1
|
Clauzel J, Colitti N, Combeau M, Labriji W, Robert L, Brilhault A, Cirillo C, Desmoulin F, Raymond-Letron I, Loubinoux I. In vivo biocompatibility assessment of 3D printed bioresorbable polymers for brain tissue regeneration. A feasibility study. Regen Ther 2024; 26:941-955. [PMID: 39512739 PMCID: PMC11541680 DOI: 10.1016/j.reth.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction The limited capacity of brain tissue to regenerate after acute injury, hampered by cell death, edema and inflammation, has led to an interest in promising and innovative approaches such as implantable regenerative scaffolds designed to improve brain plasticity. Leveraging the capabilities of bioprinting, these scaffolds can be tailored to match the intricate architecture of the brain. Methods In this methodological study, we performed in vivo biocompatibility assessments after a brain lesion on three distinct bioeliminable or bioresorbable materials: Poly(ethylene glycol) diacrylate (PEGDA), Polycaprolactone (PCL) and a PEGDA mixed with gelatin methacrylate (PEGDA-GelMA). Results A scaffold with a complex shape was printed with patterns, spatial resolution and porosity adapted to cerebral cortex reconstruction. In vivo evaluations were complemented by behavioral monitoring, affirming the safety of these materials. High-resolution T2 MRI imaging effectively captured scaffold structures and demonstrated their non-invasive utility in monitoring degradability. ASL MRI imaging quantified cerebral blood flow and was positively and significantly correlated with lectin immunofluorescent labeling. It may be used to non-invasively monitor progressive revascularization of implants.PEGDA produced an intense foreign-body response, encapsulated by a fibro-inflammatory barrier. On the other hand, PCL provoked a controlled inflammatory reaction and facilitated cell migration into the scaffold, although it induced a fibrotic response around PCL fibers. Conversely, the PEGDA-GelMA composite emerged as a promising candidate for intracerebral implantation. It facilitated the creation of a permissive glial layer, while also inducing neovascularization and attracting neuronal progenitors. Conclusion Behavior, MRI monitoring and histology allowed a thorough following of biomaterial biocompatibility. The collective findings position PEGDA-GelMA as a convincing biomaterial option as a basis for treating severe brain lesions, offering new avenues in the search for effective treatments.
Collapse
Affiliation(s)
- Julien Clauzel
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Nina Colitti
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Maylis Combeau
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Wafae Labriji
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Lorenne Robert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Adrien Brilhault
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Carla Cirillo
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Franck Desmoulin
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Isabelle Raymond-Letron
- LabHPEC, Université de Toulouse, ENVT, Toulouse, France
- Institut Restore, Université de Toulouse, CNRS U-5070, EFS, ENVT, Inserm U1301, Toulouse, France
| | - Isabelle Loubinoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
2
|
Anggraini D, Zhang T, Liu X, Okano K, Tanaka Y, Inagaki N, Li M, Hosokawa Y, Yamada S, Yalikun Y. Guided axon outgrowth of neurons by molecular gradients generated from femtosecond laser-fabricated micro-holes. Talanta 2024; 267:125200. [PMID: 37738745 DOI: 10.1016/j.talanta.2023.125200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
OBJECTIVE Transplantation of scaffold-embedded guided neurons has been reported to increase neuronal regeneration following brain injury. However, precise axonal integration between host and transplant neurons to form functional synapses remains a major problem. Thus, a high-precision tool to actuate neuronal axon outgrowth in real-time conditions is required to attain robust axon regeneration. This study aims to establish a microfluidic platform for precise and real-time axon outgrowth guidance. METHODS A microfluidic device with a 4 μm thick thin-glass sheet as the neuron culture substrate is fabricated. Surface of the glass sheet is chemically modified to facilitate neuron attachment. Femtosecond (fs) laser is used to engrave the glass sheet to achieve micro-holes, where netrin-1 is released for directing the movement of the neuronal axon. RESULTS Numerical simulation and experimental data demonstrate that netrin-1 gradient is formed after it passes through the micro-hole. The neuronal response results show the outgrowth rate of the axon is significantly increased by netrin-1 gradient. Furthermore, a majority of neuronal axons exhibit guided outgrowth characterized by positive turning angles of axon displacement in the direction of netrin-1 gradients. CONCLUSION Integrating fs laser and microfluidic device facilitates controlled and instantaneous axon outgrowth in a non-invasive manner. SIGNIFICANCE The developed real-time microfluidic platform shows potential in the application for on-site neuronal transplantation, which is significant for the treatment of a range of neurological disorders and injuries.
Collapse
Affiliation(s)
- Dian Anggraini
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Tianlong Zhang
- College of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Xun Liu
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Kazunori Okano
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Yo Tanaka
- Center for Biosystems Dynamics Research (BDR), RIKEN, Osaka, 565-0871, Japan
| | - Naoyuki Inagaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, 2122, Australia
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Sohei Yamada
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan; Center for Biosystems Dynamics Research (BDR), RIKEN, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Castillo Ransanz L, Van Altena PFJ, Heine VM, Accardo A. Engineered cell culture microenvironments for mechanobiology studies of brain neural cells. Front Bioeng Biotechnol 2022; 10:1096054. [PMID: 36588937 PMCID: PMC9794772 DOI: 10.3389/fbioe.2022.1096054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
The biomechanical properties of the brain microenvironment, which is composed of different neural cell types, the extracellular matrix, and blood vessels, are critical for normal brain development and neural functioning. Stiffness, viscoelasticity and spatial organization of brain tissue modulate proliferation, migration, differentiation, and cell function. However, the mechanical aspects of the neural microenvironment are largely ignored in current cell culture systems. Considering the high promises of human induced pluripotent stem cell- (iPSC-) based models for disease modelling and new treatment development, and in light of the physiological relevance of neuromechanobiological features, applications of in vitro engineered neuronal microenvironments should be explored thoroughly to develop more representative in vitro brain models. In this context, recently developed biomaterials in combination with micro- and nanofabrication techniques 1) allow investigating how mechanical properties affect neural cell development and functioning; 2) enable optimal cell microenvironment engineering strategies to advance neural cell models; and 3) provide a quantitative tool to assess changes in the neuromechanobiological properties of the brain microenvironment induced by pathology. In this review, we discuss the biological and engineering aspects involved in studying neuromechanobiology within scaffold-free and scaffold-based 2D and 3D iPSC-based brain models and approaches employing primary lineages (neural/glial), cell lines and other stem cells. Finally, we discuss future experimental directions of engineered microenvironments in neuroscience.
Collapse
Affiliation(s)
- Lucía Castillo Ransanz
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Pieter F. J. Van Altena
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| | - Vivi M. Heine
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Department of Complex Trait Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
4
|
Colitti N, Desmoulin F, Le Friec A, Labriji W, Robert L, Michaux A, Conchou F, Cirillo C, Loubinoux I. Long-Term Intranasal Nerve Growth Factor Treatment Favors Neuron Formation in de novo Brain Tissue. Front Cell Neurosci 2022; 16:871532. [PMID: 35928573 PMCID: PMC9345199 DOI: 10.3389/fncel.2022.871532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To date, no safe and effective pharmacological treatment has been clinically validated for improving post-stroke neurogenesis. Growth factors are good candidates but low safety has limited their application in the clinic. An additional restraint is the delivery route. Intranasal delivery presents many advantages. Materials and Methods A brain lesion was induced in twenty-four rats. Nerve growth factor (NGF) 5 μg/kg/day or vehicle was given intranasally from day 10 post-lesion for two periods of five weeks, separated by a two-week wash out period with no treatment. Lesion volume and atrophy were identified by magnetic resonance imaging (MRI). Anxiety and sensorimotor recovery were measured by behavior tests. Neurogenesis, angiogenesis and inflammation were evaluated by histology at 12 weeks. Results Remarkable neurogenesis occurred and was visible at the second and third months after the insult. Tissue reconstruction was clearly detected by T2 weighted MRI at 8 and 12 weeks post-lesion and confirmed by histology. In the new tissue (8.1% of the lesion in the NGF group vs. 2.4%, in the control group at 12 weeks), NGF significantly increased the percentage of mature neurons (19% vs. 7%). Angiogenesis and inflammation were not different in the two groups. Sensorimotor recovery was neither improved nor hampered by NGF during the first period of treatment, but NGF treatment limited motor recovery in the second period. Interpretation The first five-week period of treatment was very well tolerated. This study is the first presenting the effects of a long treatment with NGF and has shown an important tissue regeneration rate at 8 and 12 weeks post-injury. NGF may have increased neuronal differentiation and survival and favored neurogenesis and neuron survival through subventricular zone (SVZ) neurogenesis or reprogramming of reactive astrocytes. For the first time, we evidenced a MRI biomarker of neurogenesis and tissue reconstruction with T2 and diffusion weighted imaging.
Collapse
Affiliation(s)
- Nina Colitti
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Alice Le Friec
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Wafae Labriji
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Lorenne Robert
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Amandine Michaux
- Unit of Medical Imaging, National Veterinary School of Toulouse, University of Toulouse, Toulouse, France
| | - Fabrice Conchou
- Unit of Medical Imaging, National Veterinary School of Toulouse, University of Toulouse, Toulouse, France
| | - Carla Cirillo
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
| | - Isabelle Loubinoux
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse (UPS), Toulouse, France
- *Correspondence: Isabelle Loubinoux,
| |
Collapse
|
5
|
Hacene S, Le Friec A, Desmoulin F, Robert L, Colitti N, Fitremann J, Loubinoux I, Cirillo C. Present and future avenues of cell-based therapy for brain injury: The enteric nervous system as a potential cell source. Brain Pathol 2022; 32:e13105. [PMID: 35773942 PMCID: PMC9425017 DOI: 10.1111/bpa.13105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
Cell therapy is a promising strategy in the field of regenerative medicine; however, several concerns limit the effective clinical use, namely a valid cell source. The gastrointestinal tract, which contains a highly organized network of nerves called the enteric nervous system (ENS), is a valuable reservoir of nerve cells. Together with neurons and neuronal precursor cells, it contains glial cells with a well described neurotrophic potential and a newly identified neurogenic one. Recently, enteric glia is looked at as a candidate for cell therapy in intestinal neuropathies. Here, we present the therapeutic potential of the ENS as cell source for brain repair, too. The example of stroke is introduced as a brain injury where cell therapy appears promising. This disease is the first cause of handicap in adults. The therapies developed in recent years allow a partial response to the consequences of the disease. The only prospect of recovery in the chronic phase is currently based on rehabilitation. The urgency to offer other treatments is therefore tangible. In the first part of the review, some elements of stroke pathophysiology are presented. An update on the available therapeutic strategies is provided, focusing on cell‐ and biomaterial‐based approaches. Following, the ENS is presented with its anatomical and functional characteristics, focusing on glial cells. The properties of these cells are depicted, with particular attention to their neurotrophic and, recently identified, neurogenic properties. Finally, preliminary data on a possible therapeutic approach combining ENS‐derived cells and a biomaterial are presented.
Collapse
Affiliation(s)
- Sirine Hacene
- National Veterinary School of Toulouse, University of Toulouse, Toulouse, France.,Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Alice Le Friec
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France.,Department of Biological and Chemical Engineering-Medical Biotechnology, Aarhus University, Aarhus, Denmark
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Lorenne Robert
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Nina Colitti
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Juliette Fitremann
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Isabelle Loubinoux
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| | - Carla Cirillo
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
| |
Collapse
|
6
|
Friction and Wear Characteristics of Polydimethylsiloxane under Water-Based Lubrication Conditions. MATERIALS 2022; 15:ma15093262. [PMID: 35591596 PMCID: PMC9103941 DOI: 10.3390/ma15093262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 12/21/2022]
Abstract
In this study, the friction and wear characteristics of polydimethylsiloxane (PDMS) were evaluated when using lubricants created by adding surfactants at various ratios to deionized (DI) water. When pure DI water is used as a lubricant, the repulsion of water from the hydrophobic PDMS surface is large and the interfacial affinity is low; thus, the lubrication properties cannot be significantly improved. However, when a lubricant with a surfactant is added to DI water, the interfacial affinity with the PDMS surface increases to form a lubricating film, and the friction coefficient is greatly reduced. In this study, under dry and pure DI water conditions, severe wear tracks were formed on the PDMS surface after 10,000 cycles of reciprocating sliding motion under a vertical load of 100 mN, whereas in the case of the surfactant-based and water-based lubricant, no severe wear tracks occurred. The friction and wear characteristics of the PDMS were evaluated by increasing the normal loads and sliding cycles with a water-based lubricant containing 1 wt % surfactant. Under normal loads of 300 mN and 500 mN, only minor scratches occurred on the PDMS surface up to 10,000 and 100,000 cycles, respectively, but after 300,000 cycles, very severe pit wear tracks occurred.
Collapse
|
7
|
Li C, Kuss M, Kong Y, Nie F, Liu X, Liu B, Dunaevsky A, Fayad P, Duan B, Li X. 3D Printed Hydrogels with Aligned Microchannels to Guide Neural Stem Cell Migration. ACS Biomater Sci Eng 2021; 7:690-700. [PMID: 33507749 DOI: 10.1021/acsbiomaterials.0c01619] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Following traumatic or ischemic brain injury, rapid cell death and extracellular matrix degradation lead to the formation of a cavity at the brain lesion site, which is responsible for prolonged neurological deficits and permanent disability. Transplantation of neural stem/progenitor cells (NSCs) represents a promising strategy for reconstructing the lesion cavity and promoting tissue regeneration. In particular, the promotion of neuronal migration, organization, and integration of transplanted NSCs is critical to the success of stem cell-based therapy. This is particularly important for the cerebral cortex, the most common area involved in brain injuries, because the highly organized structure of the cerebral cortex is essential to its function. Biomaterials-based strategies show some promise for conditioning the lesion site microenvironment to support transplanted stem cells, but the progress in demonstrating organized cell engraftment and integration into the brain is very limited. An effective approach to sufficiently address these challenges has not yet been developed. Here, we have implemented a digital light-processing-based 3D printer and printed hydrogel scaffolds with a designed shape, uniaxially aligned microchannels, and tunable mechanical properties. We demonstrated the capacity to achieve high shape precision to the lesion site with brain tissue-matching mechanical properties. We also established spatial control of bioactive molecule distribution within 3D printed hydrogel scaffolds. These printed hydrogel scaffolds have shown high neuro-compatibility with aligned neuronal outgrowth along with the microchannels. This study will provide a biomaterial-based approach that can serve as a protective and guidance vehicle for transplanted NSC organization and integration for brain tissue regeneration after injuries.
Collapse
Affiliation(s)
- Cui Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.,Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Fujiao Nie
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Xiaoyan Liu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Bo Liu
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Anna Dunaevsky
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Pierre Fayad
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Xiaowei Li
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
8
|
Hung HS, Yu AYH, Hsieh SC, Kung ML, Huang HY, Fu RH, Yeh CA, Hsu SH. Enhanced Biocompatibility and Differentiation Capacity of Mesenchymal Stem Cells on Poly(dimethylsiloxane) by Topographically Patterned Dopamine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44393-44406. [PMID: 32697572 DOI: 10.1021/acsami.0c05747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Controlling the behavior of mesenchymal stem cells (MSCs) through topographic patterns is an effective approach for stem cell studies. We, herein, reported a facile method to create a dopamine (DA) pattern on poly(dimethylsiloxane) (PDMS). The topography of micropatterned DA was produced on PDMS after plasma treatment. The grid-topographic-patterned surface of PDMS-DA (PDMS-DA-P) was measured for adhesion force and Young's modulus by atomic force microscopy. The surface of PDMS-DA-P demonstrated less stiff and more elastic characteristics compared to either nonpatterned PDMS-DA or PDMS. The PDMS-DA-P evidently enhanced the differentiation of MSCs into various tissue cells, including nerve, vessel, bone, and fat. We further designed comprehensive experiments to investigate adhesion, proliferation, and differentiation of MSCs in response to PDMS-DA-P and showed that the DA-patterned surface had good biocompatibility and did not activate macrophages or platelets in vitro and had low foreign body reaction in vivo. Besides, it protected MSCs from apoptosis as well as excessive reactive oxygen species (ROS) generation. Particularly, the patterned surface enhanced the differentiation capacity of MSCs toward neural and endothelial cells. The stromal cell-derived factor-1α/CXantiCR4 pathway may be involved in mediating the self-recruitment and promoting the differentiation of MSCs. These findings support the potential application of PDMS-DA-P in either cell treatment or tissue repair.
Collapse
Affiliation(s)
- Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan, R.O.C
| | - Alex Yang-Hao Yu
- Ministry of Health & Welfare, Changhua Hospital, Changhua 51341, Taiwan, R.O.C
| | - Shu-Chen Hsieh
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, R.O.C
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan, R.O.C
| | - Hsiu-Yuan Huang
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan, R.O.C
| | - Chun-An Yeh
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| |
Collapse
|
9
|
A Reproducible New Model of Focal Ischemic Injury in the Marmoset Monkey: MRI and Behavioural Follow-Up. Transl Stroke Res 2020; 12:98-111. [PMID: 32249405 DOI: 10.1007/s12975-020-00804-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Abstract
Ischemic stroke mostly affects the primary motor cortex and descending motor fibres, with consequent motor impairment. Pre-clinical models of stroke with reproducible and long-lasting sensorimotor deficits in higher-order animals are lacking. We describe a new method to induce focal brain damage targeting the motor cortex to study damage to the descending motor tracts in the non-human primate. Stereotaxic injection of malonate into the primary motor cortex produced a focal lesion in middle-aged marmosets (Callithrix jacchus). Assessment of sensorimotor function using a neurological scale and testing of forelimb dexterity and strength lasted a minimum of 12 weeks. Lesion evolution was followed by magnetic resonance imaging (MRI) at 24 h, 1 week, 4 and 12 weeks post-injury and before sacrifice for immunohistochemistry. Our model produced consistent lesions of the motor cortex, subcortical white matter and caudate nucleus. All animals displayed partial spontaneous recovery with long lasting motor deficits of force (54% loss) and dexterity (≈ 70% loss). Clearly visible T2 hypointensity in the white matter was observed with MRI and corresponded to areas of chronic gliosis in the internal capsule and lenticular fasciculus. We describe a straightforward procedure to reproducibly injure the motor cortex in the marmoset monkey, causing long-lasting motor deficits. The MRI signature reflects Wallerian degeneration and remote injury of corticospinal and corticopontine tracts, as well as subcortical motor loops. Our model may be suitable for the testing of therapies for post-stroke recovery, particularly in the chronic phase.
Collapse
|
10
|
Miao S, Cui H, Esworthy T, Mahadik B, Lee S, Zhou X, Hann SY, Fisher JP, Zhang LG. 4D Self-Morphing Culture Substrate for Modulating Cell Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902403. [PMID: 32195081 PMCID: PMC7080541 DOI: 10.1002/advs.201902403] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/30/2020] [Indexed: 05/08/2023]
Abstract
As the most versatile and promising cell source, stem cells have been studied in regenerative medicine for two decades. Currently available culturing techniques utilize a 2D or 3D microenvironment for supporting the growth and proliferation of stem cells. However, these culture systems fail to fully reflect the supportive biological environment in which stem cells reside in vivo, which contain dynamic biophysical growth cues. Herein, a 4D programmable culture substrate with a self-morphing capability is presented as a means to enhance dynamic cell growth and induce differentiation of stem cells. To function as a model system, a 4D neural culture substrate is fabricated using a combination of printing and imprinting techniques keyed to the different biological features of neural stem cells (NSCs) at different differentiation stages. Results show the 4D culture substrate demonstrates a time-dependent self-morphing process that plays an essential role in regulating NSC behaviors in a spatiotemporal manner and enhances neural differentiation of NSCs along with significant axonal alignment. This study of a customized, dynamic substrate revolutionizes current stem cell therapies, and can further have a far-reaching impact on improving tissue regeneration and mimicking specific disease progression, as well as other impacts on materials and life science research.
Collapse
Affiliation(s)
- Shida Miao
- Department of Mechanical and Aerospace EngineeringThe George Washington University3590 Science and Engineering Hall, 800 22nd Street NWWashingtonDC20052USA
| | - Haitao Cui
- Department of Mechanical and Aerospace EngineeringThe George Washington University3590 Science and Engineering Hall, 800 22nd Street NWWashingtonDC20052USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace EngineeringThe George Washington University3590 Science and Engineering Hall, 800 22nd Street NWWashingtonDC20052USA
| | - Bhushan Mahadik
- Fischell Department of BioengineeringUniversity of Maryland3238 Jeong H. Kim Engineering BuildingCollege ParkMD20742USA
| | - Se‐jun Lee
- Department of Mechanical and Aerospace EngineeringThe George Washington University3590 Science and Engineering Hall, 800 22nd Street NWWashingtonDC20052USA
| | - Xuan Zhou
- Department of Mechanical and Aerospace EngineeringThe George Washington University3590 Science and Engineering Hall, 800 22nd Street NWWashingtonDC20052USA
| | - Sung Yun Hann
- Department of Mechanical and Aerospace EngineeringThe George Washington University3590 Science and Engineering Hall, 800 22nd Street NWWashingtonDC20052USA
| | - John P. Fisher
- Fischell Department of BioengineeringUniversity of Maryland3238 Jeong H. Kim Engineering BuildingCollege ParkMD20742USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace EngineeringThe George Washington University3590 Science and Engineering Hall, 800 22nd Street NWWashingtonDC20052USA
- Department of Electrical and Computer EngineeringDepartment of MedicineDepartment of Biomedical EngineeringThe George Washington UniversityWashingtonDC20052USA
| |
Collapse
|
11
|
Drobnik J, Pietrucha K, Janczar K, Polis L, Polis B, Safandowska M, Szymański J. Intra-cerebral implantation of a variety of collagenous scaffolds with nervous embryonic cells. Exp Ther Med 2019; 18:4758-4764. [PMID: 31772645 PMCID: PMC6862020 DOI: 10.3892/etm.2019.8116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 08/27/2019] [Indexed: 12/28/2022] Open
Abstract
Collagenous scaffolds provide good conditions for embryonic nerve cell growth. The aim of the current study was to assess the brains reaction to the implantation of 3D sponge-shaped scaffolds. These scaffolds consisted of collagen (Col) and Col with chondroitin sulphate, which is modified by carbodiimide, or Col crosslinked with dialdehyde cellulose. The current study also evaluated the expression of integrins α2 and β1 in embryonic nerve cells. Embryonic nerve cells were isolated from the brains of rat embryos. Acellular scaffolds, or scaffolds populated with embryonic nerve cells, were implanted into the rats brain. The fibers of all the implanted scaffolds remained intact and served as a template for cell infiltration. The implants induced minimal to moderate inflammatory responses and minimal glial scar formations. Immunohistochemical studies did not indicate any microtubule-associated protein 2 or glial fibrillary acidic protein-positive cells inside the scaffolds. Acellular and cell-populated scaffolds yielded similar responses in the brain. The expression of integrin α2 and β1 was observed in embryonic nervous cells. TC-I15, the integrin α2β1 inhibitor, was not demonstrated to modify cell entrapment within the collagenous scaffolds. All applied scaffolds were well tolerated by the tissue and were indicated to support blood vessel formation. Therefore, all tested biomaterials are recommended for further studies. Additional chemical modifications of the material are suggested to protect the seeded cells from apoptosis after implantation into the brain.
Collapse
Affiliation(s)
- Jacek Drobnik
- Laboratory of Connective Tissue Metabolism, Department of Pathophysiology, Medical University of Lodz, 90-136 Lodz, Poland
| | - Krystyna Pietrucha
- Department of Material and Commodity Sciences and Textile Metrology, Lodz University of Technology, 90-924 Lodz, Poland
| | - Karolina Janczar
- Department of Pathomorphology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Lech Polis
- Department of Neurosurgery, Polish Mothers' Memorial Hospital-Research Institute, 93-338 Lodz, Poland
| | - Bartosz Polis
- Department of Neurosurgery, Polish Mothers' Memorial Hospital-Research Institute, 93-338 Lodz, Poland
| | - Marta Safandowska
- Department of Material and Commodity Sciences and Textile Metrology, Lodz University of Technology, 90-924 Lodz, Poland
| | - Jacek Szymański
- Central Scientific Laboratory, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
12
|
Riesco R, Boyer L, Blosse S, Lefebvre PM, Assemat P, Leichle T, Accardo A, Malaquin L. Water-in-PDMS Emulsion Templating of Highly Interconnected Porous Architectures for 3D Cell Culture. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28631-28640. [PMID: 31334634 DOI: 10.1021/acsami.9b07564] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development of advanced techniques of fabrication of three-dimensional (3D) microenvironments for the study of cell growth and proliferation has become one of the major motivations of material scientists and bioengineers in the past decade. Here, we present a novel residueless 3D structuration technique of poly(dimethylsiloxane) (PDMS) by water-in-PDMS emulsion casting and subsequent curing process in temperature-/pressure-controlled environment. Scanning electron microscopy and X-ray microcomputed tomography allowed us to investigate the impact of those parameters on the microarchitecture of the porous structure. We demonstrated that the optimized emulsion casting process gives rise to large-scale and highly interconnected network with pore size ranging from 500 μm to 1.5 mm that turned out to be nicely adapted to 3D cell culture. Experimental cell culture validations were performed using SaOS-2 (osteosarcoma) cell lines. Epifluorescence and deep penetration imaging techniques as two-photon confocal microscopy unveiled information about cell morphology and confirmed a homogeneous cell proliferation and spatial distribution in the 3D porous structure within an available volume larger than 1 cm3. These results open alternative scenarios for the fabrication and integration of porous scaffolds for the development of 3D cell culture platforms.
Collapse
Affiliation(s)
- Roberto Riesco
- LAAS-CNRS, Université de Toulouse, CNRS , F-31400 Toulouse , France
- Institut National des Sciences Appliquées-INSA , F-31400 Toulouse , France
| | - Louisa Boyer
- LAAS-CNRS, Université de Toulouse, CNRS , F-31400 Toulouse , France
| | - Sarah Blosse
- LAAS-CNRS, Université de Toulouse, CNRS , F-31400 Toulouse , France
- Institut National des Sciences Appliquées-INSA , F-31400 Toulouse , France
| | - Pauline M Lefebvre
- Institut de Mécanique des Fluides de Toulouse, Université de Toulouse, CNRS , F-31400 Toulouse , France
- FR FERMAT, Université de Toulouse, CNRS, INPT, UPS , F-31400 Toulouse , France
| | - Pauline Assemat
- Institut de Mécanique des Fluides de Toulouse, Université de Toulouse, CNRS , F-31400 Toulouse , France
| | - Thierry Leichle
- LAAS-CNRS, Université de Toulouse, CNRS , F-31400 Toulouse , France
| | - Angelo Accardo
- LAAS-CNRS, Université de Toulouse, CNRS , F-31400 Toulouse , France
| | - Laurent Malaquin
- LAAS-CNRS, Université de Toulouse, CNRS , F-31400 Toulouse , France
| |
Collapse
|
13
|
Accardo A, Cirillo C, Lionnet S, Vieu C, Loubinoux I. Interfacing cells with microengineered scaffolds for neural tissue reconstruction. Brain Res Bull 2019; 152:202-211. [PMID: 31348979 DOI: 10.1016/j.brainresbull.2019.07.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022]
Abstract
The development of cellular microenvironments suitable for neural tissue engineering purposes involves a plethora of research fields ranging from cell biology to biochemistry, neurosciences, physics, nanotechnology, mechanobiology. In the last two decades, this multi-disciplinary activity has led to the emergence of numerous strategies to create architectures capable of reproducing the topological, biochemical and mechanical properties of the extracellular matrix present in the central (CNS) and peripheral nervous system (PNS). Some of these approaches have succeeded in inducing the functional recovery of damaged areas in the CNS and the PNS to address the current lack of effective medical treatments for this type of injury. In this review, we analyze recent developments in the realization of two-dimensional and three-dimensional neuronal scaffolds following either top-down or bottom-up approaches. After providing an overview of the different fabrication techniques employed for tailoring the biomaterials, we draw on specific examples to describe the major features of the developed approaches. We then conclude with prospective proof of concept studies on guiding scaffolds and regenerative models on macro-scale brain implants targeting neural regeneration.
Collapse
Affiliation(s)
- Angelo Accardo
- LAAS-CNRS, Université de Toulouse, CNRS, F-31400, Toulouse, France
| | - Carla Cirillo
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, 31024, UPS, France
| | - Sarah Lionnet
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, 31024, UPS, France
| | - Christophe Vieu
- LAAS-CNRS, Université de Toulouse, CNRS, F-31400, Toulouse, France; Université de Toulouse, Institut National des Sciences Appliquées - INSA, F-31400, Toulouse, France
| | - Isabelle Loubinoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, 31024, UPS, France.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Neural stem cells (NSCs) have the potential to proliferate and differentiate into functional neurons, heightening their potential use for therapeutic applications. This review explores bioengineered systems which recapitulate NSC niche cell-cell and cell-matrix interactions. RECENT FINDINGS Delivery of NSCs to the cytotoxic injured brain is limited by low cell survival rates post-transplantation and poor maintenance of native niche bioactive components. The use of biomaterial platforms can mimic in vivo the environment of the two germinal areas of the adult brain in which NSCs thrive. An environmental mimic that includes extracellular proteins and moieties, along with appropriate biomechanical cues has recently demonstrated promising results in enhancing neurogenesis, aiding the production of a bioengineered niche. SUMMARY Biocomposition, biomechanics, and biostructure can be manipulated through engineered platforms to re-create the biofunctionality of an NSC niche. Upon transplantation and delivery with biomimetic scaffolds, NSCs show potential to promote functional recovery and rebuild neural circuitry post neurological trauma.
Collapse
Affiliation(s)
- Rita Matta
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| | - Anjelica L Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
| |
Collapse
|
15
|
Cirillo C, Le Friec A, Frisach I, Darmana R, Robert L, Desmoulin F, Loubinoux I. Focal Malonate Injection Into the Internal Capsule of Rats as a Model of Lacunar Stroke. Front Neurol 2018; 9:1072. [PMID: 30619036 PMCID: PMC6297868 DOI: 10.3389/fneur.2018.01072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/23/2018] [Indexed: 01/14/2023] Open
Abstract
Background: Stroke is the first cause of disability in adults in western countries. Infarct of the internal capsule (IC) may be related to motor impairment and poor prognosis in stroke patients. Functional deficits due to medium-sized infarcts are difficult to predict, except if the specific site of the lesion is taken into account. None of the few pre-clinical models recapitulating this type of stroke has shown clear, reproducible, and long-lasting sensorimotor deficits. Here, we developed a rat model of lacunar infarction within the IC, key structure of the sensorimotor pathways, by precise injection of malonate. Methods: The mitochondrial toxin malonate was injected during stereotactic surgery into the IC of rat brains. Rats were divided in three groups: two groups received malonate solution at 1.5M (n = 12) or at 3M (n = 10) and a sham group (n = 5) received PBS. Three key motor functions usually evaluated following cerebral lesion in the clinic strength, target reaching, and fine dexterity were assessed in rats by a forelimb grip strength test, a skilled reaching task (staircase) for reaching and dexterity, and single pellet retrieval task. Sensorimotor functions were evaluated by a neurological scale. Live brain imaging, using magnetic resonance (MRI), and post-mortem immunohistochemistry in brain slices were performed to characterize the lesion site after malonate injection. Results: Intracerebral injection of malonate produced a 100% success rate in inducing a lesion in the IC. All rats receiving the toxin, regardless the dose injected, had similar deficits in strength and dexterity of the contralateral forepaw, and showed significant neurological impairment. Additionally, only partial recovery was observed with respect to strength, while no recovery was observed for dexterity and neurological deficit. MRI and immunostaining show volume size and precise location of the lesion in the IC, destruction of axonal structures and Wallerian degeneration of fibers in the area above the injection site. Conclusions: This pre-clinical model of lacunar stroke induces a lesion in the IC with measurable and reproducible sensorimotor deficits, and limited recovery with stabilization of performance 2 weeks post-injury. Future therapies in stroke may be successfully tested in this model.
Collapse
Affiliation(s)
- Carla Cirillo
- Toulouse NeuroImaging Center, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Alice Le Friec
- Toulouse NeuroImaging Center, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Isabelle Frisach
- Toulouse NeuroImaging Center, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Robert Darmana
- Toulouse NeuroImaging Center, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Lorenne Robert
- Toulouse NeuroImaging Center, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Franck Desmoulin
- Toulouse NeuroImaging Center, Inserm, Université de Toulouse, UPS, Toulouse, France
| | - Isabelle Loubinoux
- Toulouse NeuroImaging Center, Inserm, Université de Toulouse, UPS, Toulouse, France
| |
Collapse
|
16
|
Chalard A, Vaysse L, Joseph P, Malaquin L, Souleille S, Lonetti B, Sol JC, Loubinoux I, Fitremann J. Simple Synthetic Molecular Hydrogels from Self-Assembling Alkylgalactonamides as Scaffold for 3D Neuronal Cell Growth. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17004-17017. [PMID: 29757611 DOI: 10.1021/acsami.8b01365] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, we demonstrated that the hydrogel obtained from a very simple and single synthetic molecule, N-heptyl-galactonamide was a suitable scaffold for the growth of neuronal cells in 3D. We evidenced by confocal microscopy the presence of the cells into the gel up to a depth of around 200 μm, demonstrating that the latter was permissive to cell growth and enabled a true 3D colonization and organization. It also supported successfully the differentiation of adult human neuronal stem cells (hNSCs) into both glial and neuronal cells and the development of a really dense neurofilament network. So the gel appears to be a good candidate for neural tissue regeneration. In contrast with other molecular gels described for cell culture, the molecule can be obtained at the gram scale by a one-step reaction. The resulting gel is very soft, a quality in accordance with the aim of growing neuronal cells, that requires low modulus substrates similar to the brain. But because of its fragility, specific procedures had to be implemented for its preparation and for cell labeling and confocal microscopy observations. Notably, the implementation of a controlled slow cooling of the gel solution was needed to get a very soft but nevertheless cohesive gel. In these conditions, very wide straight and long micrometric fibers were formed, held together by a second network of flexible narrower nanometric fibers. The two kinds of fibers guided the neurite and glial cell growth in a different way. We also underlined the importance of a tiny difference in the molecular structure on the gel performances: parent molecules, differing by a one-carbon increment in the alkyl chain length, N-hexyl-galactonamide and N-octyl-galactonamide, were not as good as N-heptyl-galactonamide. Their differences were analyzed in terms of gel fibers morphology, mechanical properties, solubility, chain parity, and cell growth.
Collapse
Affiliation(s)
- Anaïs Chalard
- IMRCP, Université de Toulouse, CNRS, Bat 2R1 , 118 Route de Narbonne , 31062 Toulouse Cedex 9, France
- TONIC, Toulouse NeuroImaging Center , Université de Toulouse , Inserm , UPS , France
- LAAS-CNRS, Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Laurence Vaysse
- TONIC, Toulouse NeuroImaging Center , Université de Toulouse , Inserm , UPS , France
| | - Pierre Joseph
- LAAS-CNRS, Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Laurent Malaquin
- LAAS-CNRS, Université de Toulouse, CNRS, UPS , Toulouse , France
| | | | - Barbara Lonetti
- IMRCP, Université de Toulouse, CNRS, Bat 2R1 , 118 Route de Narbonne , 31062 Toulouse Cedex 9, France
| | - Jean-Christophe Sol
- TONIC, Toulouse NeuroImaging Center , Université de Toulouse , Inserm , UPS , France
- Centre Hospitalier Universitaire de Toulouse , Pôle Neurosciences , CHU Toulouse , France
| | - Isabelle Loubinoux
- TONIC, Toulouse NeuroImaging Center , Université de Toulouse , Inserm , UPS , France
| | - Juliette Fitremann
- IMRCP, Université de Toulouse, CNRS, Bat 2R1 , 118 Route de Narbonne , 31062 Toulouse Cedex 9, France
| |
Collapse
|
17
|
Li S, Severino FPU, Ban J, Wang L, Pinato G, Torre V, Chen Y. Improved neuron culture using scaffolds made of three-dimensional PDMS micro-lattices. ACTA ACUST UNITED AC 2018; 13:034105. [PMID: 29332841 DOI: 10.1088/1748-605x/aaa777] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tissue engineering strives to create functional components of organs with different cell types in vitro. One of the challenges is to fabricate scaffolds for three-dimensional (3D) cell culture under physiological conditions. Of particular interest is the investigation of the morphology and function of the central nervous system cultured using such scaffolds. Here, we used an elastomer-polydimethylsiloxane (PDMS)-to produce lattice-type scaffolds from a photolithography-defined template. The photomask with antidot arrays was spin-coated by a thick layer of resist, and was downward mounted on a rotating stage at an angle of 45°. After the exposure was repeated three or more times, maintaining the same exposure plan but rotated by the same angle, a photoresist was developed to produce a 3D porous template. Afterwards, a pre-polymer mixture of PDMS was poured in and cured, followed by a resist etch, resulting in lattice-type PDMS features. Before cell culture, the PDMS lattices were surface functionalized. A culture test was conducted using NIH-3T3 cells and primary hippocampal cells from rats, showing homogenous cell infiltration and 3D attachment. As expected, a much higher cell number was found in the 3D PDMS lattices compared to the 2D culture. We also found a higher neuron-to-astrocyte ratio and a higher degree of cell ramification in the 3D culture compared to the 2D culture due to the change of scaffold topography and the elastic properties of the PDMS micro-lattices. Our results demonstrate that the 3D PDMS micro-lattices improve the survival and growth of cells, as well as the network formation of neurons. We believe that such an enabling technology is useful for research and clinical applications, including disease modeling, regenerative medicine, and drug discovery/drug cytotoxicity studies.
Collapse
Affiliation(s)
- Sisi Li
- PASTEUR, Département de chimie, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 75005 Paris, France. Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, CNRS, PASTEUR, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Accardo A, Blatché MC, Courson R, Loubinoux I, Vieu C, Malaquin L. Two-photon lithography and microscopy of 3D hydrogel scaffolds for neuronal cell growth. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaab93] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Le Friec A, Salabert AS, Davoust C, Demain B, Vieu C, Vaysse L, Payoux P, Loubinoux I. Enhancing Plasticity of the Central Nervous System: Drugs, Stem Cell Therapy, and Neuro-Implants. Neural Plast 2017; 2017:2545736. [PMID: 29391951 PMCID: PMC5748136 DOI: 10.1155/2017/2545736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/19/2017] [Accepted: 10/23/2017] [Indexed: 01/01/2023] Open
Abstract
Stroke represents the first cause of adult acquired disability. Spontaneous recovery, dependent on endogenous neurogenesis, allows for limited recovery in 50% of patients who remain functionally dependent despite physiotherapy. Here, we propose a review of novel drug therapies with strong potential in the clinic. We will also discuss new avenues of stem cell therapy in patients with a cerebral lesion. A promising future for the development of efficient drugs to enhance functional recovery after stroke seems evident. These drugs will have to prove their efficacy also in severely affected patients. The efficacy of stem cell engraftment has been demonstrated but will have to prove its potential in restoring tissue function for the massive brain lesions that are most debilitating. New answers may lay in biomaterials, a steadily growing field. Biomaterials should ideally resemble lesioned brain structures in architecture and must be proven to increase functional reconnections within host tissue before clinical testing.
Collapse
Affiliation(s)
- Alice Le Friec
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- Radiopharmacy Department, CHU Toulouse, Toulouse, France
| | - Carole Davoust
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Boris Demain
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Christophe Vieu
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, UPS, Toulouse, France
| | - Laurence Vaysse
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- Nuclear Medicine Department, CHU Toulouse, Toulouse, France
| | - Isabelle Loubinoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
20
|
Davoust C, Plas B, Béduer A, Demain B, Salabert AS, Sol JC, Vieu C, Vaysse L, Loubinoux I. Regenerative potential of primary adult human neural stem cells on micropatterned bio-implants boosts motor recovery. Stem Cell Res Ther 2017; 8:253. [PMID: 29116017 PMCID: PMC5688800 DOI: 10.1186/s13287-017-0702-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/25/2017] [Accepted: 10/18/2017] [Indexed: 01/19/2023] Open
Abstract
Background The adult brain is unable to regenerate itself sufficiently after large injuries. Therefore, hopes rely on therapies using neural stem cell or biomaterial transplantation to sustain brain reconstruction. The aim of the present study was to evaluate the improvement in sensorimotor recovery brought about by human primary adult neural stem cells (hNSCs) in combination with bio-implants. Methods hNSCs were pre-seeded on implants micropatterned for neurite guidance and inserted intracerebrally 2 weeks after a primary motor cortex lesion in rats. Long-term behaviour was significantly improved after hNSC implants versus cell engraftment in the grip strength test. MRI and immunohistological studies were conducted to elucidate the underlying mechanisms of neuro-implant integration. Results hNSC implants promoted tissue reconstruction and limited hemispheric atrophy and glial scar expansion. After 3 months, grafted hNSCs were detected on implants and expressed mature neuronal markers (NeuN, MAP2, SMI312). They also migrated over a short distance to the reconstructed tissues and to the peri-lesional tissues, where 26% integrated as mature neurons. Newly formed host neural progenitors (nestin, DCX) colonized the implants, notably in the presence of hNSCs, and participated in tissue reconstruction. The microstructured bio-implants sustained the guided maturation of both grafted hNSCs and endogenous progenitors. Conclusions These immunohistological results are coherent with and could explain the late improvement observed in sensorimotor recovery. These findings provide novel insights into the regenerative potential of primary adult hNSCs combined with microstructured implants.
Collapse
Affiliation(s)
- Carole Davoust
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Benjamin Plas
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Centre Hospitalier Universitaire de Toulouse, Pôle Neurosciences, CHU Toulouse, Toulouse, France
| | - Amélie Béduer
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, UPS, Toulouse, France
| | - Boris Demain
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Centre Hospitalier Universitaire de Toulouse, Pôle Neurosciences, CHU Toulouse, Toulouse, France
| | - Jean Christophe Sol
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Centre Hospitalier Universitaire de Toulouse, Pôle Neurosciences, CHU Toulouse, Toulouse, France
| | - Christophe Vieu
- LAAS-CNRS, Université de Toulouse, CNRS, INSA, UPS, Toulouse, France
| | - Laurence Vaysse
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Isabelle Loubinoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France. .,UMR1214-Inserm/UPS-ToNIC, CHU PURPAN, Pavillon Baudot, Place du Dr Baylac, 31024, Toulouse cedex 3, France.
| |
Collapse
|
21
|
Accardo A, Blatché MC, Courson R, Loubinoux I, Thibault C, Malaquin L, Vieu C. Multiphoton Direct Laser Writing and 3D Imaging of Polymeric Freestanding Architectures for Cell Colonization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13. [PMID: 28558136 DOI: 10.1002/smll.201700621] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/04/2017] [Indexed: 05/05/2023]
Abstract
The realization of 3D architectures for the study of cell growth, proliferation, and differentiation is a task of fundamental importance for both technological and biological communities involved in the development of biomimetic cell culture environments. Here we report the fabrication of 3D freestanding scaffolds, realized by multiphoton direct laser writing and seeded with neuroblastoma cells, and their multitechnique characterization using advanced 3D fluorescence imaging approaches. The high accuracy of the fabrication process (≈200 nm) allows a much finer control of the micro- and nanoscale features compared to other 3D printing technologies based on fused deposition modeling, inkjet printing, selective laser sintering, or polyjet technology. Scanning electron microscopy (SEM) provides detailed insights about the morphology of both cells and cellular interconnections around the 3D architecture. On the other hand, the nature of the seeding in the inner core of the 3D scaffold, inaccessible by conventional SEM imaging, is unveiled by light sheet fluorescence microscopy and multiphoton confocal imaging highlighting an optimal cell colonization both around and within the 3D scaffold as well as the formation of long neuritic extensions. The results open appealing scenarios for the use of the developed 3D fabrication/3D imaging protocols in several neuroscientific contexts.
Collapse
Affiliation(s)
- Angelo Accardo
- LAAS-CNRS, Université de Toulouse, CNRS, F-31400, Toulouse, France
| | | | - Rémi Courson
- LAAS-CNRS, Université de Toulouse, CNRS, F-31400, Toulouse, France
| | - Isabelle Loubinoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, 31024, UPS, France
| | - Christophe Thibault
- LAAS-CNRS, Université de Toulouse, CNRS, F-31400, Toulouse, France
- Institut National des Sciences Appliquées-INSA, Université de Toulouse, F-31400, Toulouse, France
| | - Laurent Malaquin
- LAAS-CNRS, Université de Toulouse, CNRS, F-31400, Toulouse, France
| | - Christophe Vieu
- LAAS-CNRS, Université de Toulouse, CNRS, F-31400, Toulouse, France
- Institut National des Sciences Appliquées-INSA, Université de Toulouse, F-31400, Toulouse, France
| |
Collapse
|
22
|
Seyock S, Maybeck V, Offenhäusser A. How to image cell adhesion on soft polymers? Micron 2016; 92:39-42. [PMID: 27866099 DOI: 10.1016/j.micron.2016.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 11/25/2022]
Abstract
Here, we present a method to investigate cell adhesion on soft, non-conducting polymers that are implant candidate materials. Neuronal cells were grown on two elastomers (polydimethylsiloxane (PDMS) and Ecoflex®) and prepared for electron microscopy. The samples were treated with osmium tetroxide (OsO4) and uranylacetate (UrAc). Best results can be achieved when the polymers were coated with a thin iridium layer before the cell culture. This was done to emphasize the usage of soft polymers as supports for implant electrodes. A good contrast and the adhesion of the cells on soft polymers could be visualized.
Collapse
Affiliation(s)
- Silke Seyock
- Institute of Complex Systems (ICS-8/PGI-8), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Vanessa Maybeck
- Institute of Complex Systems (ICS-8/PGI-8), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Andreas Offenhäusser
- Institute of Complex Systems (ICS-8/PGI-8), Forschungszentrum Jülich, 52428 Jülich, Germany.
| |
Collapse
|
23
|
Altuntas S, Buyukserin F, Haider A, Altinok B, Biyikli N, Aslim B. Protein-releasing conductive anodized alumina membranes for nerve-interface materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:590-598. [DOI: 10.1016/j.msec.2016.05.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/20/2016] [Accepted: 05/18/2016] [Indexed: 12/26/2022]
|
24
|
Hopf R, Bernardi L, Menze J, Zündel M, Mazza E, Ehret A. Experimental and theoretical analyses of the age-dependent large-strain behavior of Sylgard 184 (10:1) silicone elastomer. J Mech Behav Biomed Mater 2016; 60:425-437. [DOI: 10.1016/j.jmbbm.2016.02.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/11/2016] [Accepted: 02/13/2016] [Indexed: 12/24/2022]
|
25
|
Haus DL, López-Velázquez L, Gold EM, Cunningham KM, Perez H, Anderson AJ, Cummings BJ. Transplantation of human neural stem cells restores cognition in an immunodeficient rodent model of traumatic brain injury. Exp Neurol 2016; 281:1-16. [PMID: 27079998 DOI: 10.1016/j.expneurol.2016.04.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/15/2016] [Accepted: 04/07/2016] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) in humans can result in permanent tissue damage and has been linked to cognitive impairment that lasts years beyond the initial insult. Clinically effective treatment strategies have yet to be developed. Transplantation of human neural stem cells (hNSCs) has the potential to restore cognition lost due to injury, however, the vast majority of rodent TBI/hNSC studies to date have evaluated cognition only at early time points, typically <1month post-injury and cell transplantation. Additionally, human cell engraftment and long-term survival in rodent models of TBI has been difficult to achieve due to host immunorejection of the transplanted human cells, which confounds conclusions pertaining to transplant-mediated behavioral improvement. To overcome these shortfalls, we have developed a novel TBI xenotransplantation model that utilizes immunodeficient athymic nude (ATN) rats as the host recipient for the post-TBI transplantation of human embryonic stem cell (hESC) derived NSCs and have evaluated cognition in these animals at long-term (≥2months) time points post-injury. We report that immunodeficient ATN rats demonstrate hippocampal-dependent spatial memory deficits (Novel Place, Morris Water Maze), but not non-spatial (Novel Object) or emotional/anxiety-related (Elevated Plus Maze, Conditioned Taste Aversion) deficits, at 2-3months post-TBI, confirming that ATN rats recapitulate some of the cognitive deficits found in immunosufficient animal strains. Approximately 9-25% of transplanted hNSCs survived for at least 5months post-transplantation and differentiated into mature neurons (NeuN, 18-38%), astrocytes (GFAP, 13-16%), and oligodendrocytes (Olig2, 11-13%). Furthermore, while this model of TBI (cortical impact) targets primarily cortex and the underlying hippocampus and generates a large lesion cavity, hNSC transplantation facilitated cognitive recovery without affecting either lesion volume or total spared cortical or hippocampal tissue volume. Instead, we have found an overall increase in host hippocampal neuron survival in hNSC transplanted animals and demonstrate that a correlation exists between hippocampal neuron survival and cognitive performance. Together, these findings support the use of immunodeficient rodents in models of TBI that involve the transplantation of human cells, and suggest that hNSC transplantation may be a viable, long-term therapy to restore cognition after brain injury.
Collapse
Affiliation(s)
- Daniel L Haus
- Sue & Bill Gross Stem Cell Center, University of California, Irvine,CA 92697-1750, USA; Anatomy & Neurobiology, University of California, Irvine,CA 92697-1750, USA
| | - Luci López-Velázquez
- UCI Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine,CA 92697-1750, USA
| | - Eric M Gold
- Sue & Bill Gross Stem Cell Center, University of California, Irvine,CA 92697-1750, USA; Anatomy & Neurobiology, University of California, Irvine,CA 92697-1750, USA
| | - Kelly M Cunningham
- UCI Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine,CA 92697-1750, USA
| | - Harvey Perez
- UCI Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine,CA 92697-1750, USA
| | - Aileen J Anderson
- Sue & Bill Gross Stem Cell Center, University of California, Irvine,CA 92697-1750, USA; Anatomy & Neurobiology, University of California, Irvine,CA 92697-1750, USA; Physical and Medical Rehabilitation, University of California, Irvine,CA 92697-1750, USA; UCI Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine,CA 92697-1750, USA
| | - Brian J Cummings
- Sue & Bill Gross Stem Cell Center, University of California, Irvine,CA 92697-1750, USA; Anatomy & Neurobiology, University of California, Irvine,CA 92697-1750, USA; Physical and Medical Rehabilitation, University of California, Irvine,CA 92697-1750, USA; UCI Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine,CA 92697-1750, USA.
| |
Collapse
|
26
|
Yao MH, Yang J, Zhao DH, Xia RX, Jin RM, Zhao YD, Liu B. A facile method to in situ fabricate three dimensional gold nanoparticle micropatterns in a cell-resistant hydrogel. Photochem Photobiol Sci 2016; 15:181-6. [PMID: 26787048 DOI: 10.1039/c5pp00426h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile method for in situ fabrication of three-dimensional gold nanoparticle micropatterns in a cell-resistant polyethylene glycol hydrogel has been developed by combining photochemical synthesis of gold nanoparticles with photolithography technology. The gold nanoparticle micropatterns were further bio-modified with cell integrated polypeptide NcysBRGD based on a gold-thiol bond to improve cell behaviors. Primary cell tests showed that NcysBRGD can enhance cell adhesion very well on the surface of gold nanoparticle micropatterns.
Collapse
Affiliation(s)
- Ming-Hao Yao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Hubei, Wuhan 430074, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Li Q, Ma L, Gao C. Biomaterials for in situ tissue regeneration: development and perspectives. J Mater Chem B 2015; 3:8921-8938. [DOI: 10.1039/c5tb01863c] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Biomaterials are of fundamental importance to in situ tissue regeneration, which has emerged as a powerful method to treat tissue defects. The development and perspectives of biomaterials for in situ tissue regeneration were summarized.
Collapse
Affiliation(s)
- Qian Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|