1
|
Zhou TS, Li XY, Zhang XJ, Cai X, Liu ZQ, Zheng YG. Improving the catalytic performance of carbonyl reductase based on the functional loops engineering. Biotechnol Bioeng 2025; 122:167-178. [PMID: 39434600 DOI: 10.1002/bit.28864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/23/2024]
Abstract
Vibegron functions as a potent and selective β3-adrenergic receptor agonist, with its chiral precursor (2S,3R)-aminohydroxy ester (1b) being crucial to its synthesis. In this study, loop engineering was applied to the carbonyl reductase (EaSDR6) from Exiguobacterium algae to achieve an asymmetric reduction of the (rac)-aminoketone ester 1a. The variant M5 (A138L/A190V/S193A/Y201F/N204A) was obtained and demonstrated an 868-fold increase in catalytic efficiency (kcat/Km = 260.3 s-1 mM-1) and a desirable stereoselectivity (>99% enantiomeric excess, e.e.; >99% diastereomeric excess, d.e.) for the target product 1b in contrast to the wild-type EaSDR6 (WT). Structural alignment with WT indicated that loops 137-154 and 182-210 potentially play vital roles in facilitating catalysis and substrate binding. Moreover, molecular dynamics (MD) simulations of WT-1a and M5-1a complex illustrated that M5-1a exhibits a more effective nucleophilic attack distance and more readily adopts a pre-reaction state. The interaction analysis unveiled that M5 enhanced hydrophobic interactions with substrate 1a on cavities A and B while diminishing unfavorable hydrophilic interactions on cavity C. Computational analysis of binding free energies indicated that M5 displayed heightened affinity towards substrate 1a compared to the WT, aligning with its decreased Km value. Under organic-aqueous biphasic conditions, the M5 mutant showed >99% conversion within 12 h with 300 g/L substrate 1a (highest substrate loading as reported). This study enhanced the catalytic performance of carbonyl reductase through functional loops engineering and established a robust framework for the large-scale biosynthesis of the vibegron intermediate.
Collapse
Affiliation(s)
- Tao-Shun Zhou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Xiang-Yang Li
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Xiao-Jian Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
2
|
Dai C, Cao HX, Tian JX, Gao YC, Liu HT, Xu SY, Wang YJ, Zheng YG. Structural-guided design to improve the catalytic performance of aldo-keto reductase KdAKR. Biotechnol Bioeng 2023; 120:3543-3556. [PMID: 37641876 DOI: 10.1002/bit.28535] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2023] [Revised: 08/07/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
Aldo-keto reductases (AKRs) are important biocatalysts that can be used to synthesize chiral pharmaceutical alcohols. In this study, the catalytic activity and stereoselectivity of a NADPH-dependent AKR from Kluyveromyces dobzhanskii (KdAKR) toward t-butyl 6-chloro (5S)-hydroxy-3-oxohexanoate ((5S)-CHOH) were improved by mutating its residues in the loop regions around the substrate-binding pocket. And the thermostability of KdAKR was improved by a consensus sequence method targeted on the flexible regions. The best mutant M6 (Y28A/L58I/I63L/G223P/Y296W/W297H) exhibited a 67-fold higher catalytic efficiency compared to the wild-type (WT) KdAKR, and improved R-selectivity toward (5S)-CHOH (dep value from 47.6% to >99.5%). Moreover, M6 exhibited a 6.3-fold increase in half-life (t1/2 ) at 40°C compared to WT. Under the optimal conditions, M6 completely converted 200 g/L (5S)-CHOH to diastereomeric pure t-butyl 6-chloro-(3R, 5S)-dihydroxyhexanoate ((3R, 5S)-CDHH) within 8.0 h, with a space-time yield of 300.7 g/L/day. Our results deepen the understandings of the structure-function relationship of AKRs, providing a certain guidance for the modification of other AKRs.
Collapse
Affiliation(s)
- Chen Dai
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hai-Xing Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Jia-Xin Tian
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yan-Chi Gao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hua-Tao Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Shen-Yuan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
3
|
Surface display of (R)-carbonyl reductase on Escherichia coli as biocatalyst for recycling biotransformation of 2-hydroxyacetophenone. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
|
4
|
Li SF, Xie JY, Qiu S, Xu SY, Cheng F, Wang YJ, Zheng YG. Semirational engineering of an aldo-keto reductase KmAKR for overcoming trade-offs between catalytic activity and thermostability. Biotechnol Bioeng 2021; 118:4441-4452. [PMID: 34374988 DOI: 10.1002/bit.27913] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/12/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 01/05/2023]
Abstract
Enzyme engineering usually generates trade-offs between activity, stability, and selectivity. Herein, we report semirational engineering of an aldo-keto reductase (AKR) KmAKR for simultaneously enhancing its thermostability and catalytic activity. Previously, we constructed KmAKRM9 (W297H/Y296W/K29H/Y28A/T63M/A30P/T302S/N109K/S196C), which showed outstanding activity towards t-butyl 6-chloro-(3R,5S)-dihydroxyhexanoate ((3R,5S)-CDHH), and t-butyl 6-cyano-(3R,5R)-dihydroxyhexanoate, the key chiral building blocks of rosuvastatin and atorvastatin. Under the guidance of computer-aided design including consensus residues analysis and molecular dynamics (MD) simulations, K164, S182, S232, and Q266 were dug out for their thermostability conferring roles, generating the "best" mutant KmAKRM13 (W297H/Y296W/K29H/Y28A/T63M/A30P/T302S/N109K/S196C/K164E/S232A/S182H/Q266D). The Tm and T50 15 values of KmAKRM13 were 10.4 and 6.1°C higher than that of KmAKRM9 , respectively. Moreover, it displayed a significantly elevated organic solvent tolerance over KmAKRM9 . Structural analysis indicated that stabilization of the α-helixes mainly contributed to thermostability enhancement. Under the optimized conditions, KmAKRM13 completely asymmetrically reduced 400 g/l t-butyl 6-chloro-(5S)-hydroxy-3-oxohexanoate ((5S)-CHOH) in 8.0 h at a high substrate to catalyst ratio (S/C) of 106.7 g/g, giving diastereomerically pure (3R,5S)-CDHH (>99.5% d.e.P ) with a space-time yield (STY) of 449.2 g/l·d.
Collapse
Affiliation(s)
- Shu-Fang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Jian-Yong Xie
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Shuai Qiu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Shen-Yuan Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
5
|
Abstract
Reductions play a key role in organic synthesis, producing chiral products with new functionalities. Enzymes can catalyse such reactions with exquisite stereo-, regio- and chemoselectivity, leading the way to alternative shorter classical synthetic routes towards not only high-added-value compounds but also bulk chemicals. In this review we describe the synthetic state-of-the-art and potential of enzymes that catalyse reductions, ranging from carbonyl, enone and aromatic reductions to reductive aminations.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Diederik J. Opperman
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
6
|
Wang N, Xu Y, Peng C, Wang X, Wei Y, Li K, Wang S, Xu A, Gao J. Identification of a newly isolated Rhodotorula mucilaginosa NQ1 and its development for the synthesis of bulky carbonyl compounds by whole-cell bioreduction. Lett Appl Microbiol 2020; 72:399-407. [PMID: 33217003 DOI: 10.1111/lam.13431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 11/29/2022]
Abstract
A strain NQ1, which showed efficient asymmetric reduction of 3,5-bis(trifluoromethyl) acetophenone (BTAP) to enantiopure (S)-[3,5-bis(trifluoromethyl)phenyl]ethanol ((S)-BTPE), which is the key intermediate for the synthesis of a receptor antagonist and antidepressant, was isolated from a soil sample. Based on its morphological and internal transcribed spacer sequence, the strain NQ1 was identified to be Rhodotorula mucilaginosa NQ1. Some key reaction parameters involved in the bioreduction catalyzed by whole cells of R. mucilaginosa NQ1 were subsequently optimized, and the optimized conditions for the synthesis of (S)-BTPE were determined to be as follows: 5·0 ml phosphate buffer (200 mmol l-1 , pH 7·0), 80 mmol l-1 of BTAP, 250 g (wet weight) l-1 of resting cell, 35 g l-1 of glucose and a reaction for 18 h at 30°C and 180 rev min-1 . The strain NQ1 exhibited a best yield of 99% and an excellent enantiomeric excess of 99% for the preparation of (S)-BTPE under the above optimal conditions, and could also asymmetrically reduce a variety of bulky prochiral carbonyl compounds to their corresponding optical hydroxyl compound with excellent enantioselectivity. These results indicated that R. mucilaginosa NQ1 had a good capacity to reduce BTAP to its corresponding (S)-BTPE, and might be a new potential biocatalyst for the production of valuable chiral hydroxyl compounds in industry.
Collapse
Affiliation(s)
- N Wang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China.,Hunan key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Xiangtan, People's Republic of China
| | - Y Xu
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - C Peng
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - X Wang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - Y Wei
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - K Li
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - S Wang
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - A Xu
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| | - J Gao
- School of Life Science, Hunan University of Science and Technology, Xiangtan, People's Republic of China
| |
Collapse
|
7
|
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Diederik J. Opperman
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
| |
Collapse
|
8
|
Co-evolution of activity and thermostability of an aldo-keto reductase KmAKR for asymmetric synthesis of statin precursor dichiral diols. Bioorg Chem 2020; 103:104228. [DOI: 10.1016/j.bioorg.2020.104228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/28/2020] [Revised: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
|
9
|
Efficient biosynthesis of (R)-2-chloro-1-(2, 4-dichlorophenyl) ethanol using a mutant short-chain dehydrogenase from Novosphingobium aromaticivorans. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
|
10
|
High-Efficient Production of ( S)-1-[3,5-Bis(trifluoromethyl)phenyl]ethanol via Whole-Cell Catalyst in Deep-Eutectic Solvent-Containing Micro-Aerobic Medium System. Molecules 2020; 25:molecules25081855. [PMID: 32316570 PMCID: PMC7221904 DOI: 10.3390/molecules25081855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2020] [Revised: 04/09/2020] [Accepted: 04/15/2020] [Indexed: 01/12/2023] Open
Abstract
The ratio of substrate to catalyst (S/C) is a prime target for the application of asymmetric production of enantiomerically enriched intermediates by whole-cell biocatalyst. In the present study, an attractive increase in S/C was achieved in a natural deep-eutectic solvent (NADES) containing reaction system under microaerobic condition for high production of (S)-1-[3,5-bis(trifluoromethyl)phenyl]ethanol ((S)-3,5-BTPE) with Candida tropicalis 104. In PBS buffer (0.2 M, pH 8.0) at 200 rpm and 30 °C, 79.5 g (Dry Cell Weight, DCW)/L C. tropicalis 104 maintained the same yield of 73.7% for the bioreduction of 3,5-bis(trifluoromethyl)acetophenone (BTAP) under an oxygen-deficient environment compared with oxygen-sufficient conditions, while substrate load increased 4.0-fold (from 50 mM to 200 mM). Furthermore, when choline chloride:trehalose (ChCl:T, 1:1 molar ratio) was introduced into the reaction system for its versatility of increasing cell membrane permeability and declining BTAP cytotoxicity to biocatalyst, the yields were further increased to 86.2% under 200 mM BTAP, or 72.9% at 300 mM BTAP. After the optimization of various reaction parameters involved in the bioreduction, and the amount of biocatalyst and maltose co-substrate remained 79.5 g (DCW)/L and 50 g/L, the S/C for the reduction elevated 6.3 times (3.8 mM/g versus 0.6 mM/g). By altering the respiratory pattern of the whole-cell biocatalyst and exploiting the ChCl:T-containing reaction system, the developed strategy exhibits an attractive potential for enhancing catalytic efficiency of whole-cell-mediated reduction, and provides valuable insight for the development of whole-cell catalysis.
Collapse
|
11
|
Asymmetric synthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate using a self-sufficient biocatalyst based on carbonyl reductase and cofactor co-immobilization. Bioprocess Biosyst Eng 2019; 43:21-31. [PMID: 31542820 DOI: 10.1007/s00449-019-02201-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2019] [Revised: 07/15/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
tert-Butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate [(3R,5S)-CDHH] is the key chiral intermediate to synthesize the side chain of the lipid-lowering drug rosuvastatin. Carbonyl reductases showed excellent activity for the biosynthesis of (3R,5S)-CDHH. The requirement of cofactor NADH/NADPH leads to high cost for the industrial application of carbonyl reductases. In this study, a self-sufficient biocatalyst based on carbonyl reductase and NADP+ co-immobilization strategy was developed on an amino resin carrier LX-1000HAA (SCR-NADP+@LX-1000HAA). The self-sufficient biocatalyst achieved in situ cofactor regeneration and showed the activity recovery of 77.93% and the specific activity of 70.45 U/g. Asymmetric synthesis of (3R,5S)-CDHH using SCR-NADP+@LX-1000HAA showed high enantioselectivity (> 99% e.e.) and yield (98.54%). Batch reactions were performed for ten cycles without extra addition of NADP+, and the total yield of (3R,5S)-CDHH achieved at 10.56 g/g biocatalyst. The present work demonstrated the potential of the self-sufficient biocatalyst for the asymmetric biosynthesis of rosuvastatin intermediate.
Collapse
|
12
|
Zhang XJ, Zheng L, Wu D, Zhou R, Liu ZQ, Zheng YG. Production of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate using carbonyl reductase coupled with glucose dehydrogenase with high space-time yield. Biotechnol Prog 2019; 36:e2900. [PMID: 31486281 DOI: 10.1002/btpr.2900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2019] [Revised: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 11/09/2022]
Abstract
tert-Butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate ((3R,5S)-CDHH) is an important chiral intermediate for the synthesis of rosuvastatin. The biotechnological production of (3R,5S)-CDHH is catalyzed from tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate ((S)-CHOH) by a carbonyl reductase, and this synthetic pathway is becoming a primary route for (3R,5S)-CDHH production due to its high enantioselectivity, mild reaction conditions, low cost, process safety, and environmental friendship. However, the requirement of the pyridine nucleotide cofactors, reduced nicotinamide adenine dinucleotide (NADH) or reduced nicotinamide adenine dinucleotide phosphate (NADPH) limits its economic flexibility. In the present study, a recombinant Escherichia coli strain harboring carbonyl reductase R9M and glucose dehydrogenase (GDH) was constructed with high carbonyl reduction activity and cofactor regeneration efficiency. The recombinant E. coli cells were applied for the efficient production of (3R,5S)-CDHH with a substrate conversion of 98.8%, a yield of 95.6% and an enantiomeric excess (e.e.) of >99.0% under 350 g/L of (S)-CHOH after 12 hr reaction. A substrate fed-batch strategy was further employed to increase the substrate concentration to 400 g/L resulting in an enhanced product yield to 98.5% after 12 hr reaction in a 1 L bioreactor. Meanwhile, the space-time yield was 1,182.3 g L-1 day-1 , which was the highest value ever reported by a coupled system of carbonyl reductase and glucose dehydrogenase.
Collapse
Affiliation(s)
- Xiao-Jian Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Ling Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Di Wu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Rong Zhou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
13
|
Liu B, Qu G, Li J, Fan W, Ma J, Xu Y, Nie Y, Sun Z. Conformational Dynamics‐Guided Loop Engineering of an Alcohol Dehydrogenase: Capture, Turnover and Enantioselective Transformation of Difficult‐to‐Reduce Ketones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900249] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
Affiliation(s)
- Beibei Liu
- School of Biotechnology, Key laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi 214122 People's Republic of China
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Ge Qu
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Jun‐Kuan Li
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science and EngineeringTianjin University Tianjin 300072 People's Republic of China
| | - Wenchao Fan
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Jun‐An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science and EngineeringTianjin University Tianjin 300072 People's Republic of China
| | - Yan Xu
- School of Biotechnology, Key laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi 214122 People's Republic of China
| | - Yao Nie
- School of Biotechnology, Key laboratory of Industrial Biotechnology, Ministry of EducationJiangnan University Wuxi 214122 People's Republic of China
| | - Zhoutong Sun
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| |
Collapse
|
14
|
Gu T, Wang B, Zhang Z, Wang Z, Chong G, Ma C, Tang YJ, He Y. Sequential pretreatment of bamboo shoot shell and biosynthesis of ethyl (R)-4-chloro-3-hydroxybutanoate in aqueous-butyl acetate media. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
|
15
|
Abstract
Statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, are the largest selling class of drugs prescribed for the pharmacological treatment of hypercholesterolemia and dyslipidaemia. Statins also possess other therapeutic effects, called pleiotropic, because the blockade of the conversion of HMG-CoA to (R)-mevalonate produces a concomitant inhibition of the biosynthesis of numerous isoprenoid metabolites (e.g., geranylgeranyl pyrophosphate (GGPP) or farnesyl pyrophosphate (FPP)). Thus, the prenylation of several cell signalling proteins (small GTPase family members: Ras, Rac, and Rho) is hampered, so that these molecular switches, controlling multiple pathways and cell functions (maintenance of cell shape, motility, factor secretion, differentiation, and proliferation) are regulated, leading to beneficial effects in cardiovascular health, regulation of the immune system, anti-inflammatory and immunosuppressive properties, prevention and treatment of sepsis, treatment of autoimmune diseases, osteoporosis, kidney and neurological disorders, or even in cancer therapy. Thus, there is a growing interest in developing more sustainable protocols for preparation of statins, and the introduction of biocatalyzed steps into the synthetic pathways is highly advantageous—synthetic routes are conducted under mild reaction conditions, at ambient temperature, and can use water as a reaction medium in many cases. Furthermore, their high selectivity avoids the need for functional group activation and protection/deprotection steps usually required in traditional organic synthesis. Therefore, biocatalysis provides shorter processes, produces less waste, and reduces manufacturing costs and environmental impact. In this review, we will comment on the pleiotropic effects of statins and will illustrate some biotransformations nowadays implemented for statin synthesis.
Collapse
|