1
|
Sarma R, Kakati BK. Hydrothermal synthesis of tungsten oxide photo/electrocatalysts: precursor-driven morphological tailoring and electrochemical performance for hydrogen evolution and oxygen reduction reaction application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35607-6. [PMID: 39592533 DOI: 10.1007/s11356-024-35607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
A hydrothermal approach was adopted to synthesize tungsten oxide (WO3) nanocatalysts with tailored morphology, using oxalic acid (H2C2O4) and hydrochloric acid (HCl) as precursors. This precursor-driven method yielded two distinct WO3 catalysts with unique structural and functional properties, viz. rod-shaped WO3-ox and nanoflower-shaped WO3-h. Characterization by FESEM and XRD revealed variations in morphology and crystallite size, contributing to their specialized catalytic applications. UV-Vis spectroscopy confirmed strong UV absorption by WO3-ox at 283.57 nm with an optical band gap of 2.86 eV, making it ideal for photocatalytic activities. Electrochemical analysis demonstrated that WO3-ox effectively drives the hydrogen evolution reaction (HER), while WO3-h is more suitable for the oxygen reduction reaction (ORR), an essential process in microbial fuel cells (MFCs). In practical applications, WO3-ox achieved an 83.9% degradation efficiency of methylene blue (MB) within 3 h, validating its high photocatalytic efficacy for wastewater treatment. Meanwhile, WO3-h, utilized as a cathode catalyst in MFCs, significantly enhanced system performance, elevating chemical oxygen demand (COD) removal efficiency to 78.7% and improving coulombic efficiency by 3%. These findings underscore the potential of precursor-driven hydrothermal synthesis for optimizing WO3 catalysts tailored for energy and environmental applications, specifically in hydrogen production and sustainable wastewater treatment systems.
Collapse
Affiliation(s)
- Rahul Sarma
- Department of Energy, Tezpur University, Tezpur, 784 028, India
| | | |
Collapse
|
2
|
Abd-Elrahman NK, Al-Harbi N, Basfer NM, Al-Hadeethi Y, Umar A, Akbar S. Applications of Nanomaterials in Microbial Fuel Cells: A Review. Molecules 2022; 27:7483. [PMID: 36364309 PMCID: PMC9655766 DOI: 10.3390/molecules27217483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 09/02/2023] Open
Abstract
Microbial fuel cells (MFCs) are an environmentally friendly technology and a source of renewable energy. It is used to generate electrical energy from organic waste using bacteria, which is an effective technology in wastewater treatment. The anode and the cathode electrodes and proton exchange membranes (PEM) are important components affecting the performance and operation of MFC. Conventional materials used in the manufacture of electrodes and membranes are insufficient to improve the efficiency of MFC. The use of nanomaterials in the manufacture of the anode had a prominent effect in improving the performance in terms of increasing the surface area, increasing the transfer of electrons from the anode to the cathode, biocompatibility, and biofilm formation and improving the oxidation reactions of organic waste using bacteria. The use of nanomaterials in the manufacture of the cathode also showed the improvement of cathode reactions or oxygen reduction reactions (ORR). The PEM has a prominent role in separating the anode and the cathode in the MFC, transferring protons from the anode chamber to the cathode chamber while preventing the transfer of oxygen. Nanomaterials have been used in the manufacture of membrane components, which led to improving the chemical and physical properties of the membranes and increasing the transfer rates of protons, thus improving the performance and efficiency of MFC in generating electrical energy and improving wastewater treatment.
Collapse
Affiliation(s)
| | - Nuha Al-Harbi
- Department of Physics, Umm AL-Qura University, Makkah 24382, Saudi Arabia
| | - Noor M. Basfer
- Department of Physics, Umm AL-Qura University, Makkah 24382, Saudi Arabia
| | - Yas Al-Hadeethi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Rezaei A, Aber S, Roberts DJ, Javid Ga A. Synthesis and study of CuNiTiO 3 as an ORR electrocatalyst to enhance microbial fuel cell efficiency. CHEMOSPHERE 2022; 307:135709. [PMID: 35843431 DOI: 10.1016/j.chemosphere.2022.135709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Microbial fuel cells (MFCs) have the capability of simultaneous sewage treatment and electricity generation. Modifying the cathode electrode enhances their efficiency. In this study, NiTiO3 and CuNiTiO3 were synthesized for practical application as cathode catalysts in a dual-chamber MFC and the performance of the modified cathodes was evaluated against a bare graphite electrode. SEM images showed that the particle sizes were mostly in the range of 40-120 and 20-80 nm for NiTiO3 and CuNiTiO3, respectively. According to AFM results, CuNiTiO3 presented a higher surface roughness than NiTiO3. MFC using CuNiTiO3/G electrode with a reduction potential value of -0.27 V (vs. SCE) and a power density of 62.18 mW m-2 showed better oxygen reduction reaction (ORR) activity compared with NiTiO3/G and the bare graphite. MFC using CuNiTiO3 cathode also showed the highest values in terms of chemical oxygen demand (COD) removal (75%) and the calculated coulombic efficiency (CE, 10%). The results obtained in this study, introduce CuNiTiO3 as a promising electrocatalyst for further improvement of the cathodic reactions in MFC applications.
Collapse
Affiliation(s)
- Ali Rezaei
- Research Laboratory of Environmental Protection Technology (RLEPT), Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Soheil Aber
- Research Laboratory of Environmental Protection Technology (RLEPT), Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Faculty of Science and Engineering, University of Northern British Columbia, 3333 University Ave, Prince George, BC, Canada.
| | - Deborah J Roberts
- Faculty of Science and Engineering, University of Northern British Columbia, 3333 University Ave, Prince George, BC, Canada
| | - Abbas Javid Ga
- Research Laboratory of Environmental Protection Technology (RLEPT), Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
4
|
Wang J, Ren K, Zhu Y, Huang J, Liu S. A Review of Recent Advances in Microbial Fuel Cells: Preparation, Operation, and Application. BIOTECH (BASEL (SWITZERLAND)) 2022; 11:biotech11040044. [PMID: 36278556 PMCID: PMC9589990 DOI: 10.3390/biotech11040044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 12/07/2022]
Abstract
The microbial fuel cell has been considered a promising alternative to traditional fossil energy. It has great potential in energy production, waste management, and biomass valorization. However, it has several technical issues, such as low power generation efficiency and operational stability. These issues limit the scale-up and commercialization of MFC systems. This review presents the latest progress in microbial community selection and genetic engineering techniques for enhancing microbial electricity production. The summary of substrate selection covers defined substrates and some inexpensive complex substrates, such as wastewater and lignocellulosic biomass materials. In addition, it also includes electrode modification, electron transfer mediator selection, and optimization of operating conditions. The applications of MFC systems introduced in this review involve wastewater treatment, production of value-added products, and biosensors. This review focuses on the crucial process of microbial fuel cells from preparation to application and provides an outlook for their future development.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Kexin Ren
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Yan Zhu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
- The Center for Biotechnology & Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
- Correspondence:
| |
Collapse
|
5
|
Benzaouak A, Touach N, Mahir H, Elhamdouni Y, Labjar N, El Hamidi A, El Mahi M, Lotfi EM, Kacimi M, Liotta LF. ZrP 2O 7 as a Cathodic Material in Single-Chamber MFC for Bioenergy Production. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3330. [PMID: 36234458 PMCID: PMC9565527 DOI: 10.3390/nano12193330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The present work is the first investigation of the electrocatalytic performances of ZrP2O7 as a cathode in a single-chamber Microbial Fuel Cell (MFC) for the conversion of chemical energy from wastewater to bioelectricity. This catalyst was prepared by a coprecipitation method, then characterized by X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), ultraviolet-visible-near-infrared spectrophotometry (UV-Vis-NIR), and cyclic voltammetry analyses. The acid-basic characteristics of the surface were probed by using 2-butanol decomposition. The conversion of 2-butanol occurs essentially through the dehydrating reaction, indicating the predominantly acidic character of the solid. The electrochemical test shows that the studied cathode material is electroactive. In addition, the ZrP2O7 in the MFC configuration exhibited high performance in terms of bioelectricity generation, giving a maximum output power density of around 449 mW m-2; moreover, it was active for wastewater treatment, reducing the chemical oxygen demand (COD) charge to 50% after three days of reaction.
Collapse
Affiliation(s)
- Abdellah Benzaouak
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Environmental Materials Team, École Nationale Supérieure d’Arts et Métiers (ENSAM), Mohammed V University in Rabat, Rabat 10 000, Morocco
- Laboratory of Physical Chemistry of Materials, Catalysis and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10 000, Morocco
| | - Noureddine Touach
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Environmental Materials Team, École Nationale Supérieure d’Arts et Métiers (ENSAM), Mohammed V University in Rabat, Rabat 10 000, Morocco
| | - Hanane Mahir
- Laboratory of Physical Chemistry of Materials, Catalysis and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10 000, Morocco
| | - Youssra Elhamdouni
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Environmental Materials Team, École Nationale Supérieure d’Arts et Métiers (ENSAM), Mohammed V University in Rabat, Rabat 10 000, Morocco
| | - Najoua Labjar
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Environmental Materials Team, École Nationale Supérieure d’Arts et Métiers (ENSAM), Mohammed V University in Rabat, Rabat 10 000, Morocco
| | - Adnane El Hamidi
- Laboratory of Physical Chemistry of Materials, Catalysis and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10 000, Morocco
| | - Mohammed El Mahi
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Environmental Materials Team, École Nationale Supérieure d’Arts et Métiers (ENSAM), Mohammed V University in Rabat, Rabat 10 000, Morocco
| | - El Mostapha Lotfi
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, Environmental Materials Team, École Nationale Supérieure d’Arts et Métiers (ENSAM), Mohammed V University in Rabat, Rabat 10 000, Morocco
| | - Mohamed Kacimi
- Laboratory of Physical Chemistry of Materials, Catalysis and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10 000, Morocco
| | - Leonarda Francesca Liotta
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, via Ugo La Malfa, 153, 90146 Palermo, Italy
| |
Collapse
|
6
|
U S J, Inoue S, Goel S. A facile technique to develop conductive paper based bioelectrodes for microbial fuel cell applications. Biosens Bioelectron 2022; 214:114479. [DOI: 10.1016/j.bios.2022.114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022]
|
7
|
Phuakkhaw D, Amonpattaratkit P, Klysubun W, Saiwattanasuk P, Midpanon S, Porntheeraphat S, Klamchuen A, Wongchaisuwat A, Sagawa T, Viravathana P. Cu‐ and Fe‐Incorporated Manganese Oxides (Mn
x
O
y
) as Cathodic Catalysts for Hydrogen Peroxide Reduction (HPR) and Oxygen Reduction (OR) in Micro‐direct Methanol Fuel Cells. ChemElectroChem 2022. [DOI: 10.1002/celc.202200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Duangkamon Phuakkhaw
- Department of Chemistry Kasetsart University 50 Ngamwongwan Rd, Chatuchak 10900 Bangkok Thailand
- Center of Excellence on Petrochemical and Materials Technology 7th floor Chulalongkorn University Research Building, Soi Chula 12, Phayathai Rd 10330 Bangkok Thailand
| | - Penphitcha Amonpattaratkit
- Synchrotron Light Research Institute 111 University Avenue, Muang District 30000 Nakhon Ratchasima Thailand
| | - Wantana Klysubun
- Synchrotron Light Research Institute 111 University Avenue, Muang District 30000 Nakhon Ratchasima Thailand
| | - Patraporn Saiwattanasuk
- Department of Chemistry Kasetsart University 50 Ngamwongwan Rd, Chatuchak 10900 Bangkok Thailand
| | - Supatta Midpanon
- Department of Chemistry Kasetsart University 50 Ngamwongwan Rd, Chatuchak 10900 Bangkok Thailand
| | - Supanit Porntheeraphat
- National Electronics and Computer Technology Center National Science and Technology Development Agency Phahonyothin Rd, Khlong Nueng 12120 Klong Luang Pathum Thani Thailand
| | - Annop Klamchuen
- National Nanotechnology Center National Science and Technology Development Agency Phahonyothin Rd, Khlong Nueng 12120 Klong Luang Pathum Thani Thailand
| | - Atchana Wongchaisuwat
- Department of Chemistry Kasetsart University 50 Ngamwongwan Rd, Chatuchak 10900 Bangkok Thailand
| | - Takashi Sagawa
- Quantum Energy Processes Department of Fundamental Energy Science Graduate School of Energy Science Kyoto University Yoshida-Honmachi, Sakyo-ku 606-8501 Kyoto Japan
| | - Pinsuda Viravathana
- Department of Chemistry Kasetsart University 50 Ngamwongwan Rd, Chatuchak 10900 Bangkok Thailand
- Center of Excellence on Petrochemical and Materials Technology 7th floor Chulalongkorn University Research Building, Soi Chula 12, Phayathai Rd 10330 Bangkok Thailand
- Center of Advanced Studies in Tropical Natural Resources Kasetsart University 50 Ngamwongwan Rd, Chatuchak 10900 Bangkok Thailand
| |
Collapse
|
8
|
Gong Y, Xu Y, Que Y, Xu X, Tang Y, Ye D, Zhao H, Zhang J. Prussian blue analogues derived electrocatalyst with multicatalytic centers for boosting oxygen reduction reaction in the wide pH range. J Colloid Interface Sci 2022; 612:639-649. [PMID: 35026569 DOI: 10.1016/j.jcis.2021.12.164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022]
Abstract
Due to the complex of oxygen reduction reaction (ORR), designing catalysts with multicatalytic centers is considered as a promising way for boosting the ORR. Herein, a multicatalytic centers electrocatalyst Fe3C/Mn3O4 encased by N-doped graphitic layers (FeMn PDA-900) is synthesized using iron manganese Prussian blue analogues and dopamine as the precursor. It exhibits a half-wave potential (E1/2) of 0.86 V for ORR and yields of H2O2 lower than 5% in 0.1 M KOH. Moreover, the prepared catalyst has also shown high catalytic ORR performance in both acidic and neutral electrolyte solutions, which exhibits the potential application in both the proton exchange membrane fuel cell and the microbial electrolysis cell. It is found that the good performance can be well explained by proton-coupled electron transfer mechanism due to the multicatalytic centers from Fe-Nx, Fe3C and Mn3O4 for providing enough active sites at the same time and the N-doped graphitic layers as a bridge for facilitating the electron transfer between the interfaces of Fe3C/Mn3O4 nanoparticles, which paves the way for protons and electrons transfer simultaneously and rapidly, and thus lowing the energy barrier and facilitating the ORR process. Therefore, FeMn PDA-900 is a promising candidate to replace precious metal-based ORR electrocatalysts at the whole pH range.
Collapse
Affiliation(s)
- Yanmei Gong
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China
| | - Yuan Xu
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China
| | - Yipeng Que
- Chilwee Group Co., Ltd, Huzhou 313100, PR China
| | - Xueliang Xu
- Chilwee Group Co., Ltd, Huzhou 313100, PR China
| | - Ya Tang
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China
| | - Daixin Ye
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China.
| | - Hongbin Zhao
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China.
| | - Jiujun Zhang
- Department of Physics, College of Sciences & Institute for Sustainable Energy, Shanghai University, 200444, PR China
| |
Collapse
|
9
|
Jiang J, Zhang S, Li S, Zeng W, Li F, Wang W. Magnetized manganese-doped watermelon rind biochar as a novel low-cost catalyst for improving oxygen reduction reaction in microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149989. [PMID: 34525720 DOI: 10.1016/j.scitotenv.2021.149989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cells (MFCs) are promising equipment for water treatment and power generation. The catalyst used in the oxygen reduction reaction (ORR) at the cathode is a critical factor for efficacy of MFCs. Therefore, it is important to develop cost-effective cathode catalysts to enhance application of MFCs. In the current study, a novel cathode catalyst was developed, which was annealed with watermelon rind as raw material and transition metals including iron, and manganese were introduced. The 700Mn/Fe@WRC catalyst, which was annealed at 700 °C, exhibited excellent electrochemical performance. The high relative content of pyridine nitrogen caused by the inherent nitrogen element of the watermelon rind and the high content of iron and manganese elements introduced resulted in increase in electrochemical surface area to 657.6 m2/g. The number of electrons transferred ORR was 3.96, indicating that ORR occurs through a four-electron pathway. The maximum power density of MFCs was 399.3 ± 7.4 mW/m2 with a fitting total internal resistance of 15.242 Ω, and the removal efficiency of COD was 97.1 ± 1.2%. The cost of the 700Mn/Fe@WRC catalyst was approximately 0.15 $/g, which is significantly lower compared with Pt/C (33.0 $/g). Experimental verification showed that the 700Mn/Fe@WRC prepared using the economical watermelon rind biochar (WRC) is an excellent substitute for non-precious metal catalysts used in MFCs.
Collapse
Affiliation(s)
- Jiwei Jiang
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shixuan Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shengnan Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wenlu Zeng
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Wei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
10
|
Anjum A, Ali Mazari S, Hashmi Z, Sattar Jatoi A, Abro R. A review of role of cathodes in the performance of microbial fuel cells. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Co3O4 nanoparticles highly dispersed on hierarchical carbon as anti-biofouling cathode for microbial fuel cells. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Aleman-Gama E, Cornejo-Martell AJ, Ortega-Martínez A, Kamaraj SK, Juárez K, Silva-Martínez S, Alvarez-Gallegos A. Oil-contaminated sediment amended with chitin enhances power production by minimizing the sediment microbial fuel cell internal resistance. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Carbon Nanotube/Pt Cathode Nanocomposite Electrode in Microbial Fuel Cells for Wastewater Treatment and Bioenergy Production. SUSTAINABILITY 2021. [DOI: 10.3390/su13148057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, we reported the fabrication, characterization, and application of carbon nanotube (CNT)-platinum nanocomposite as a novel generation of cathode catalyst in microbial fuel cells (MFCs) for sustainable energy production and wastewater treatment. The efficiency of the carbon nanocomposites was compared by platinum (Pt), which is the most effective and common cathode catalyst. This nanocomposite is utilized to benefit from the catalytic properties of CNTs and reduce the amount of required Pt, as it is an expensive catalyst. The CNT/Pt nanocomposites were synthesized via a chemical reduction technique and the electrodes were characterized by field emission scanning electron microscopy, electronic dispersive X-Ray analysis, and transmission electron microscopy. The nanocomposites were applied as cathode catalysts in the MFC to obtain polarization curve and coulombic efficiency (CE) results. The catalytic properties of electrodes were tested by linear sweep voltammetry. The CNT/Pt at the concentration of 0.3 mg/cm2 had the highest performance in terms of CE (47.16%), internal resistance (551 Ω), COD removal (88.9%), and power generation (143 mW/m2). In contrast, for the electrode with 0.5 mg/L of Pt catalyst, CE, internal resistance, COD removal, and power generation were 19%, 810 Ω, 96%, and 84.1 mW/m2, respectively. So, it has been found that carbon nanocomposite cathode electrodes had better performance for sustainable clean energy production and COD removal by MFC.
Collapse
|
14
|
Characterization and Electrocatalytic Performance of Molasses Derived Co-Doped (P, N) and Tri-Doped (Si, P, N) Carbon for the ORR. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
There is a growing need to develop sustainable electrocatalysts to facilitate the reduction of molecular oxygen that occurs at the cathode in fuel cells, due to the excessive cost and limited availability of precious metal-based catalysts. This study reports the synthesis and characterization of phosphorus and nitrogen co-doped carbon (PNDC) and silicon, phosphorus, and nitrogen tri-doped carbon (SiPNDC) electrocatalysts derived from molasses. This robust microwave-assisted synthesis approach is used to develop a low cost and environmentally friendly carbon with high surface area for application in fuel cells. Co-doped PNDC as well as tri-doped SiPNDC showed Brunauer–Emmet–Teller (BET) surface areas of 437 and 426 m2 g−1, respectively, with well-developed porosity. However, examination of X-ray photoelectron spectroscopy (XPS) data revealed significant alteration in the doping elemental composition among both samples. The results obtained using rotating disk electrode (RDE) measurements show that tri-doped SiPNDC achieves much closer to a 4-electron process than co-doped PNDC. Detailed analysis of experimental results acquired from rotating ring disk electrode (RRDE) studies indicates that there is a negligible amount of peroxide formation during ORR, further confirming the direct-electron transfer pathway results obtained from RDE. Furthermore, SiPNDC shows stable oxygen reduction reaction (ORR) performance over 2500 cycles, making this material a promising electrocatalyst for fuel cell applications.
Collapse
|
15
|
Xian J, Ma H, Li Z, Ding C, Liu Y, Yang J, Cui F. α-FeOOH nanowires loaded on carbon paper anodes improve the performance of microbial fuel cells. CHEMOSPHERE 2021; 273:129669. [PMID: 33524763 DOI: 10.1016/j.chemosphere.2021.129669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/30/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Nanowires synthesized from metal oxides exhibit better conductivity than nanoparticles due to their greater aspect ratio which means that they can transmit electrons over longer distances; in addition, they are also more widely available than pili because their synthesis is not affected by the bacteria themselves. However, there is still little research on the application of metal oxides nanowires to enhance power generation of microbial fuel cells (MFC). In this study, a simple hydrothermal synthesis method was adopted to synthesize α-FeOOH nanowires on carbon paper (α-FeOOH-NWs), which serve as an anode to explore the mechanism of power generation enhancement of MFC. Characterization results reveal α-FeOOH-NWs on carbon paper are approximately 30-50 nm in diameter, with goethite structure. Electrochemical test results indicate that α-FeOOH nanowires could enhance the electrochemical activity of carbon paper and reduce the electron transfer resistance (Rct). Furthermore, α-FeOOH-NWs made the power density of MFC 3.2 times of the control device. SEM result demonstrates that nanowires are beneficial to the formation of biofilms and increase biomass on the electrode surface. Our results demonstrate that nanowires not only improve the electrochemical activity and conductivity of carbon paper but also facilitate the formation of biofilms and increase the biomass of the anode surface. These two mechanisms work together to boost extracellular electron transfer and power generation efficiency of MFC with α-FeOOH-NWs. Our study provides further evidence for the electrical conductivity of metal nanowires, promoting their potential applications in electricity generation such as MFC or other energy development fields.
Collapse
Affiliation(s)
- Jiali Xian
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Hua Ma
- College of Environment and Ecology, Chongqing University, Chongqing, China.
| | - Zhe Li
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Chenchen Ding
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Yan Liu
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Jixiang Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Fuyi Cui
- College of Environment and Ecology, Chongqing University, Chongqing, China
| |
Collapse
|
16
|
Qiu S, Guo Z, Naz F, Yang Z, Yu C. An overview in the development of cathode materials for the improvement in power generation of microbial fuel cells. Bioelectrochemistry 2021; 141:107834. [PMID: 34022579 DOI: 10.1016/j.bioelechem.2021.107834] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022]
Abstract
Since the high cost and low power generation hinder the overall practical application of microbial fuel cells (MFCs), numerous attempts have been made in the field of cathode materials to enhance the electrical performance of MFCs because they directly catalyze the oxygen reduction reactions (ORR). To choose a proper cathode material, following principles such as ORR activity, conductivity, cost-efficiency, durability, surface area, and accessibility should be taken into consideration. In preparation of cathode materials, versatile materials have been chosen, synthesized, or modified to achieve an improvement in power generation of MFCs. The most widely applied cathode materials could be categorized into three classes, namely carbon-base materials, metal-based materials, and biocatalysts. This review summarizes the utilization, development, and the cost of cathode materials applied in MFCs and tries to highlight the effective modification methods of cathode materials which have helped in achieving enhanced power generation of MFCs in recent years.
Collapse
Affiliation(s)
- Song Qiu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenyu Guo
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Faiza Naz
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science, Engineering Laboratory of South Xinjiang Chemical Resources Utilization of Xinjiang Production and Construction Corps, Tarim University, Alar 843300, Xinjiang, China.
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
17
|
Ong YP, Ho LN, Ong SA, Banjuraizah J, Ibrahim AH, Thor SH, Yap KL. A highly sustainable hydrothermal synthesized MnO 2 as cathodic catalyst in solar photocatalytic fuel cell. CHEMOSPHERE 2021; 263:128212. [PMID: 33297171 DOI: 10.1016/j.chemosphere.2020.128212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/20/2020] [Accepted: 08/29/2020] [Indexed: 06/12/2023]
Abstract
A unidirectional flow solar photocatalytic fuel cell (PFC) was successfully developed for the first time to offer alternative for electricity generation and simultaneous wastewater treatment. This study was focused on the synthesis of α-, δ- and β-MnO2 by wet chemical hydrothermal method for application as the cathodic catalyst in PFC. The crystallographic evolution was performed by varying the ratios of KMnO4 to MnSO4. The mechanism of the PFC with the MnO2/C as cathode was also discussed. Results showed that the catalytic activity of MnO2/C cathode was mainly predominated by their crystallographic structures which included Mn-O bond strength and tunnel size, following order of α- > δ- > β-MnO2/C. Interestingly, it was discovered that the specific surface areas (SBET) of different crystal phases did not give an impact on the PFC performance. However, the Pmax could be significantly influenced by the micropore surface area (Smicro) in the comparison among α-MnO2. Furthermore, the morphological transformation carried out by altering the hydrothermal duration demonstrated that the nanowire α-M3(24 h)/C with 1:1 ratio of KMnO4 and MnSO4 yielded excellent PFC performance with a Pmax of 2.8680 μW cm-2 and the lowest Rint of 700 Ω.
Collapse
Affiliation(s)
- Yong-Por Ong
- Center for Frontier Materials Research, School of Materials Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Li-Ngee Ho
- Center for Frontier Materials Research, School of Materials Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia.
| | - Soon-An Ong
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Johar Banjuraizah
- Center for Frontier Materials Research, School of Materials Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Abdul Haqi Ibrahim
- Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Shen-Hui Thor
- Center for Frontier Materials Research, School of Materials Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Kea-Lee Yap
- Center for Frontier Materials Research, School of Materials Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| |
Collapse
|
18
|
Cu, N-codoped carbon rod as an efficient electrocatalyst used in air-cathode for high performance of microbial fuel cells. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Wang X, Peng L, Xu N, Wu M, Wang Y, Guo J, Sun S, Qiao J. Cu/S-Occupation Bifunctional Oxygen Catalysts for Advanced Rechargeable Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52836-52844. [PMID: 33179509 DOI: 10.1021/acsami.0c16760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design and synthesis of low-cost and highly efficient bifunctional catalysts is an inevitable path for rechargeable zinc-air batteries (rZABs). In this work, double-carbon co-supported Co-based oxide with the Cu and S substitutions are synthesized by a one-step hydrothermal method and formed a unique honeycomb structure. As expected, the (Cu, Co)3OS3@CNT-C3N4 exhibits high oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity with low overpotential (0.86 V), high power density (215 mW cm-2), and long-term discharge stability (115 h). The (Cu, Co)3OS3@CNT-C3N4-based rZAB also shows a stronger charge-discharge durability with a very low voltage gap of merely 0.5 V than that of Pt/C+RuO2. The high catalytic performances are attributed to these following reasons: (i) the porous morphology and hierarchical structure with plentiful "catalytic buffer", which accelerates the mass transfer; (ii) a high-speed electronic transmission network established by C3N4 and carbon nanotube (CNT), enhancing the conductivity; (iii) the strong synergistic effect between (Cu, Co)3OS3@CNT and C3N4, which improves the kinetics of ORR/OER; and (iv) the controllable occupation of Cu ions and S ions, which effectively regulates the CoO6 surface and increases the active site density. This work not only offers a promising ORR/OER electrode for rZAB but also provides a new pathway to understand the improvement mechanism for catalysts by the bi-ion substitutions.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, P. R. China
| | - Luwei Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, P. R. China
| | - Nengneng Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, P. R. China
- Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, Louisiana 70504, United States
| | - Mingjie Wu
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Québec J3X 1S2, Canada
| | - Yongxia Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, P. R. China
| | - Jianing Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, P. R. China
| | - Shuhui Sun
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, Varennes, Québec J3X 1S2, Canada
| | - Jinli Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Road, Shanghai 200092, P. R. China
| |
Collapse
|
20
|
Xu K, Lu J, Tegladza ID, Xu Q, Yang Z, Lv G. Combined metal/air fuel cell and electrocoagulation process: Energy generation, flocs production and pollutant removal. CHEMOSPHERE 2020; 255:126925. [PMID: 32416389 DOI: 10.1016/j.chemosphere.2020.126925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Electrocoagulation (EC) which is characterized by in-situ generation of highly absorbable hydroxide flocs, is an environmentally friendly process for treating heavy metal ions and toxic organic wastewater. In order to decrease EC's energy consumption, a combined metal/air FC-EC process which contains two successive parts: metal/air fuel cell (FC) and electrocoagulation (EC) was studied with the consideration of hydroxide flocs production, pollutant removal and energy generation analysis. For the combined iron/air FC-EC process, the porous nickel cathode which has a good performance in high polarization zone was selected as the ideal air cathode. It was found that iron/air FC-EC with acid electrolyte condition has a high energy generation (as high as 20% EC energy consumption). The energy generation increases with iron/air FC time. Also energy generation increases with wastewater's conductivity. Beside the energy generation, the iron/air fuel cell generate extra coagulants Fe2+ for the subsequent EC process. The coagulants generated from iron/air FC and EC process together have further spontaneous hydrolysis reactions with the OH- to form hydroxide flocs, which are beneficial for a rapid adsorption and pollutant trapping. Compared with EC process, iron/air (or Al/air) FC-EC process shows lower energy consumption and high removal efficiency for treating acid wastewater.
Collapse
Affiliation(s)
- Kai Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Jun Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China.
| | - Isaac D Tegladza
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Qiuling Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Zhenting Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Guojun Lv
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| |
Collapse
|
21
|
Abstract
A thin film aluminum-air battery has been constructed using a commercial grade Al-6061 plate as anode electrode, an air-breathing carbon cloth carrying an electrocatalyst as cathode electrode, and a thin porous paper soaked with aqueous KOH as electrolyte. This type of battery demonstrates a promising behavior under ambient conditions of 20 °C temperature and around 40% humidity. It presents good electric characteristics when plain nanoparticulate carbon (carbon black) is used as electrocatalyst but it is highly improved when MnO2 particles are mixed with carbon black. Thus, the open-circuit voltage was 1.35 V, the short-circuit current density 50 mA cm−2, and the maximum power density 20 mW cm−2 in the absence of MnO2 and increased to 1.45 V, 60 mA cm−2, and 28 mW cm−2, respectively, in the presence of MnO2. The corresponding maximum energy yield during battery discharge was 4.9 mWh cm−2 in the absence of MnO2 and increased to 5.5 mWh cm−2 in the presence of MnO2. In the second case, battery discharge lasted longer under the same discharge conditions. The superiority of the MnO2-containing electrocatalyst is justified by electrode electrochemical characterization data demonstrating reduction reactions at higher potential and charge transfer with much smaller resistance.
Collapse
|
22
|
Wang M, Wang S, Yang H, Ku W, Yang S, Liu Z, Lu G. Carbon-Based Electrocatalysts Derived From Biomass for Oxygen Reduction Reaction: A Minireview. Front Chem 2020; 8:116. [PMID: 32185161 PMCID: PMC7059099 DOI: 10.3389/fchem.2020.00116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/07/2020] [Indexed: 11/13/2022] Open
Abstract
Oxygen reduction reaction (ORR) electrocatalysts derived from biomass have become one of the research focuses in hetero-catalysis due to their low cost, high performance, and reproducibility properties. Related researches are of great significance for the development of next-generation fuel cells and metal-air batteries. Herein, the preparation methods of various biomass-derived catalysts and their performance in alkaline, neutral, and acidic media are summarized. This review clarifies the research progress of biomass carbon-based electrocatalysts for ORR in acidic, alkaline and neutral media, and discusses the future development trends. This minireview can give us an important enlightenment to practical application in the future.
Collapse
Affiliation(s)
- Mi Wang
- Engineering College, Changchun Normal University, Changchun, China
| | - Shiyu Wang
- Engineering College, Changchun Normal University, Changchun, China
| | - Haoqi Yang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Wen Ku
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Shuchen Yang
- Engineering College, Changchun Normal University, Changchun, China
| | - Zhenning Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Guolong Lu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| |
Collapse
|
23
|
Investigation and Improvement of Scalable Oxygen Reducing Cathodes for Microbial Fuel Cells by Spray Coating. Processes (Basel) 2019. [DOI: 10.3390/pr8010011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This contribution describes the effect of the quality of the catalyst coating of cathodes for wastewater treatment by microbial fuel cells (MFC). The increase in coating quality led to a strong increase in MFC performance in terms of peak power density and long-term stability. This more uniform coating was realized by an airbrush coating method for applying a self-developed polymeric solution containing different catalysts (MnO2, MoS2, Co3O4). In addition to the possible automation of the presented coating, this method did not require a calcination step. A cathode coated with catalysts, for instance, MnO2/MoS2 (weight ratio 2:1), by airbrush method reached a peak and long-term power density of 320 and 200–240 mW/m2, respectively, in a two-chamber MFC. The long-term performance was approximately three times higher than a cathode with the same catalyst system but coated with the former paintbrush method on a smaller cathode surface area. This extraordinary increase in MFC performance confirmed the high impact of catalyst coating quality, which could be stronger than variations in catalyst concentration and composition, as well as in cathode surface area.
Collapse
|
24
|
Rong H, Zhan T, Sun Y, Wen Y, Liu X, Teng H. ZIF-8 derived nitrogen, phosphorus and sulfur tri-doped mesoporous carbon for boosting electrocatalysis to oxygen reduction in universal pH range. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.122] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
In suit growth of CuSe nanoparticles on MXene (Ti3C2) nanosheets as an efficient counter electrode for quantum dot-sensitized solar cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.132] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Noori MT, Ghangrekar MM, Mukherjee CK, Min B. Biofouling effects on the performance of microbial fuel cells and recent advances in biotechnological and chemical strategies for mitigation. Biotechnol Adv 2019; 37:107420. [PMID: 31344446 DOI: 10.1016/j.biotechadv.2019.107420] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/01/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023]
Abstract
The occurrence of biofouling in MFC can cause severe problems such as hindering proton transfer and increasing the ohmic and charge transfer resistance of cathodes, which results in a rapid decline in performance of MFC. This is one of the main reasons why scaling-up of MFCs has not yet been successfully accomplished. The present review article is a wide-ranging attempt to provide insights to the biofouling mechanisms on surfaces of MFC, mainly on proton exchange membranes and cathodes, and their effects on performance of MFC based on theoretical and practical evidence. Various biofouling mitigation techniques for membranes are discussed, including preparation of antifouling composite membranes, modification of the physical and chemical properties of existing membranes, and coating with antifouling agents. For cathodes of MFC, use of Ag nanoparticles, Ag-based composite nanoparticles, and antifouling chemicals is outlined in considerable detail. Finally, prospective techniques for mitigation of biofouling are discussed, which have not been given much previous attention in the field of MFC research. This article will help to enhance understanding of the severity of biofouling issues in MFCs and provides up-to-date solutions. It will be beneficial for scientific communities for further strengthening MFC research and will also help in progressing this cutting-edge technology to scale-up, using the most efficient methods as described here.
Collapse
Affiliation(s)
- Md T Noori
- Department of Environmental Science and Engineering, Kyung Hee University, Yongin-Si, Republic of Korea
| | - M M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, 721302, India
| | - C K Mukherjee
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, 721302, India
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University, Yongin-Si, Republic of Korea.
| |
Collapse
|
27
|
Homogeneous reduced graphene oxide supported NiO-MnO2 ternary hybrids for electrode material with improved capacitive performance. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.02.084] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Jiang L, Zhang G, Li D, Liu C, Xing S. One-pot achievement of MnO2/Fe2O3 nanocomposites for the oxygen reduction reaction with enhanced catalytic activity. NEW J CHEM 2019. [DOI: 10.1039/c9nj04317a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MnO2/Fe2O3 nanocomposites were achieved in one-pot followed by high-temperature treatment, which presented excellent electrocatalytic activity for the oxygen reduction reaction.
Collapse
Affiliation(s)
- Lingling Jiang
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Guodong Zhang
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Dehua Li
- Engineering Research Center of Forensic Sciences
- Department of Forensic Sciences
- Jilin Police College
- Changchun
- P. R. China
| | - Chengzhan Liu
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Shuangxi Xing
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| |
Collapse
|
29
|
Noori MT, Tiwari BR, Ghangrekar MM, Min B. Azadirachta indica leaf-extract-assisted synthesis of CoO–NiO mixed metal oxide for application in a microbial fuel cell as a cathode catalyst. SUSTAINABLE ENERGY & FUELS 2019. [DOI: 10.1039/c9se00661c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, a highly efficient yet low-cost mixed transition metal oxide of Ni and Co as CoO–NiO was synthesized using Azadirachta indica leaf extract as a bioactive chelating agent.
Collapse
Affiliation(s)
- Md. T. Noori
- Department of Environmental Science and Engineering
- Kyung Hee University
- Yongin-si
- South Korea
| | - B. R. Tiwari
- Department of Civil Engineering
- Indian Institute of Technology Kharagpur
- Kharagpur – 721302
- India
| | - M. M. Ghangrekar
- Department of Civil Engineering
- Indian Institute of Technology Kharagpur
- Kharagpur – 721302
- India
| | - Booki Min
- Department of Environmental Science and Engineering
- Kyung Hee University
- Yongin-si
- South Korea
| |
Collapse
|