1
|
Wang K, Shang J, Tao C, Huang M, Wei D, Yang L, Yang J, Fan Q, Ding Q, Zhou M. Advancements in Betulinic Acid-Loaded Nanoformulations for Enhanced Anti-Tumor Therapy. Int J Nanomedicine 2024; 19:14075-14103. [PMID: 39748899 PMCID: PMC11694648 DOI: 10.2147/ijn.s493489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Betulinic acid (BA) is a natural compound obtained from plant extracts and is known for its diverse pharmacological effects, including anti-tumor, antibacterial, anti-inflammatory, antiviral, and anti-atherosclerotic properties. Its potential in anti-tumor therapy has garnered considerable attention, particularly for the treatment of breast, lung, and liver cancers. However, the clinical utility of BA is greatly hindered by its poor water solubility, low bioavailability, and off-target toxicity. To address these issues, researchers have developed various BA-loaded nanoformulations, such as nanoparticles, liposomes, micelles, and nanofibers, aiming to improve its solubility and bioavailability, prolong plasma half-life, and enhance targeting ability, thereby augmenting its anti-cancer efficacy. In preparing this review, we conducted extensive searches in well-known databases, including PubMed, Web of Science, and ScienceDirect, using keywords like "betulinic acid", "nanoparticles", "drug delivery", "tumor", and "cancer", covering the literature from 2014 to 2024. The review provides a comprehensive overview of recent advancements in the application of BA-loaded nano-delivery systems for anti-tumor therapy and offers insights into their future development prospects.
Collapse
Affiliation(s)
- Ke Wang
- Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jinlu Shang
- Department of Pharmacy, West China Hospital Sichuan University Jintang Hospital, Chengdu, People’s Republic of China
| | - Chao Tao
- Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, People’s Republic of China
| | - Mingquan Huang
- Sichuan Treatment Center for Gynaecologic and Breast Diseases (Breast Surgery), the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Daiqing Wei
- Department of Orthopaedics, the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Liuxuan Yang
- Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jing Yang
- Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Qingze Fan
- Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Qian Ding
- Department of Clinical Pharmacy, the Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, People’s Republic of China
| | - Meiling Zhou
- Department of Pharmacy, the Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
2
|
Morparia S, Metha C, Suvarna V. Recent advancements of betulinic acid-based drug delivery systems for cancer therapy (2002-2023). Nat Prod Res 2024:1-21. [PMID: 39385745 DOI: 10.1080/14786419.2024.2412838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/14/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Betulinic acid, a compound classified as a pentacyclic triterpenoid, is found in abundance in a variety of medicinal plants and natural substances. Its broad spectrum of biological and medicinal properties, particularly its potent antitumor activity, has gained significant attention in recent years. The anticancer properties of betulinic acid are governed by mitochondrial signalling pathways and it exhibit selectivity for cancerous tissue, leaving non-cancerous cells and normal tissue unharmed. This characteristic is particularly valuable in chemo-resistant cases. Nevertheless, the medicinal potential of betulinic acid is hindered by its poor water solubility and short half-life, leading to sub-optimal effectiveness. This issue is being tackled by a variety of nano-sized drug delivery systems, such as polymeric nanoparticles, magnetic nanoparticles, polymeric conjugates, nanoemulsions, liposomes, nanosuspensions, carbon nanotubes, and cyclodextrin complexes. This article focuses on recent advances in nanoformulations that are tailored to the delivery of betulinic acid with enhanced effectiveness.
Collapse
Affiliation(s)
- Saurabh Morparia
- Department of Pharmaceutical Analysis & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Chaitanya Metha
- Department of Pharmaceutical Analysis & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Vasanti Suvarna
- Department of Pharmaceutical Analysis & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Guo X, Luo W, Wu L, Zhang L, Chen Y, Li T, Li H, Zhang W, Liu Y, Zheng J, Wang Y. Natural Products from Herbal Medicine Self-Assemble into Advanced Bioactive Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403388. [PMID: 39033533 PMCID: PMC11425287 DOI: 10.1002/advs.202403388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 07/23/2024]
Abstract
Novel biomaterials are becoming more crucial in treating human diseases. However, many materials require complex artificial modifications and synthesis, leading to potential difficulties in preparation, side effects, and clinical translation. Recently, significant progress has been achieved in terms of direct self-assembly of natural products from herbal medicine (NPHM), an important source for novel medications, resulting in a wide range of bioactive supramolecular materials including gels, and nanoparticles. The NPHM-based supramolecular bioactive materials are produced from renewable resources, are simple to prepare, and have demonstrated multi-functionality including slow-release, smart-responsive release, and especially possess powerful biological effects to treat various diseases. In this review, NPHM-based supramolecular bioactive materials have been revealed as an emerging, revolutionary, and promising strategy. The development, advantages, and limitations of NPHM, as well as the advantageous position of NPHM-based materials, are first reviewed. Subsequently, a systematic and comprehensive analysis of the self-assembly strategies specific to seven major classes of NPHM is highlighted. Insights into the influence of NPHM structural features on the formation of supramolecular materials are also provided. Finally, the drivers and preparations are summarized, emphasizing the biomedical applications, future scientific challenges, and opportunities, with the hope of igniting inspiration for future research and applications.
Collapse
Affiliation(s)
- Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lingyu Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuxuan Chen
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haigang Li
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, China
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yawei Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
4
|
Zou L, Hou Y, Zhang J, Chen M, Wu P, Feng C, Li Q, Xu X, Sun Z, Ma G. Degradable carrier-free spray hydrogel based on self-assembly of natural small molecule for prevention of postoperative adhesion. Mater Today Bio 2023; 22:100755. [PMID: 37593217 PMCID: PMC10430199 DOI: 10.1016/j.mtbio.2023.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/27/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023] Open
Abstract
Postoperative peritoneal adhesion (PPA) is frequent and extremely dangerous complication after surgery. Different tactics have been developed to reduce it. However, creating a postoperative adhesion method that is multifunctional, biodegradable, biocompatible, low-toxic but highly effective, and therapeutically applicable is still a challenge. Herein, we have prepared a degradable spray glycyrrhetinic acid hydrogel (GAG) based on natural glycyrrhetinic acid (GA) by straightforward heating and cooling without the use of any additional chemical cross-linking agents to prevent postoperative adhesion. The resultant hydrogel was demonstrated to possess various superior anti-inflammatory activity, and multiple functions, such as excellent degradability and biocompatibility. Specifically, spraying characteristic and excellent antibacterial activities essentially eliminated secondary infections during the administration of drugs in surgical wounds. In the rat models, the carrier-free spray GAG could not only slow-release GA to inhibit inflammatory response, but also serve as physical anti-adhesion barrier to reduce collagen deposition and fibrosis. The sprayed GAG would shed a new light on the prevention of postoperative adhesion and broaden the application of the hydrogels based on natural products in biomedical fields.
Collapse
Affiliation(s)
- Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Yong Hou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Jiawen Zhang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Meiying Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Peiying Wu
- School of Pharmacy; Guangxi Medical University, Nanning, 530021, China
| | - Changcun Feng
- School of Pharmacy; Guangxi Medical University, Nanning, 530021, China
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| |
Collapse
|
5
|
Hasan SN, Banerjee J, Patra S, Kar S, Das S, Samanta S, Wanigasekera D, Pavithra U, Wijesekera K, Napagoda M, Giri B, Dash SK, Bag BG. Self-assembled renewable nano-sized pentacyclic triterpenoid maslinic acids in aqueous medium for anti-leukemic, antibacterial and biocompatibility studies: An insight into targeted proteins-compound interactions based mechanistic pathway prediction through molecular docking. Int J Biol Macromol 2023; 245:125416. [PMID: 37336373 DOI: 10.1016/j.ijbiomac.2023.125416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/23/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Maslinic acid is a naturally occurring dihydroxy, mono-carboxy bioactive triterpenoid. Its bulky structure was the main hindrance in the path of biological activity. Sodium and potassium salts of nano-sized triterpenoid maslinic acid were prepared from maslinic acid and its self-assembly property was studied in aqueous and aqueous-organic binary liquid mixtures. Morphology of the compounds studied by Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM), High Resolution Transmission Electron Microscopy (HRTEM), Optical Microscopy, Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) revealed vesicular morphology of the self-assemblies. Selective cytotoxicity was performed in leukemic (K-562 and KG-1a) and PBMC cells. Among the three self-assemblies (maslinic acid 1, sodium maslinate 2 and potassium maslinate 3), sodium maslinate 2 showed better antileukemic efficacy. Sodium maslinate 2 induced apoptosis in leukemic cells by elevating ROS levels and disrupting the cellular antioxidant system. From the in-silico studies, it was confirmed that 2 interacted with extrinsic and intrinsic apoptotic proteins of leukemic cells and killed those cells by inducing apoptotic pathways. The compounds 1, 2 and 3 showed significant antibacterial efficacy against E.coli strain through binding with several periplasmic membrane fusion protein (MFP) and limiting the efflux system leading to arrestation of antimicrobial resistance.
Collapse
Affiliation(s)
- Sk Nurul Hasan
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Soumen Patra
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Sukhendu Kar
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Sayan Das
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Dharani Wanigasekera
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle 80000, Sri Lanka
| | - Upekshi Pavithra
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle 80000, Sri Lanka
| | - Kanchana Wijesekera
- Department of Pharmacy, Faculty of Allied Health Sciences, University of Ruhuna, Galle 80 000, Sri Lanka
| | - Mayuri Napagoda
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle 80000, Sri Lanka
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India.
| | - Braja Gopal Bag
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore 721102, West Bengal, India.
| |
Collapse
|
6
|
Li J, Wang Q, Han Y, Jiang L, Lu S, Wang B, Qian W, Zhu M, Huang H, Qian P. Development and application of nanomaterials, nanotechnology and nanomedicine for treating hematological malignancies. J Hematol Oncol 2023; 16:65. [PMID: 37353849 PMCID: PMC10290401 DOI: 10.1186/s13045-023-01460-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/30/2023] [Indexed: 06/25/2023] Open
Abstract
Hematologic malignancies (HMs) pose a serious threat to patients' health and life, and the five-year overall survival of HMs remains low. The lack of understanding of the pathogenesis and the complex clinical symptoms brings immense challenges to the diagnosis and treatment of HMs. Traditional therapeutic strategies for HMs include radiotherapy, chemotherapy, targeted therapy and hematopoietic stem cell transplantation. Although immunotherapy and cell therapy have made considerable progress in the last decade, nearly half of patients still relapse or suffer from drug resistance. Recently, studies have emerged that nanomaterials, nanotechnology and nanomedicine show great promise in cancer therapy by enhancing drug targeting, reducing toxicity and side effects and boosting the immune response to promote durable immunological memory. In this review, we summarized the strategies of recently developed nanomaterials, nanotechnology and nanomedicines against HMs and then proposed emerging strategies for the future designment of nanomedicines to treat HMs based on urgent clinical needs and technological progress.
Collapse
Affiliation(s)
- Jinxin Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Qiwei Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Lingli Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Siqi Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Beini Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Wenchang Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Meng Zhu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Willig JB, de Couto NMG, Vianna DRB, Mariot CDS, Gnoatto SCB, Buffon A, Pilger DA. Betulinic Acid-Brosimine B Hybrid Compound Has a Synergistic Effect with Imatinib in Chronic Myeloid Leukemia Cell Line, Modulating Apoptosis and Autophagy. Pharmaceuticals (Basel) 2023; 16:ph16040586. [PMID: 37111343 PMCID: PMC10142704 DOI: 10.3390/ph16040586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease characterized by the formation of the BCR-ABL (breakpoint cluster region-Abelson) oncoprotein. As many patients display therapeutic resistance, the development of new drugs based on semisynthetic products represents a new potential therapeutic approach for treating the disease. In this study, we investigated the cytotoxic activity, possible mechanism of action of a hybrid compound of betulinic acid (BA) and brosimine B in CML cell lines that are sensitive (K-562) and resistant (K-562R) to imatinib, in addition to evaluating lower doses of imatinib in combination with the hybrid compound. The effects of the compound, and its combination with imatinib, on apoptosis, cell cycle, autophagy and oxidative stress were determined. The compound was cytotoxic in K-562 (23.57 ± 2.87 μM) and K-562R (25.80 ± 3.21 μM) cells, and a synergistic effect was observed when it was associated with imatinib. Apoptosis was mediated by the caspase 3 and 9 intrinsic pathway, and cell cycle evaluation showed arrest at G0/G1. In addition, the hybrid compound increased the production of reactive oxygen species and induced autophagy by increasing LC3II and Beclin-1 mRNA levels. Results suggest that this hybrid compound causes the death of both imatinib-sensitive and -resistant cell lines and may hold potential as a new anticancer treatment against CML.
Collapse
Affiliation(s)
- Julia Biz Willig
- Post-Graduation of Pharmaceutical Science Program, Faculty of Farmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
- Laboratory Biochemical and Cytological Analysis, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Nádia Miléo Garcês de Couto
- Post-Graduation of Pharmaceutical Science Program, Faculty of Farmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
- Laboratory of Phytochemistry and Organic Synthesis, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Débora Renz Barreto Vianna
- Post-Graduation of Pharmaceutical Science Program, Faculty of Farmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
- Laboratory Biochemical and Cytological Analysis, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Camila da Silveira Mariot
- Laboratory Biochemical and Cytological Analysis, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Simone Cristina Baggio Gnoatto
- Post-Graduation of Pharmaceutical Science Program, Faculty of Farmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
- Laboratory of Phytochemistry and Organic Synthesis, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Andréia Buffon
- Laboratory Biochemical and Cytological Analysis, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| | - Diogo André Pilger
- Post-Graduation of Pharmaceutical Science Program, Faculty of Farmacy, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
- Laboratory Biochemical and Cytological Analysis, Federal University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil
| |
Collapse
|
8
|
Liu S, Liu H, Zhang L, Ma C, Abd El-Aty AM. Edible pentacyclic triterpenes: A review of their sources, bioactivities, bioavailability, self-assembly behavior, and emerging applications as functional delivery vehicles. Crit Rev Food Sci Nutr 2022; 64:5203-5219. [PMID: 36476115 DOI: 10.1080/10408398.2022.2153238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Edible pentacyclic triterpenes (PTs) are a group of nutraceutical ingredients commonly distributed in human diets. Existing evidence has proven that they have various biological functions, including anticancer, antioxidant, anti-inflammatory and hypoglycemic activities, making them as "functional factor" for a long time. However, their properties of strong hydrophobicity, poor permeability, poor absorption, and rapid metabolism result in low oral bioavailability, which dramatically hinders their efficacy for use. Recently, free PTs have successively been found to self-assemble or co-assemble into self-contained nanostructures with enhanced water dispersibility and oral bioavailability, which seems to be an efficient processing method for increased oral efficacy. Of particular interest, formulating them into nanostructures can also be introduced as functional delivery carriers for bioactive compounds or drugs with various advantages, such as improved stability, controlled release, enhanced oral bioavailability, synergistic bioactivity, and targeted delivery. This review systematically summarized the chemical structures, plant sources, bioactivities, absorption, metabolism, and oral bioavailability of PTs. Notably, we emphasized their self-assembly properties and emerging role as functional delivery carriers for nutrients, suggesting that PT nanostructures are not only efficient oral forms when introduced into foods but also functional delivery materials for nutrients to expand their commercial food applications.
Collapse
Affiliation(s)
- Shiqi Liu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Han Liu
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Lulu Zhang
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Chao Ma
- College of Biological Science and Technology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
9
|
Designed synthesis of natural rigid dehydroabietylamine-tailored symmetric benzamide organogels by amide bonds and rigid rings coordinated self-assembly strategy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Aswathy M, Vijayan A, Daimary UD, Girisa S, Radhakrishnan KV, Kunnumakkara AB. Betulinic acid: A natural promising anticancer drug, current situation, and future perspectives. J Biochem Mol Toxicol 2022; 36:e23206. [PMID: 36124371 DOI: 10.1002/jbt.23206] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/16/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Natural products serve as the single most productive source for the discovery of drugs and pharmaceutical leads. Among the various chemicals derived from microbes, plants, and animals, phytochemicals have emerged as potential candidates for the development of anticancer drugs due to their structural diversities, complexities, and pleiotropic effects. Herein, we discuss betulinic acid (BA), a ubiquitously distributed lupane structured pentacyclic triterpenoid, scrutinized as a promising natural agent for the prevention, suppression, and management of various human malignancies. Ease of availability, common occurrences, cell-specific cytotoxicity, and astonishing selectivity are the important factors that contribute to the development of BA as an anticancer agent. The current review delineates the mechanistic framework of BA-mediated cancer suppression through the modulation of multiple signaling pathways and also summarizes the key outcomes of BA in preclinical investigations.
Collapse
Affiliation(s)
- Maniyamma Aswathy
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ajesh Vijayan
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Uzini D Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Kokkuvayil V Radhakrishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| |
Collapse
|
11
|
Banerjee J, Hasan SN, Samanta S, Giri B, Bag BG, Dash SK. Self-Assembled Maslinic Acid Attenuates Doxorobucin Induced Cytotoxicity via Nrf2 Signaling Pathway: An In Vitro and In Silico Study in Human Healthy Cells. Cell Biochem Biophys 2022; 80:563-578. [PMID: 35849306 DOI: 10.1007/s12013-022-01083-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/03/2022] [Indexed: 11/03/2022]
Abstract
The clinical applications of some well-known chemotherapeutic drugs for cancer treatment have been restricted nowadays owing to their adverse effects on many physiological systems. In this experimental study, maslinic acid (MA) isolated from Olea europaea (Olive) fruit extract was used to mitigate the cytotoxicity induced by Doxorubicin (DOX) in human healthy peripheral blood mononuclear cells (hPBMCs). Self-assembled maslinic acid (SA-MA) was obtained in ethanol-water mixture (35.5 mM: 4:1 v/v). The morphology of SA-MA was analyzed by various physicochemical characterization techniques, which revealed its micro-metric vesicular architecture as well as nano-vesicular appearances. In this study, treatment of hPBMCs with DOX has been found to generate severe intracellular oxidative stress, which was significantly mitigated after pre-treatment with SA-MA. Alteration of hPBMC morphologies after DOX treatment was also restored notably by pre-treatment with SA-MA. Furthermore, pentoxifylline (TNF-α inhibitor) and indomethacin (COX-2 inhibitor) were used to investigate the responsible pathway by which SA-MA protected hPBMCs from DOX-induced cellular stress. Restoration of hPBMC viability above 92% in both cases confirmed that SA-MA protected the cells by inhibiting inflammatory pathways generated by DOX treatment. Subsequently, in molecular docking study, it was also evaluated that MA could successfully bind with the pocket region of Keap1, while Nrf2 was capable of upregulating cytoprotecting genes.
Collapse
Affiliation(s)
- Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda, West Bengal, 732103, India
| | - Sk Nurul Hasan
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda, West Bengal, 732103, India
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda, West Bengal, 732103, India
| | - Braja Gopal Bag
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India.
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda, West Bengal, 732103, India.
| |
Collapse
|
12
|
Apoptotic and Cell Cycle Effects of Triterpenes Isolated from Phoradendron wattii on Leukemia Cell Lines. Molecules 2022; 27:molecules27175616. [PMID: 36080390 PMCID: PMC9458143 DOI: 10.3390/molecules27175616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/02/2022] Open
Abstract
Current antineoplastic agents present multiple disadvantages, driving an ongoing search for new and better compounds. Four lupane-type triterpenes, 3α,24-dihydroxylup-20(29)-en-28-oic acid (1), 3α,23-dihydroxy-30-oxo-lup-20(29)-en-28-oic acid (2), 3α,23-O-isopropylidenyl-3α,23-dihydroxylup-20(29)-en-28-oic acid (3), and 3α,23-dihydroxylup-20(29)-en-28-oic acid (4), previously isolated from Phoradendron wattii, were evaluated on two cell lines of chronic (K562) and acute (HL60) myeloid leukemia. Compounds 1, 2, and 4 decreased cell viability and inhibit proliferation, mainly in K562, and exhibited an apoptotic effect from 24 h of treatment. Of particular interest is compound 2, which caused arrest in active phases (G2/M) of the cell cycle, as shown by in silico study of the CDK1/Cyclin B/Csk2 complex by molecular docking. This compound [3α,23-dihydroxy-30-oxo-lup-20(29)-en-28-oic acid] s a promising candidate for incorporation into cancer treatments and deserves further study.
Collapse
|
13
|
Miclea I. Secondary Metabolites with Biomedical Applications from Plants of the Sarraceniaceae Family. Int J Mol Sci 2022; 23:9877. [PMID: 36077275 PMCID: PMC9456395 DOI: 10.3390/ijms23179877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Carnivorous plants have fascinated researchers and hobbyists for centuries because of their mode of nutrition which is unlike that of other plants. They are able to produce bioactive compounds used to attract, capture and digest prey but also as a defense mechanism against microorganisms and free radicals. The main purpose of this review is to provide an overview of the secondary metabolites with significant biological activity found in the Sarraceniaceae family. The review also underlines the necessity of future studies for the biochemical characterization of the less investigated species. Darlingtonia, Heliamphora and Sarracenia plants are rich in compounds with potential pharmaceutical and medical uses. These belong to several classes such as flavonoids, with flavonol glycosides being the most abundant, monoterpenes, triterpenes, sesquiterpenes, fatty acids, alkaloids and others. Some of them are well characterized in terms of chemical properties and biological activity and have widespread commercial applications. The review also discusses biological activity of whole extracts and commercially available products derived from Sarraceniaceae plants. In conclusion, this review underscores that Sarraceniaceae species contain numerous substances with the potential to advance health. Future perspectives should focus on the discovery of new molecules and increasing the production of known compounds using biotechnological methods.
Collapse
Affiliation(s)
- Ileana Miclea
- Department of Fundamental Sciences, Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Üner G, Bedir E, Serçinoğlu O, Kırmızıbayrak PB. Non-apoptotic cell death induction via sapogenin based supramolecular particles. Sci Rep 2022; 12:13834. [PMID: 35974087 PMCID: PMC9381536 DOI: 10.1038/s41598-022-17977-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
The discovery of novel chemotherapeutics that act through different mechanisms is critical for dealing with tumor heterogeneity and therapeutic resistance. We previously reported a saponin analog (AG-08) that induces non-canonical necrotic cell death and is auspicious for cancer therapy. Here, we describe that the key element in triggering this unique cell death mechanism of AG-08 is its ability to form supramolecular particles. These self-assembled particles are internalized via a different endocytosis pathway than those previously described. Microarray analysis suggested that AG-08 supramolecular structures affect several cell signaling pathways, including unfolded protein response, immune response, and oxidative stress. Finally, through investigation of its 18 analogs, we further determined the structural features required for the formation of particulate structures and the stimulation of the unprecedented cell death mechanism of AG-08. The unique results of AG-08 indicated that supramolecular assemblies of small molecules are promising for the field of anticancer drug development, although they have widely been accepted as nuisance in drug discovery studies.
Collapse
Affiliation(s)
- Göklem Üner
- Department of Bioengineering, Faculty of Engineering, İzmir Institute of Technology, 35430, Urla, İzmir, Turkey
| | - Erdal Bedir
- Department of Bioengineering, Faculty of Engineering, İzmir Institute of Technology, 35430, Urla, İzmir, Turkey.
| | - Onur Serçinoğlu
- Department of Bioengineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | | |
Collapse
|
15
|
Hou Y, Zou L, Li Q, Chen M, Ruan H, Sun Z, Xu X, Yang J, Ma G. Supramolecular assemblies based on natural small molecules: Union would be effective. Mater Today Bio 2022; 15:100327. [PMID: 35757027 PMCID: PMC9214787 DOI: 10.1016/j.mtbio.2022.100327] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 12/03/2022] Open
Abstract
Natural products have been used to prevent and treat human diseases for thousands of years, especially the extensive natural small molecules (NSMs) such as terpenoids, steroids and glycosides. A quantity of studies are confined to concern about their chemical structures and pharmacological activities at the monomolecular level, whereas the spontaneous assemblies of them in liquids yielding supramolecular structures have not been clearly understood deeply. Compared to the macromolecules or synthetic small molecular compounds, NSMs have the inherent advantages of lower toxicity, better biocompatibility, biodegradability and biological activity. Self-assembly of single component and multicomponent co-assembly are unique techniques for designing supramolecular entities. Assemblies are of special significance due to their range of applications in the areas of drug delivery systems, pollutants capture, materials synthesis, etc. The assembled mechanism of supramolecular NSMs which are mainly driven by multiple non-covalent interactions are summarized. Furthermore, a new hypothesis aimed to interpret the integration effects of multi-components of traditional Chinese medicines (TCMs) inspired on the theory of supramolecular assembly is proposed. Generally, this review can enlighten us to achieve the qualitative leap for understanding natural products from monomolecule to supramolecular structures and multi-component interactions, which is valuable for the intensive research and application.
Collapse
Affiliation(s)
- Yong Hou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Meiying Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Haonan Ruan
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Junshan Yang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| |
Collapse
|
16
|
Apoptotic mechanisms of myricitrin isolated from Madhuca longifolia leaves in HL-60 leukemia cells. Mol Biol Rep 2021; 48:5327-5334. [PMID: 34156605 DOI: 10.1007/s11033-021-06500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Myricitrin, a naturally occurring flavonoid in Madhuca longifolia, possesses several medicinal properties. Even though our earlier work revealed its role against the proliferation of acute myelogenous leukemia cells (HL-60), its molecular mechanisms have not yet been revealed. The current study aims to explore the molecular mechanisms of myricitrin (isolated from an ethnomedicinal drug Madhuca longifolia) to induce apoptosis in HL-60 cells. Treatment with IC-50 dose of myricitrin (353 µM) caused cellular shrinkage and cell wall damage in HL-60 cells compared to untreated control cells. Myricitrin treatment reduced the mitochondrial membrane potential (22.95%), increased DNA fragmentation (90.4%), inhibited the cell survival proteins (RAS, B-RAF, & BCL-2) and also induced pro-apoptotic proteins (p38, pro-caspase-3, pro-caspase-9 and caspase-3) in the HL-60 cells. The present study provides scientific evidence for the apoptosis caused by myricitrin in HL-60 leukemia cells. Hence, the phytochemical myricitrin could be considered as a potential candidate to develop an anticancer drug after checking its efficacy through suitable pre-clinical and clinical studies.
Collapse
|
17
|
Sarkar MK, Kar A, Jayaraman A, Kar Mahapatra S, Vadivel V. Vitexin isolated from Prosopis cineraria leaves induce apoptosis in K-562 leukemia cells via inhibition of the BCR-ABL-Ras-Raf pathway. J Pharm Pharmacol 2021; 74:103-111. [PMID: 34109977 DOI: 10.1093/jpp/rgab085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/14/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Leukemia is one of the severe cancer types all around the globe. Even though some chemotherapeutic drugs are available for treating leukemia, they have various side effects. As an alternative approach, herbal drugs are focused on current research to overcome leukemia. The present work was conducted to investigate the antileukemic mechanism of active phytochemical vitexin, which was isolated from ethno-medicine (Prosopis cineraria leaf) used by traditional healers of West Bengal, India. METHODS Antiproliferative mechanisms of selected phyto-compound against K-562 cells were evaluated using cellular uptake, morphological changes, DNA fragmentation, mitochondrial membrane potential and signaling pathways analysis. KEY FINDINGS Vitexin exhibited cytotoxicity by reducing mitochondrial membrane potential (32.40%) and causing DNA fragmentation (84.15%). The western blotting study indicated inhibition of cell survival proteins (BCR, ABL, H-RAS, N-RAS, K-RAS and RAF) and expression of apoptotic proteins (p38, BAX and caspase-9) in leukemia cells upon treatment with vitexin. CONCLUSIONS Based on the results, presently investigated phyto-compound vitexin could be considered for developing safe and natural drugs to treat leukemia after conducting suitable preclinical and clinical trials.
Collapse
Affiliation(s)
- Monaj Kumar Sarkar
- Chemical Biology Lab (ASK-II-409), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, India
| | - Amrita Kar
- Medicinal Chemistry and Immunology Lab (ASK-II-406), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, India
| | - Adithyan Jayaraman
- Medicinal Chemistry and Immunology Lab (ASK-II-406), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, India
| | - Santanu Kar Mahapatra
- Medicinal Chemistry and Immunology Lab (ASK-II-406), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, India
| | - Vellingiri Vadivel
- Chemical Biology Lab (ASK-II-409), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
18
|
Barreto Vianna DR, Gotardi J, Baggio Gnoatto SC, Pilger DA. Natural and Semisynthetic Pentacyclic Triterpenes for Chronic Myeloid Leukemia Therapy: Reality, Challenges and Perspectives. ChemMedChem 2021; 16:1835-1860. [PMID: 33682360 DOI: 10.1002/cmdc.202100038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/05/2021] [Indexed: 01/11/2023]
Abstract
Chronic myeloid leukemia (CML) is a neoplasm characterized by BCR-ABL1, an oncoprotein with vital role in leukemogenesis. Its inhibition by tyrosine kinase inhibitors represents the main choice of treatment. However, therapeutic failure is worrying given the lack of pharmacological options. Pentacyclic triterpenes are phytochemicals with outstanding antitumoral properties and have also been explored as a basis for the design of potential leads. In this review, we have gathered and discuss data regarding both natural and semisynthetic pentacyclic triterpenes applied to CML cell treatment. We found consistent evidence that the class of pentacyclic triterpenes in general exerts promising pro-apoptotic and antiproliferative activities in sensitive and resistant CML cells, and thus represents a rich source for drug development. We also analyze the predicted drug-like properties of the molecules, discuss the structural changes with biological implications and show the great opportunities this class represents, as well as the perspectives they provide on drug discovery for CML treatment.
Collapse
Affiliation(s)
- Débora Renz Barreto Vianna
- Laboratory of Biochemical and Cytological Analysis, Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752 CEP, 90610-000, Porto Alegre, Brazil
| | - Jessica Gotardi
- Laboratory of Phytochemistry and Organic Synthesis, Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (Brazil), Avenida Ipiranga 2752, 90610-000, Porto Alegre, Brazil
| | - Simone Cristina Baggio Gnoatto
- Laboratory of Phytochemistry and Organic Synthesis, Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (Brazil), Avenida Ipiranga 2752, 90610-000, Porto Alegre, Brazil
| | - Diogo André Pilger
- Laboratory of Biochemical and Cytological Analysis, Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752 CEP, 90610-000, Porto Alegre, Brazil
| |
Collapse
|
19
|
Özdemir Z, Šaman D, Bertula K, Lahtinen M, Bednárová L, Pazderková M, Rárová L, Wimmer Z. Rapid Self-Healing and Thixotropic Organogelation of Amphiphilic Oleanolic Acid-Spermine Conjugates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2693-2706. [PMID: 33595317 DOI: 10.1021/acs.langmuir.0c03335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural and abundant plant triterpenoids are attractive starting materials for the synthesis of conformationally rigid and chiral building blocks for functional soft materials. Here, we report the rational design of three oleanolic acid-triazole-spermine conjugates, containing either one or two spermine units in the target molecules, using the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction. The resulting amphiphile-like molecules 2 and 3, bearing just one spermine unit in the respective molecules, self-assemble into highly entangled fibrous networks leading to gelation at a concentration as low as 0.5% in alcoholic solvents. Using step-strain rheological measurements, we show rapid self-recovery (up to 96% of the initial storage modulus) and sol ⇔ gel transition under several cycles. Interestingly, rheological flow curves reveal the thixotropic behavior of the gels. To the best of our knowledge, this kind of behavior was not shown in the literature before, neither for a triterpenoid nor for its derivatives. Conjugate 4, having a bolaamphiphile-like structure, was found to be a nongelator. Our results indicate that the position and number of spermine units alter the gelation properties, gel strength, and their self-assembly behavior. Preliminary cytotoxicity studies of the target compounds 2-4 in four human cancer cell lines suggest that the position and number of spermine units affect the biological activity. Our results also encourage exploring other triterpenoids and their derivatives as sustainable, renewable, and biologically active building blocks for multifunctional soft organic nanomaterials.
Collapse
Affiliation(s)
- Zulal Özdemir
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, 16028 Prague 6, Czech Republic
- Isotope Laboratory, Institute of Experimental Botany of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | - David Šaman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Kia Bertula
- Department of Applied Physics, Aalto University, Puumiehenkuja 2, FI-02150 Espoo, Finland
| | - Manu Lahtinen
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
| | - Markéta Pazderková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague 2, Czech Republic
| | - Lucie Rárová
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Zdeněk Wimmer
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, 16028 Prague 6, Czech Republic
- Isotope Laboratory, Institute of Experimental Botany of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
20
|
Kundu M, Majumder R, Das CK, Mandal M. Natural products based nanoformulations for cancer treatment: Current evolution in Indian research. Biomed Mater 2021; 16. [PMID: 33621207 DOI: 10.1088/1748-605x/abe8f2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
The use of medicinal plants is as ancient as human civilization. The development of phytochemistry and pharmacology facilitates the identification of natural bioactive compounds and their mechanisms of action, including against cancer. The efficacy and the safety of a bioactive compound depend on its optimal delivery to the target site. Most natural bioactive compounds (phenols, flavonoids, tannins, etc.) are unable to reach their target sites due to their low water solubility, less cellular absorption, and high molecular weight, leading to their failure into clinical translation. Therefore, many scientific studies are going on to overcome the drawbacks of natural products for clinical applications. Several studies in India, as well as worldwide, have proposed the development of natural products-based nanoformulations to increase their efficacy and safety profile for cancer therapy by improving the delivery of natural bioactive compounds to their target site. Therefore, we are trying to discuss the development of natural products-based nanoformulations in India to improve the efficacy and safety of natural bioactive compounds against cancer.
Collapse
Affiliation(s)
- Moumita Kundu
- Indian Institute of Technology Kharagpur, Cancer biology lab, Kharagpur, West Bengal, 721302, INDIA
| | - Ranabir Majumder
- Indian Institute of Technology Kharagpur, Cancer biology lab, Kharagpur, West Bengal, 721302, INDIA
| | - Chandan Kanta Das
- Indian Institute of Technology Kharagpur, Cancer biology lab, Kharagpur, West Bengal, 721302, INDIA
| | - Mahitosh Mandal
- SMST, Indian Institute of Technology Kharagpur, Cancer biology lab, Kharagpur, 721302, INDIA
| |
Collapse
|
21
|
Bildziukevich U, Malík M, Özdemir Z, Rárová L, Janovská L, Šlouf M, Šaman D, Šarek J, Nonappa, Wimmer Z. Spermine amides of selected triterpenoid acids: dynamic supramolecular system formation influences the cytotoxicity of the drugs. J Mater Chem B 2021; 8:484-491. [PMID: 31834347 DOI: 10.1039/c9tb01957j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cancer is a global disease of great importance, and the need for novel cytotoxic drugs is still eminent. A series of spermine amides of several selected triterpene acids (betulonic, heterobetulonic, oleanolic, ursolic and platanic acid) have been synthesized to search for new cytotoxic and antimicrobial agents. The compounds have also been subjected to the investigation of their physico-chemical characteristics (ability to self-assemble), and to an in silico comparative calculation of their physico-chemical and ADME parameters. In the in vitro screening tests with several target compounds (8a-8c and 11c), their cytotoxicity changed with prolonged time, which appeared to be a result of formation of dynamic supramolecular networks. This phenomenon is important in investigation of the effect of self-assembly on biological activity. The most important compounds in this series were spermine derivatives of heterobetulonic acid (3b) and ursolic acid (8b), showing cytotoxicity <5 μM and <10 μM, respectively, on all tested cancer cell lines. Comparable cytotoxicity was also displayed by 13b, formerly a model compound prepared for testing of the synthetic procedures, the 1,2-diaminoethane derivative. The target compounds 3b and 8b displayed antimicrobial activity on Staphylococcus aureus, Streptococcus mutans and Listeria monocytogenes at a concentration 6.25 μM. Supramolecular characteristics of several compounds were documented by the TEM and SEM micrographs showing fibrous, partially helical, networks, and UV measurements showing changes in the intensity of UV signals, also indicating formation of supramolecular systems.
Collapse
Affiliation(s)
- Uladzimir Bildziukevich
- University of Chemistry and Technology in Prague, Department of Chemistry of Natural Compounds, Technická 5, 16628 Prague 6, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mierina I, Vilskersts R, Turks M. Delivery Systems for Birch-bark Triterpenoids and their Derivatives in Anticancer Research. Curr Med Chem 2020; 27:1308-1336. [PMID: 29848269 DOI: 10.2174/0929867325666180530095657] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 02/28/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
Abstract
Birch-bark triterpenoids and their semi-synthetic derivatives possess a wide range of biological activities including cytotoxic effects on various tumor cell lines. However, due to the low solubility and bioavailability, their medicinal applications are rather limited. The use of various nanotechnology-based drug delivery systems is a rapidly developing approach to the solubilization of insufficiently bioavailable pharmaceuticals. Herein, the drug delivery systems deemed to be applicable for birch-bark triterpenoid structures are reviewed. The aforementioned disadvantages of birch-bark triterpenoids and their semi-synthetic derivatives can be overcome through their incorporation into organic nanoparticles, which include various dendrimeric systems, as well as embedding the active compounds into polymer matrices or complexation with carbohydrate nanoparticles without covalent bonding. Some of the known triterpenoid delivery systems consist of nanoparticles featuring inorganic cores covered with carbohydrates or other polymers. Methods for delivering the title compounds through encapsulation and emulsification into lipophilic media are also suitable. Besides, the birch-bark triterpenoids can form self-assembling systems with increased bio-availability. Even more, the self-assembling systems are used as carriers for delivering other chemotherapeutic agents. Another advantage besides increased bioavailability and anticancer activity is the reduced overall systemic toxicity in most of the cases, when triterpenoids are delivered with any of the carriers.
Collapse
Affiliation(s)
- Inese Mierina
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Reinis Vilskersts
- Latvian Institute of Organic Synthesis, Riga, Latvia; 3Faculty of Pharmacy, Riga Stradins University, Riga, Latvia.,Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| |
Collapse
|
23
|
Recent Achievements in Medicinal and Supramolecular Chemistry of Betulinic Acid and Its Derivatives ‡. Molecules 2019; 24:molecules24193546. [PMID: 31574991 PMCID: PMC6803882 DOI: 10.3390/molecules24193546] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 01/02/2023] Open
Abstract
The subject of this review article refers to the recent achievements in the investigation of pharmacological activity and supramolecular characteristics of betulinic acid and its diverse derivatives, with special focus on their cytotoxic effect, antitumor activity, and antiviral effect, and mostly covers a period 2015–2018. Literature sources published earlier are referred to in required coherences or from historical points of view. Relationships between pharmacological activity and supramolecular characteristics are included if such investigation has been done in the original literature sources. A wide practical applicability of betulinic acid and its derivatives demonstrated in the literature sources is also included in this review article. Several literature sources also focused on in silico calculation of physicochemical and ADME parameters of the developed compounds, and on a comparison between the experimental and calculated data.
Collapse
|
24
|
Amiri S, Dastghaib S, Ahmadi M, Mehrbod P, Khadem F, Behrouj H, Aghanoori MR, Machaj F, Ghamsari M, Rosik J, Hudecki A, Afkhami A, Hashemi M, Los MJ, Mokarram P, Madrakian T, Ghavami S. Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnol Adv 2019; 38:107409. [PMID: 31220568 DOI: 10.1016/j.biotechadv.2019.06.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
Betulin (B) and Betulinic acid (BA) are natural pentacyclic lupane-structure triterpenoids which possess a wide range of pharmacological activities. Recent evidence indicates that B and BA have several properties useful for the treatment of metabolic disorders, infectious diseases, cardiovascular disorders, and neurological disorders. In the current review, we discuss B and BA structures and derivatives and then comprehensively explain their pharmacological effects in relation to various diseases. We also explain antiviral, antibacterial and anti-cancer effects of B and BA. Finally, we discuss the delivery methods, in which these compounds most effectively target different systems.
Collapse
Affiliation(s)
- Shayan Amiri
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Sanaz Dastghaib
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of IRAN, Tehran, Iran
| | - Forough Khadem
- Department of Immunology, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Hamid Behrouj
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad-Reza Aghanoori
- Division of Neurodegenerative Disorders, St Boniface Hospital Albrechtsen Research Centre, Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | - Filip Machaj
- Department of Pathology, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-344 Szczecin, Poland
| | - Mahdi Ghamsari
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Jakub Rosik
- Department of Pathology, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-344 Szczecin, Poland
| | - Andrzej Hudecki
- Institue of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
| | - Abbas Afkhami
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, Zahedan University of Medical Science, Zahedan, Iran
| | - Marek J Los
- Biotechnology Center, Silesian University of Technology, ul Bolesława Krzywoustego 8, Gliwice, Poland; Linkocare Life Sciences AB, Teknikringen 10, Plan 3, 583 30 Linköping, Sweden
| | - Pooneh Mokarram
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada; Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
25
|
Kong D, Fu P, Zhang Q, Ma X, Jiang P. Protective effects of Asiatic acid against pelvic inflammatory disease in rats. Exp Ther Med 2019; 17:4687-4692. [PMID: 31086602 DOI: 10.3892/etm.2019.7498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 01/02/2018] [Indexed: 12/23/2022] Open
Abstract
Asiatic acid (AA) is one of the major components of the Chinese herb Centella asiatica and exerts a variety of pharmacological activities. However, the pharmacological effects of AA on pelvic inflammatory disease (PID) remain unknown. The purpose of the present study was to investigate the therapeutic efficacy and potential mechanisms of AA on PID in rats. A total of 75 female Sprague Dawley rats were randomly divided into the following five groups: A control group; a PID group; a PID + AA 5 mg/kg group; a PID + AA 35 mg/kg group; and a PID + AA 75 mg/kg group. Changes in cytokine and chemokine levels, myeloperoxidase (MPO) activity, nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome and nuclear factor-κB (NF-κB) activation, oxidative stress and cleaved caspase-3 were measured. AA treatment significantly decreased the excessive production of cytokines and chemokines and suppressed MPO activity and the activation of NLRP3 inflammasome, NF-κB and caspase-3, as well as oxidative stress. These results suggest that AA exhibits potent anti-inflammatory and antioxidant effects in rats with pathogen-induced PID and that the mechanism of these anti-inflammatory effects may be associated with the suppression of NLRP3 inflammasome activation and the NF-κB pathway.
Collapse
Affiliation(s)
- Dejia Kong
- Department of Chinese Gynecology, Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, P.R. China
| | - Ping Fu
- Department of Chinese Gynecology, The Affiliated Guang-Xing Hospital of Zhejiang Traditional Chinese Medicine University, Hangzhou, Zhejiang 310007, P.R. China
| | - Qin Zhang
- Department of Chinese Gynecology, The Affiliated Guang-Xing Hospital of Zhejiang Traditional Chinese Medicine University, Hangzhou, Zhejiang 310007, P.R. China
| | - Xian Ma
- Department of Chinese Gynecology, The Affiliated Guang-Xing Hospital of Zhejiang Traditional Chinese Medicine University, Hangzhou, Zhejiang 310007, P.R. China
| | - Ping Jiang
- Department of Chinese Gynecology, The Affiliated Guang-Xing Hospital of Zhejiang Traditional Chinese Medicine University, Hangzhou, Zhejiang 310007, P.R. China
| |
Collapse
|
26
|
Saneja A, Arora D, Kumar R, Dubey RD, Panda AK, Gupta PN. Therapeutic applications of betulinic acid nanoformulations. Ann N Y Acad Sci 2018; 1421:5-18. [PMID: 29377164 DOI: 10.1111/nyas.13570] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/01/2023]
Abstract
Betulinic acid (BA), a naturally occurring plant-derived pentacyclic triterpenoid, has gained attention in recent years owing to its broad-spectrum biological and medicinal properties. Despite the pharmacological activity of BA, it has been associated with some drawbacks, such as poor aqueous solubility and short half-life in vivo, which limit therapeutic application. To solve these problems, much work in recent years has focused on enhancing BA's aqueous solubility, half-life, and efficacy by using nanoscale drug delivery systems. Several different kinds of nanoscale delivery systems-including polymeric nanoparticles, magnetic nanoparticles, liposomes, polymeric conjugates, nanoemulsions, cyclodextrin complexes, and carbon nanotubes-have been developed for the delivery of BA. Here, we focus on the recent developments of novel nanoformulations used to deliver BA in order to improve its efficacy.
Collapse
Affiliation(s)
- Ankit Saneja
- Product Development Cell-II, National Institute of Immunology, New Delhi, India.,Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Jammu Campus, Jammu, India
| | - Divya Arora
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Jammu Campus, Jammu, India
| | - Robin Kumar
- Product Development Cell-II, National Institute of Immunology, New Delhi, India
| | - Ravindra Dhar Dubey
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Amulya K Panda
- Product Development Cell-II, National Institute of Immunology, New Delhi, India
| | - Prem N Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), Jammu Campus, Jammu, India
| |
Collapse
|
27
|
He N, Zhi K, Yang X, Zhao H, Zhang H, Wang J, Wang Z. Self-assembled fibrillar networks induced by two methods: a new unmodified natural product gel. NEW J CHEM 2018. [DOI: 10.1039/c8nj01302k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The discovery of new NPGs and the study of their self-assembing properties.
Collapse
Affiliation(s)
- Ning He
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology, No. 92 West Dazhi Street
- Nan Gang District
- Harbin
- China
| | - Kangkang Zhi
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology, No. 92 West Dazhi Street
- Nan Gang District
- Harbin
- China
| | - Xin Yang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology, No. 92 West Dazhi Street
- Nan Gang District
- Harbin
- China
| | - Haitian Zhao
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology, No. 92 West Dazhi Street
- Nan Gang District
- Harbin
- China
| | - Hua Zhang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology, No. 92 West Dazhi Street
- Nan Gang District
- Harbin
- China
| | - Jing Wang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology, No. 92 West Dazhi Street
- Nan Gang District
- Harbin
- China
| | - Zhenyu Wang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology, No. 92 West Dazhi Street
- Nan Gang District
- Harbin
- China
| |
Collapse
|
28
|
Nanoemulsion as a novel carrier system for improvement of betulinic acid oral bioavailability and hepatoprotective activity. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.04.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Shen H, Liu L, Yang Y, Xun W, Wei K, Zeng G. Betulinic Acid Inhibits Cell Proliferation in Human Oral Squamous Cell Carcinoma via Modulating ROS-Regulated p53 Signaling. Oncol Res 2017; 25:1141-1152. [PMID: 28109089 PMCID: PMC7841107 DOI: 10.3727/096504017x14841698396784] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common cancer of the head and neck. Betulinic acid (BA) is a naturally occurring pentacyclic triterpenoid. The present study was designed to explore the effects of BA on OSCC KB cell proliferation in vitro and on implanted tumor growth in vivo and to examine the possible molecular mechanisms. The results showed that BA dose-dependently inhibited KB cell proliferation and decreased implanted tumor volume. In addition, BA significantly promoted mitochondrial apoptosis, as reflected by an increase in TUNEL+ cells and the activities of caspases 3 and 9, an increase in Bax expression, and a decrease in Bcl-2 expression and the mitochondrial oxygen consumption rate. BA significantly increased cell population in the G0/G1 phase and decreases the S phase cell number, indicating the occurrence of G0/G1 cell cycle arrest. ROS generation was significantly increased by BA, and antioxidant NAC treatment markedly inhibited the effect of BA on apoptosis, cell cycle arrest, and proliferation. BA dose-dependently increased p53 expression in KB cells and implanted tumors. p53 reporter gene activity and p53 binding in the promoters of Bax were significantly increased by BA. Knockdown of p53 blocked BA-induced increase in apoptosis, cell cycle arrest, and inhibition of cell proliferation. NAC treatment suppressed BA-induced increase in p53 expression. Furthermore, phosphorylation of signal transducer and activator of transcription 3 (STAT3) was increased by BA. Taken together, the data demonstrated that ROS–p53 signaling was crucial for BA-exhibited antitumor effect in OSCC. BA may serve as a potential drug for the treatment of oral cancer.
Collapse
|
30
|
Maity D, Pattanayak S, Mollick MMR, Rana D, Mondal D, Bhowmick B, Dash SK, Chattopadhyay S, Das B, Roy S, Chakraborty M, Chattopadhyay D. Green one step morphosynthesis of silver nanoparticles and their antibacterial and anticancerous activities. NEW J CHEM 2016. [DOI: 10.1039/c5nj03409d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioactive sodium cholate stabilized silver nanoparticles and their biomedical applications.
Collapse
Affiliation(s)
- Dipanwita Maity
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata 700009
- India
| | | | | | - Dipak Rana
- Department of Chemical and Biological Engineering
- Industrial Membrane Research Institute
- University of Ottawa
- Ottawa
- Canada
| | - Dibyendu Mondal
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata 700009
- India
| | - Biplab Bhowmick
- Department of Polymer Science and Technology
- University of Calcutta
- Kolkata 700009
- India
| | - Sandeep Kumar Dash
- Immunology and Microbiology Laboratory
- Department of Human Physiology and Community Health
- Vidyasagar University
- Midnapore-721102
- India
| | - Sourav Chattopadhyay
- Immunology and Microbiology Laboratory
- Department of Human Physiology and Community Health
- Vidyasagar University
- Midnapore-721102
- India
| | - Balaram Das
- Immunology and Microbiology Laboratory
- Department of Human Physiology and Community Health
- Vidyasagar University
- Midnapore-721102
- India
| | - Somenath Roy
- Immunology and Microbiology Laboratory
- Department of Human Physiology and Community Health
- Vidyasagar University
- Midnapore-721102
- India
| | - Mukut Chakraborty
- Department of Chemistry
- West Bengal State University
- Kolkata-700126
- India
| | | |
Collapse
|