence, designing stimuli-responsive nano-sonosensitizers that make use of the lesion's local microenvironment characteristics and US stimulation is an excellent alternative for achieving efficient, specific, and safe treatment. In this review, we provide a comprehensive overview of the currently accepted mechanisms in SDT and discuss the application of responsive nano-sonosensitizers in the treatment of tumor and bacterial infections. Additionally, we emphasize the significance of the principle and process of response, based on the classification of response patterns. Finally, this review emphasizes the potential limitations and future perspectives of SDT that need to be addressed to promote its clinical transformation.
Collapse
Affiliation(s)
- Zeyu Jiang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; Department of Cardiovascular Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China
| | - Wenjing Xiao
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
22
|
Yan Z, Liu Y, Zhao L, Hu J, Du Y, Peng X, Liu Z. In situ stimulus-responsive self-assembled nanomaterials for drug delivery and disease treatment. MATERIALS HORIZONS 2023; 10:3197-3217. [PMID: 37376926 DOI: 10.1039/d3mh00592e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/29/2023]
Abstract
The individual motifs that respond to specific stimuli for the self-assembly of nanomaterials play important roles. In situ constructed nanomaterials are formed spontaneously without human intervention and have promising applications in bioscience. However, due to the complex physiological environment of the human body, designing stimulus-responsive self-assembled nanomaterials in vivo is a challenging problem for researchers. In this article, we discuss the self-assembly principles of various nanomaterials in response to the tissue microenvironment, cell membrane, and intracellular stimuli. We propose the applications and advantages of in situ self-assembly in drug delivery and disease diagnosis and treatment, with a focus on in situ self-assembly at the lesion site, especially in cancer. Additionally, we introduce the significance of introducing exogenous stimulation to construct self-assembly in vivo. Based on this foundation, we put forward the prospects and possible challenges in the field of in situ self-assembly. This review uncovers the relationship between the structure and properties of in situ self-assembled nanomaterials and provides new ideas for innovative drug molecular design and development to solve the problems in the targeted delivery and precision medicine.
Collapse
Affiliation(s)
- Ziling Yan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, P. R. China
| | - Licheng Zhao
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, P. R. China
| | - Jiaxin Hu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Yimin Du
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, P. R. China.
- Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan Province, P. R. China
| |
Collapse
|
23
|
Shen J, Chen G, Zhao L, Huang G, Liu H, Liu B, Miao Y, Li Y. Recent Advances in Nanoplatform Construction Strategy for Alleviating Tumor Hypoxia. Adv Healthc Mater 2023; 12:e2300089. [PMID: 37055912 DOI: 10.1002/adhm.202300089] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/08/2023] [Revised: 03/13/2023] [Indexed: 04/15/2023]
Abstract
Hypoxia is a typical feature of most solid tumors and has important effects on tumor cells' proliferation, invasion, and metastasis. This is the key factor that leads to poor efficacy of different kinds of therapy including chemotherapy, radiotherapy, photodynamic therapy, etc. In recent years, the construction of hypoxia-relieving functional nanoplatforms through nanotechnology has become a new strategy to reverse the current situation of tumor microenvironment hypoxia and improve the effectiveness of tumor treatment. Here, the main strategies and recent progress in constructing nanoplatforms are focused on to directly carry oxygen, generate oxygen in situ, inhibit mitochondrial respiration, and enhance blood perfusion to alleviate tumor hypoxia. The advantages and disadvantages of these nanoplatforms are compared. Meanwhile, nanoplatforms based on organic and inorganic substances are also summarized and classified. Through the comprehensive overview, it is hoped that the summary of these nanoplatforms for alleviating hypoxia could provide new enlightenment and prospects for the construction of nanomaterials in this field.
Collapse
Affiliation(s)
- Jing Shen
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Guobo Chen
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Linghao Zhao
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Guoyang Huang
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Hui Liu
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
24
|
Liu R, Li Q, Qin S, Qiao L, Yang M, Liu S, Nice EC, Zhang W, Huang C, Zheng S, Gao W. Sertaconazole-repurposed nanoplatform enhances lung cancer therapy via CD44-targeted drug delivery. J Exp Clin Cancer Res 2023; 42:188. [PMID: 37507782 PMCID: PMC10385912 DOI: 10.1186/s13046-023-02766-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/02/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Lung cancer is one of the most frequent causes of cancer-related deaths worldwide. Drug repurposing and nano-drug delivery systems are attracting considerable attention for improving anti-cancer therapy. Sertaconazole (STZ), an antifungal agent, has been reported to exhibit cytotoxicity against both normal and tumor cells, and its medical use is limited by its poor solubility. In order to overcome such shortcomings, we prepared a drug-repurposed nanoplatform to enhance the anti-tumor efficiency. METHODS Nanoplatform was prepared by thin film dispersion. Drug release studies and uptake studies were measured in vitro. Subsequently, we verified the tumor inhibition mechanisms of HTS NPs through apoptosis assay, immunoblotting and reactive oxygen species (ROS) detection analyses. Antitumor activity was evaluated on an established xenograft lung cancer model in vivo. RESULTS Our nanoplatform improved the solubility of sertaconazole and increased its accumulation in tumor cells. Mechanistically, HTS NPs was dependent on ROS-mediated apoptosis and pro-apoptotic autophagy to achieve their excellent anti-tumor effects. Furthermore, HTS NPs also showed strong inhibitory ability in nude mouse xenograft models without significant side effects. CONCLUSIONS Our results suggest that sertaconazole-repurposed nanoplatform provides an effective strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Ruolan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Ling Qiao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Shanshan Liu
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Wei Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Shaojiang Zheng
- Hainan Cancer Center of The First Affiliated Hospital, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 571199, China.
| | - Wei Gao
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, 610081, China.
| |
Collapse
|
25
|
Wen M, Zhao Y, Qiu P, Ren Q, Tao C, Chen Z, Yu N. Efficient sonodynamic ablation of deep-seated tumors via cancer-cell-membrane camouflaged biocompatible nanosonosensitizers. J Colloid Interface Sci 2023; 644:388-396. [PMID: 37120887 DOI: 10.1016/j.jcis.2023.04.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Ultrasound (US)-triggered therapies are promising in cancer treatments, and their effectiveness can be enhanced through the proper camouflage of sonosensitizers. Herein, we have constructed cancer cell membrane (CCM)-camouflaged sonosensitizers for homotypic tumor-targeted sonodynamic therapy (SDT). The camouflaged sonosensitizers have been prepared by encapsulating hemoporfin molecules in poly(lactic acid) polymers (H@PLA) and extruding with CCM from Colon Tumor 26 (CT26) cells, forming the H@PLA@CCM. Under excitation with US, the hemoporfin encapsulated in H@PLA@CCM can convert O2 into cytotoxic 1O2, which exerts an efficient sonodynamic effect. The H@PLA@CCM nanoparticles show enhanced cellular internalization to CT26 cells compared to H@PLA, and they also can be more efficiently engulfed by CT26 cells than by mouse breast cancer cells, due to the homologous targeting ability of CT26 CCM. After the intravenous injection, the blood circulation half-life of H@PLA@CCM is determined to be 3.23 h which is 4.3-time that of H@PLA. With high biosafety, homogeneous targeting ability, and sonodynamic effect, the combination of H@PLA@CCM and US irradiation has induced significant apoptosis and necrosis of tumor cells through the efficient SDT, achieving the strongest inhibition rate of tumors among other groups. This study provides insights into designing efficient and targeted cancer therapies using CCM-camouflaged sonosensitizers.
Collapse
Affiliation(s)
- Mei Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yaoyu Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pu Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qian Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Cheng Tao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
26
|
Abstract
The conventional microbubble-based ultrasound biomedicine clinically plays a vital role in providing the dynamic detection of macro and microvasculature and disease theranostics. However, the intrinsic limitation of particle size severely decreases the treatment effectiveness due to their vascular transport characteristics, which promotes the development and application of multifunctional ultrasound-responsive nanomaterials. Herein, we put forward a research field of "ultrasound nanomedicine and materdicine", referring to the interdiscipline of ultrasound, nanobiotechnology and materials, which seeks to produce specific biological effects for addressing the challenges faced and dilemma of conventional ultrasound medicine. We comprehensively summarize the state-of-the-art scientific advances in the latest progress in constructing ultrasound-based platforms and ultrasound-activated sonosensitizers, ranging from the synthesis strategies, biological functions to ultrasound-triggered therapeutic applications. Ultimately, the unresolved challenges and clinical-translation potentials of ultrasound nanomedicine and materdicine are discussed and prospected in this evolving field.
Collapse
Affiliation(s)
- Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Xue Wang
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Meiqi Chang
- Central Laboratory of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China.
| | - Jia Guo
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
27
|
Dai X, Chen Y. Computational Biomaterials: Computational Simulations for Biomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204798. [PMID: 35916024 DOI: 10.1002/adma.202204798] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/27/2022] [Revised: 07/23/2022] [Indexed: 05/14/2023]
Abstract
With the flourishing development of material simulation methods (quantum chemistry methods, molecular dynamics, Monte Carlo, phase field, etc.), extensive adoption of computing technologies (high-throughput, artificial intelligence, machine learning, etc.), and the invention of high-performance computing equipment, computational simulation tools have sparked the fundamental mechanism-level explorations to predict the diverse physicochemical properties and biological effects of biomaterials and investigate their enormous application potential for disease prevention, diagnostics, and therapeutics. Herein, the term "computational biomaterials" is proposed and the computational methods currently used to explore the inherent properties of biomaterials, such as optical, magnetic, electronic, and acoustic properties, and the elucidation of corresponding biological behaviors/effects in the biomedical field are summarized/discussed. The theoretical calculation of the physiochemical properties/biological performance of biomaterials applied in disease diagnosis, drug delivery, disease therapeutics, and specific paradigms such as biomimetic biomaterials is discussed. Additionally, the biosafety evaluation applications of theoretical simulations of biomaterials are presented. Finally, the challenges and future prospects of such computational simulations for biomaterials development are clarified. It is anticipated that these simulations would offer various methodologies for facilitating the development and future clinical translations/utilization of versatile biomaterials.
Collapse
Affiliation(s)
- Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
28
|
Zhou T, Yuan S, Qian P, Wu Y. Enzymes in Nanomedicine for Anti-tumor Therapy. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/21/2023]
|
29
|
Sun H, Xu J, Wang Y, Shen S, Xu X, Zhang L, Jiang Q. Bone microenvironment regulative hydrogels with ROS scavenging and prolonged oxygen-generating for enhancing bone repair. Bioact Mater 2023; 24:477-496. [PMID: 36714330 PMCID: PMC9843284 DOI: 10.1016/j.bioactmat.2022.12.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/29/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Large bone defects resulting from fractures and disease are a major clinical challenge, being often unable to heal spontaneously by the body's repair mechanisms. Lines of evidence have shown that hypoxia-induced overproduction of ROS in bone defect region has a major impact on delaying bone regeneration. However, replenishing excess oxygen in a short time cause high oxygen tension that affect the activity of osteoblast precursor cells. Therefore, reasonably restoring the hypoxic condition of bone microenvironment is essential for facilitating bone repair. Herein, we designed ROS scavenging and responsive prolonged oxygen-generating hydrogels (CPP-L/GelMA) as a "bone microenvironment regulative hydrogel" to reverse the hypoxic microenvironment in bone defects region. CPP-L/GelMA hydrogels comprises an antioxidant enzyme catalase (CAT) and ROS-responsive oxygen-releasing nanoparticles (PFC@PLGA/PPS) co-loaded liposome (CCP-L) and GelMA hydrogels. Under hypoxic condition, CPP-L/GelMA can release CAT for degrading hydrogen peroxide to generate oxygen and be triggered by superfluous ROS to continuously release the oxygen for more than 2 weeks. The prolonged oxygen enriched microenvironment generated by CPP-L/GelMA hydrogel significantly enhanced angiogenesis and osteogenesis while inhibited osteoclastogenesis. Finally, CPP-L/GelMA showed excellent bone regeneration effect in a mice skull defect model through the Nrf2-BMAL1-autophagy pathway. Hence, CPP-L/GelMA, as a bone microenvironment regulative hydrogel for bone tissue respiration, can effectively scavenge ROS and provide prolonged oxygen supply according to the demand in bone defect region, possessing of great clinical therapeutic potential.
Collapse
Key Words
- Alizarin red staining, ARS
- Alkaline phosphatase, ALP
- Bone defect
- Bone marrow mesenchymal stem cells, BMSC
- Bovine serum albumin, BSA
- Brain and muscle arnt-like protein 1
- Brain and muscle arnt-like protein 1, BMAL1
- Catalase, CAT
- Fetal liver kinase-1, Flk-1
- Human umbilical vein endothelial cells, HUVEC
- Hypoxic microenvironment
- Liposome, Lip
- Microtubule-associated proteins light chain 3, LC3
- Nuclear factor (erythroid-derived 2)-like 2, NRF2
- Osteocalcin, OCN
- Osteopontin, OPN
- Perfluorocarbon, PFC
- Phosphate-buffered saline, PBS
- Poly (D, L-lactide-co-glycolide), PLGA
- Poly (propylene sulphide), PPS
- Prolonged oxygen generation
- Reactive oxygen species responsiveness
- Reactive oxygen species, ROS
- Receptor activator of nuclear factor-kappa B ligand, RANKL
- Runt-related transcription factor 2, RUNX2
- Short interfering RNA, siRNA
- Soy phosphatidylcholine, SPC
- Type I collagen, Col I
- Western blot, WB
Collapse
Affiliation(s)
- Han Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China,Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, 185 Juqian Road, Changzhou, 213003, Jiangsu, PR China
| | - Juan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China
| | - Yangyufan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China
| | - Siyu Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China,Corresponding author. State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| | - Lei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China,Corresponding author. State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China,Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China,Co-innovation Center of Neuroregeneration, Nantong University, 9 Seyuan Road, Nantong, 226019, Jiangsu, PR China,Corresponding author. State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| |
Collapse
|
30
|
Pei Z, Chen S, Ding L, Liu J, Cui X, Li F, Qiu F. Current perspectives and trend of nanomedicine in cancer: A review and bibliometric analysis. J Control Release 2022; 352:211-241. [PMID: 36270513 DOI: 10.1016/j.jconrel.2022.10.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
The limitations of traditional cancer treatments are driving the creation and development of new nanomedicines. At present, with the rapid increase of research on nanomedicine in the field of cancer, there is a lack of intuitive analysis of the development trend, main authors and research hotspots of nanomedicine in the field of cancer, as well as detailed elaboration of possible research hotspots. In this review, data collected from the Web of Science Core Collection database between January 1st, 2000, and December 31st, 2021, were subjected to a bibliometric analysis. The co-authorship, co-citation, and co-occurrence of countries, institutions, authors, literature, and keywords in this subject were examined using VOSviewer, Citespace, and a well-known online bibliometrics platform. We collected 19,654 published papers, China produced the most publications (36.654%, 7204), followed by the United States (29.594%, 5777), and India (7.780%, 1529). An interesting fact is that, despite China having more publications than the United States, the United States still dominates this field, having the highest H-index and the most citations. Acs Nano, Nano Letters, and Biomaterials are the top three academic publications that publish articles on nanomedicine for cancer out of a total of 7580 academic journals. The most significant increases were shown for the keywords "cancer nanomedicine", "tumor microenvironment", "nanoparticles", "prodrug", "targeted nanomedicine", "combination", and "cancer immunotherapy" indicating the promising area of research. Meanwhile, the development prospects and challenges of nanomedicine in cancer are also discussed and provided some solutions to the major obstacles.
Collapse
Affiliation(s)
- Zerong Pei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuting Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Liqin Ding
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Xinyi Cui
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, China
| | - Fengyun Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
31
|
Lai C, Luo B, Shen J, Shao J. Biomedical engineered nanomaterials to alleviate tumor hypoxia for enhanced photodynamic therapy. Pharmacol Res 2022; 186:106551. [PMID: 36370918 DOI: 10.1016/j.phrs.2022.106551] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/03/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Photodynamic therapy (PDT), as a highly selective, widely applicable, and non-invasive therapeutic modality that is an alternative to radiotherapy and chemotherapy, is extensively applied to cancer therapy. Practically, the efficiency of PDT is severely hindered by the existence of hypoxia in tumor tissue. Hypoxia is a typical hallmark of malignant solid tumors, which remains an essential impediment to many current treatments, thereby leading to poor clinical prognosis after therapy. To address this issue, studies have been focused on modulating tumor hypoxia to augment the therapeutic efficacy. Although nanomaterials to relieve tumor hypoxia for enhanced PDT have been demonstrated in many research articles, a systematical summary of the role of nanomaterials in alleviating tumor hypoxia is scarce. In this review, we introduced the mechanism of PDT, and the involved therapeutic modality of PDT for ablation of tumor cells was specifically summarized. Moreover, current advances in nanomaterials-mediated tumor oxygenation via oxygen-carrying or oxygen-generation tactics to alleviate tumor hypoxia are emphasized. Based on these considerable summaries and analyses, we proposed some feasible perspectives on nanoparticle-based tumor oxygenation to ameliorate the therapeutic outcomes, which may provide some detailed information in designing new oxygenation nanomaterials in this burgeneous field.
Collapse
Affiliation(s)
- Chunmei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Bangyue Luo
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jiangwen Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China; College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
32
|
Pan M, Hu D, Yuan L, Yu Y, Li Y, Qian Z. Newly developed gas-assisted sonodynamic therapy in cancer treatment. Acta Pharm Sin B 2022. [PMID: 37521874 PMCID: PMC10372842 DOI: 10.1016/j.apsb.2022.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023] Open
Abstract
Sonodynamic therapy (SDT) is an emerging noninvasive treatment modality that utilizes low-frequency and low-intensity ultrasound (US) to trigger sensitizers to kill tumor cells with reactive oxygen species (ROS). Although SDT has attracted much attention for its properties including high tumor specificity and deep tissue penetration, its anticancer efficacy is still far from satisfactory. As a result, new strategies such as gas-assisted therapy have been proposed to further promote the effectiveness of SDT. In this review, the mechanisms of SDT and gas-assisted SDT are first summarized. Then, the applications of gas-assisted SDT for cancer therapy are introduced and categorized by gas types. Next, therapeutic systems for SDT that can realize real-time imaging are further presented. Finally, the challenges and perspectives of gas-assisted SDT for future clinical applications are discussed.
Collapse
|
33
|
Integrated energy conversion units in nanoscale frameworks induce sustained generation and amplified lethality of singlet oxygen in oxidative therapy of tumor. VIEW 2022. [DOI: 10.1002/viw.20220051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
|
34
|
Tumor-targeted dual-starvation therapy based on redox-responsive micelle nanosystem with co-loaded LND and BPTES. Mater Today Bio 2022; 16:100449. [PMID: 36238964 PMCID: PMC9552111 DOI: 10.1016/j.mtbio.2022.100449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2022] [Revised: 09/24/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022] Open
Abstract
The starvation therapy mediated by the lonidamine (LND) was limited by the low drug delivery efficiency, off-target effect and compensative glutamine metabolism. Herein, a hyaluronic acid (HA)-modified reduction-responsive micellar nanosystem co-loaded with glycolysis and glutamine metabolism inhibitor (LND and bis-2-(5-phenylacetmido-1,2,4-thiadiazol-2-yl)ethyl sulfide, BPTES) was constructed for tumor-targeted dual-starvation therapy. The in vitro and in vivo results collectively suggested that the fabricated nanosystem could effectively endocytosed by tumor cells via HA receptor-ligand recognition, and rapidly release starvation-inducers LND and BPTES in response to the GSH-rich intratumoral cytoplasm. Furthermore, the released LND and BPTES were capable of inducing glycolysis and glutamine metabolism suppression, and accompanied by significant mitochondrial damage, cell cycle arrest and tumor cells apoptosis, eventually devoting to the blockade of the energy and substance supply and tumor killing with high efficiency. In summary, HPPPH@L@B nanosystem significantly inhibited the compensatory glycolysis and glutamine metabolism via the dual-starvation therapy strategy, blocked the indispensable energy and substance supply of tumors, consequently leading to the desired tumor starvation and effective tumor killing with reliable biosafety.
Collapse
|
35
|
Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022; 15:132. [PMID: 36096856 PMCID: PMC9469622 DOI: 10.1186/s13045-022-01320-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Poor targeting of therapeutics leading to severe adverse effects on normal tissues is considered one of the obstacles in cancer therapy. To help overcome this, nanoscale drug delivery systems have provided an alternative avenue for improving the therapeutic potential of various agents and bioactive molecules through the enhanced permeability and retention (EPR) effect. Nanosystems with cancer-targeted ligands can achieve effective delivery to the tumor cells utilizing cell surface-specific receptors, the tumor vasculature and antigens with high accuracy and affinity. Additionally, stimuli-responsive nanoplatforms have also been considered as a promising and effective targeting strategy against tumors, as these nanoplatforms maintain their stealth feature under normal conditions, but upon homing in on cancerous lesions or their microenvironment, are responsive and release their cargoes. In this review, we comprehensively summarize the field of active targeting drug delivery systems and a number of stimuli-responsive release studies in the context of emerging nanoplatform development, and also discuss how this knowledge can contribute to further improvements in clinical practice.
Collapse
Affiliation(s)
- Hailong Tian
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Tingting Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiayan Shi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia
| | - Edouard C Nice
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China
| | - Na Xie
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. .,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China.
| | - Canhua Huang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
36
|
Wang XY, Lin C, Chang WJ, Huang YH, Mi FL. Thiolated hyaluronic acid and catalase-enhanced CD44-targeting and oxygen self-supplying nanoplatforms with photothermal/photodynamic effects against hypoxic breast cancer cells. Int J Biol Macromol 2022; 221:121-134. [PMID: 36049568 DOI: 10.1016/j.ijbiomac.2022.08.164] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2022] [Revised: 08/02/2022] [Accepted: 08/24/2022] [Indexed: 12/16/2022]
Abstract
Photothermal and photodynamic therapies (PTT/PDT) have been widely accepted as noninvasive therapeutic methods for cancer treatment. However, tumor hypoxia and insufficient delivery of photoactive compounds to cancer cells can reduce the efficacy of phototherapy. Herein, we first synthesized thiolated hyaluronic acid (THA) and then conjugated it with catalase (CAT) onto chlorin e6 (Ce6)-adsorbed small gold nanorods (Ce6@sAuNRs) with near-infrared (NIR)/visible light activated photothermal/photodynamic effects. The conjugation of THA and CAT on Ce6@sAuNRs resulted in a red-shift of the longitudinal LSPR absorption band of sAuNRs up to 1000 nm and maintained the excellent enzymatic activity of catalase. Modification of Ce6@sAuNRs with THA resulted in efficient internalization of the nanocomposite into MCF-7/ADR multidrug-resistant (MDR) breast cancer cells (CD44+), thereby significantly enhancing the intracellular accumulation of the photosensitizer Ce6. CAT endows Ce6@sAuNRs with self-supporting oxygen production, which enables them to efficiently generate singlet oxygen (1O2) under 660 nm laser irradiation and enhances the photodynamic effect against hypoxic breast cancer cells. The results highlight the prospect of this novel multi-functional nanoplatform integrating active biological macromolecules (THA and CAT) into photosensitizer/photothermal gold nanocomposites in overcoming the limitations of hypoxic MDR breast cancer cell treatment.
Collapse
Affiliation(s)
- Xin-Yu Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| | - Chi Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| | - Wong-Jin Chang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| | - Yen-Hua Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan; International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Fwu-Long Mi
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City 11031, Taiwan.
| |
Collapse
|
37
|
Wang Z, Yu N, Zhang J, Ren Q, Li M, Chen Z. Nanoscale Hf-hematoporphyrin frameworks for synergetic sonodynamic/radiation therapy of deep-seated tumors. J Colloid Interface Sci 2022; 626:803-814. [DOI: 10.1016/j.jcis.2022.06.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2022] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 10/31/2022]
|