1
|
Bach AM, Peeler M, Caunca M, Olusanya BO, Rosendale N, Gano D. Brain health equity and the influence of social determinants across the life cycle. Semin Fetal Neonatal Med 2024:101553. [PMID: 39537455 DOI: 10.1016/j.siny.2024.101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Social determinants of health are social, economic and environmental factors known to influence health and development of infants, children and adults. Advancing equity in brain health relies upon interdisciplinary collaboration and recognition of the impact of social determinants on brain health through the lifespan and across generations. Critical periods of fetal, infant and early childhood development encompass intrinsic genetic and extrinsic environmental influences with complex gene-environment interactions. This review discusses the influence of social determinants on the continuum of brain health from preconception and pregnancy health, through fetal, infant and childhood neurodevelopment into adulthood. Opportunities for intervention to address the social determinants of brain health across the life cycle are highlighted.
Collapse
Affiliation(s)
- Ashley M Bach
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, USA
| | - Mary Peeler
- Department of Gynecology and Obstetrics, Johns Hopkins University, USA
| | - Michelle Caunca
- Department of Neurology, University of California San Francisco, USA
| | | | - Nicole Rosendale
- Department of Neurology, University of California San Francisco, USA; Philip R. Lee Institute for Health Policy Studies, University of California San Francisco, USA
| | - Dawn Gano
- Department of Neurology, University of California San Francisco, USA; Department of Pediatrics, University of California San Francisco, USA.
| |
Collapse
|
2
|
Elansary M, Brochier A, Urbina-Johanson S, Wexler MG, Messmer E, Pierce LJ, McCoy DC. A Qualitative Study of Maternal Perceptions of Stress and Parenting During Early Childhood. Acad Pediatr 2024; 24:1068-1075. [PMID: 38278480 DOI: 10.1016/j.acap.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/07/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
OBJECTIVE Exposure to maternal stress in early childhood can increase risk for learning and behavior challenges. We sought to gain in-depth understanding of how mothers perceive stressors to impact child wellbeing and identify mothers' strategies for navigating stressors with their young children. METHODS We recruited English- and Spanish-speaking mothers from a primary care clinic serving predominantly publicly insured children. Twenty-one mothers (aged >18 years) of children (aged 6-29 months) participated in in-depth, semi-structured interviews to discuss their experiences and beliefs regarding stress and parenting. Interviews were recorded, transcribed verbatim, and analyzed using the constant comparative method associated with a grounded theory approach. RESULTS We developed the following hypothesized explanatory model based on our key thematic findings: Mothers described a dyadic model of stress, whereby both their children's and their own experiences of and responses to stressors are interdependent. Mothers use preventive and responsive buffering to mitigate the impact of stress on their children; however, their access to resources, including social and financial support, shapes their capacity for implementing such strategies. Affection and other forms of relational support may function to protect against the negative impacts of stress. CONCLUSION In the setting of poverty-related chronic stressors, mothers play an active role in mitigating the impact of stress on their children's wellbeing through responsive caregiving. Policies aimed at reducing poverty-related stress exposures and experiences among low-income families may be key interventions for promoting responsive caregiving during a critical time in child development.
Collapse
Affiliation(s)
- Mei Elansary
- Department of Pediatrics (M Elansary), Boston University School of Medicine and Boston Medical Center, Boston, Mass.
| | - Annelise Brochier
- Department of Pediatrics (A Brochier), Boston Medical Center, Boston, Mass
| | - Saul Urbina-Johanson
- Division of Developmental Medicine (S Urbina-Johanson and LJ Pierce), Boston Children's Hospital, Boston, Mass; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health (S Urbina-Johanson), Boston, Mass
| | - Mikayla G Wexler
- Department of Medical Education, Icahn School of Medicine at Mount Sinai (MG Wexler), New York, NY
| | - Emily Messmer
- Quality and Patient Experience (E Messmer), Mass General Brigham, Somerville, Mass
| | - Lara J Pierce
- Division of Developmental Medicine (S Urbina-Johanson and LJ Pierce), Boston Children's Hospital, Boston, Mass; Department of Psychology (LJ Pierce), York University, Toronto, Ontario, Canada
| | - Dana C McCoy
- Harvard Graduate School of Education (DC McCoy), Cambridge, Mass
| |
Collapse
|
3
|
Willford JA, Kaufman JM. Through a teratological lens: A narrative review of exposure to stress and drugs of abuse during pregnancy on neurodevelopment. Neurotoxicol Teratol 2024; 105:107384. [PMID: 39187031 DOI: 10.1016/j.ntt.2024.107384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Teratological research shows that both prenatal stress and prenatal substance exposure have a significant impact on neurodevelopmental outcomes in children. Using human research, the purpose of this narrative review is to explore the degree to which these exposures may represent complex prenatal and postnatal risks for the development of cognition and behavior in children. An understanding of the HPA axis and its function during pregnancy as well as the types and operationalization of prenatal stress provide a context for understanding the direct and indirect mechanisms by which prenatal stress affects brain and behavior development. In turn, prenatal substance exposure studies are evaluated for their importance in understanding variables that indicate a potential interaction with prenatal stress including reactivity to novelty, arousal, and stress reactivity during early childhood. The similarities and differences between prenatal stress exposure and prenatal substance exposure on neurodevelopmental outcomes including arousal and emotion regulation, cognition, behavior, stress reactivity, and risk for psychopathology are summarized. Further considerations for teratological studies of prenatal stress and/or substance exposure include identifying and addressing methodological challenges, embracing the complexity of pre-and postnatal environments in the research, and the importance of incorporating parenting and resilience into future studies.
Collapse
Affiliation(s)
- Jennifer A Willford
- Slippery Rock University, Department of Psychology, 1 Morrow Way, Slippery Rock, PA 16057, United States of America.
| | - Jesse M Kaufman
- Slippery Rock University, Department of Psychology, 1 Morrow Way, Slippery Rock, PA 16057, United States of America
| |
Collapse
|
4
|
Ravi K, Young A, Beattie RM, Johnson MJ. Socioeconomic disparities in the postnatal growth of preterm infants: a systematic review. Pediatr Res 2024:10.1038/s41390-024-03384-0. [PMID: 39025935 DOI: 10.1038/s41390-024-03384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVE To determine the effect of parental socioeconomic status (SES) on the postnatal growth of preterm infants. METHODS A systematic review (PROSPERO registration CRD42020225714) of original articles from Medline, Embase, CINAHL Plus and Web of Science published 1946-2023 was undertaken. Studies were included if they reported anthropometric growth outcomes for preterm infants according to parental SES. Data extraction and assessments of bias and health equity impact were conducted using custom-designed forms. RESULTS A narrative synthesis of twelve included studies was performed. Most infants were moderate to late preterm. The settings, growth outcomes, timings of growth measurement, and SES measures were heterogenous. Six studies demonstrated an adverse effect of low parental SES on the extrauterine growth of preterm infants, five studies showed no effect, and one study showed a potentially beneficial effect. All studies had a high risk of bias, especially confounding and selection bias. The health equity impact of included studies was largely negative. CONCLUSION Limited and low-quality evidence suggests that socioeconomic minoritisation may adversely impact the growth of preterm infants, thereby widening existing socioeconomic health inequities. Observational studies informed by theorisation of the mechanistic pathways linking socioeconomic minoritisation to adverse postnatal growth are required to identify targets for intervention. IMPACT Limited evidence suggests low parental socioeconomic status (SES) adversely affects the postnatal growth of preterm infants across different settings. Early growth of preterm infants predicts neurodevelopmental outcomes and the risk of cardiovascular and metabolic disease in adulthood. Systematic screening of over 15,000 articles identified only twelve studies which reported postnatal growth outcomes for preterm infants according to parental SES. The health equity impact of the included studies was systematically assessed, and found to be negative overall. This study highlights limitations in existing evidence on the association between parental SES and postnatal growth, and delineates avenues for future research.
Collapse
Affiliation(s)
- Krithi Ravi
- Department of Anaesthesia, Royal Alexandra Hospital, NHS Greater Glasgow and Clyde, Paisley, UK
- Department of Neonatal Medicine, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Aneurin Young
- Department of Neonatal Medicine, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK
| | - R Mark Beattie
- Department of Paediatric Gastroenterology, Southampton Children's Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Mark J Johnson
- Department of Neonatal Medicine, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, UK.
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK.
| |
Collapse
|
5
|
Herzberg MP, Smyser CD. Prenatal Social Determinants of Health: Narrative review of maternal environments and neonatal brain development. Pediatr Res 2024:10.1038/s41390-024-03345-7. [PMID: 38961164 DOI: 10.1038/s41390-024-03345-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
The Social Determinants of Health, a set of social factors including socioeconomic status, community context, and neighborhood safety among others, are well-known predictors of mental and physical health across the lifespan. Recent research has begun to establish the importance of these social factors at the earliest points of brain development, including during the prenatal period. Prenatal socioeconomic status, perceived stress, and neighborhood safety have all been reported to impact neonatal brain structure and function, with exploratory work suggesting subsequent effects on infant and child behavior. Secondary effects of the Social Determinants of Health, such as maternal sleep and psychopathology during pregnancy, have also been established as important predictors of infant brain development. This research not only establishes prenatal Social Determinants of Health as important predictors of future outcomes but may be effectively applied even before birth. Future research replicating and extending the effects in this nascent literature has great potential to produce more specific and mechanistic understanding of the social factors that shape early neurobehavioral development. IMPACT: This review synthesizes the research to date examining the effects of the Social Determinants of Health during the prenatal period and neonatal brain outcomes. Structural, functional, and diffusion-based imaging methodologies are included along with the limited literature assessing subsequent infant behavior. The degree to which results converge between studies is discussed, in combination with the methodological and sampling considerations that may contribute to divergence in study results. Several future directions are identified, including new theoretical approaches to assessing the impact of the Social Determinants of Health during the perinatal period.
Collapse
Affiliation(s)
- Max P Herzberg
- Department of Psychiatry, Washington University in St. Louis, Saint Louis, MO, USA
| | - Christopher D Smyser
- Department of Neurology, Pediatrics, and Radiology, Washington University in St. Louis, Saint Louis, MO, USA.
| |
Collapse
|
6
|
Wu Y, De Asis-Cruz J, Limperopoulos C. Brain structural and functional outcomes in the offspring of women experiencing psychological distress during pregnancy. Mol Psychiatry 2024; 29:2223-2240. [PMID: 38418579 PMCID: PMC11408260 DOI: 10.1038/s41380-024-02449-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/01/2024]
Abstract
In-utero exposure to maternal psychological distress is increasingly linked with disrupted fetal and neonatal brain development and long-term neurobehavioral dysfunction in children and adults. Elevated maternal psychological distress is associated with changes in fetal brain structure and function, including reduced hippocampal and cerebellar volumes, increased cerebral cortical gyrification and sulcal depth, decreased brain metabolites (e.g., choline and creatine levels), and disrupted functional connectivity. After birth, reduced cerebral and cerebellar gray matter volumes, increased cerebral cortical gyrification, altered amygdala and hippocampal volumes, and disturbed brain microstructure and functional connectivity have been reported in the offspring months or even years after exposure to maternal distress during pregnancy. Additionally, adverse child neurodevelopment outcomes such as cognitive, language, learning, memory, social-emotional problems, and neuropsychiatric dysfunction are being increasingly reported after prenatal exposure to maternal distress. The mechanisms by which prenatal maternal psychological distress influences early brain development include but are not limited to impaired placental function, disrupted fetal epigenetic regulation, altered microbiome and inflammation, dysregulated hypothalamic pituitary adrenal axis, altered distribution of the fetal cardiac output to the brain, and disrupted maternal sleep and appetite. This review will appraise the available literature on the brain structural and functional outcomes and neurodevelopmental outcomes in the offspring of pregnant women experiencing elevated psychological distress. In addition, it will also provide an overview of the mechanistic underpinnings of brain development changes in stress response and discuss current treatments for elevated maternal psychological distress, including pharmacotherapy (e.g., selective serotonin reuptake inhibitors) and non-pharmacotherapy (e.g., cognitive-behavior therapy). Finally, it will end with a consideration of future directions in the field.
Collapse
Affiliation(s)
- Yao Wu
- Developing Brain Institute, Children's National Hospital, Washington, DC, 20010, USA
| | | | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, Washington, DC, 20010, USA.
- Department of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, 20010, USA.
| |
Collapse
|
7
|
Lautarescu A, Bonthrone AF, Bos B, Barratt B, Counsell SJ. Advances in fetal and neonatal neuroimaging and everyday exposures. Pediatr Res 2024:10.1038/s41390-024-03294-1. [PMID: 38877283 DOI: 10.1038/s41390-024-03294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 06/16/2024]
Abstract
The complex, tightly regulated process of prenatal brain development may be adversely affected by "everyday exposures" such as stress and environmental pollutants. Researchers are only just beginning to understand the neural sequelae of such exposures, with advances in fetal and neonatal neuroimaging elucidating structural, microstructural, and functional correlates in the developing brain. This narrative review discusses the wide-ranging literature investigating the influence of parental stress on fetal and neonatal brain development as well as emerging literature assessing the impact of exposure to environmental toxicants such as lead and air pollution. These 'everyday exposures' can co-occur with other stressors such as social and financial deprivation, and therefore we include a brief discussion of neuroimaging studies assessing the effect of social disadvantage. Increased exposure to prenatal stressors is associated with alterations in the brain structure, microstructure and function, with some evidence these associations are moderated by factors such as infant sex. However, most studies examine only single exposures and the literature on the relationship between in utero exposure to pollutants and fetal or neonatal brain development is sparse. Large cohort studies are required that include evaluation of multiple co-occurring exposures in order to fully characterize their impact on early brain development. IMPACT: Increased prenatal exposure to parental stress and is associated with altered functional, macro and microstructural fetal and neonatal brain development. Exposure to air pollution and lead may also alter brain development in the fetal and neonatal period. Further research is needed to investigate the effect of multiple co-occurring exposures, including stress, environmental toxicants, and socioeconomic deprivation on early brain development.
Collapse
Affiliation(s)
- Alexandra Lautarescu
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alexandra F Bonthrone
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Brendan Bos
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Ben Barratt
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Serena J Counsell
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| |
Collapse
|
8
|
Mandl S, Alexopoulos J, Doering S, Wildner B, Seidl R, Bartha-Doering L. The effect of prenatal maternal distress on offspring brain development: A systematic review. Early Hum Dev 2024; 192:106009. [PMID: 38642513 DOI: 10.1016/j.earlhumdev.2024.106009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Prenatal maternal distress can negatively affect pregnancy outcomes, yet its impact on the offspring's brain structure and function remains unclear. This systematic review summarizes the available literature on the relationship between prenatal maternal distress and brain development in fetuses and infants up to 12 months of age. METHODS We searched Central, Embase, MEDLINE, PsycINFO, and PSYNDEXplus for studies published between database inception and December 2023. Studies were included if prenatal maternal anxiety, stress, and/or depression was assessed, neuroimaging was used to examine the offspring, and the offspring's brain was imaged within the first year of life. The quality of the included studies was evaluated using the Quality Assessment of Diagnostic Accuracy Studies-II. RESULTS Out of the 1516 studies retrieved, 71 met our inclusion criteria. Although the studies varied greatly in their methodology, the results generally pointed to structural and functional aberrations in the limbic system, prefrontal cortex, and insula in fetuses and infants prenatally exposed to maternal distress. CONCLUSIONS The hippocampus, amygdala, and prefrontal cortex have a high density of glucocorticoid receptors, which play a key role in adapting to stressors and maintaining stress-related homeostasis. We thus conclude that in utero exposure to maternal distress prompts these brain regions to adapt by undergoing structural and functional changes, with the consequence that these alterations increase the risk for developing a neuropsychiatric illness later on. Future research should investigate the effect of providing psychological support for pregnant women on the offspring's early brain development.
Collapse
Affiliation(s)
- Sophie Mandl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.
| | - Johanna Alexopoulos
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria; Department of Psychoanalysis and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Stephan Doering
- Department of Psychoanalysis and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Brigitte Wildner
- University Library, Medical University of Vienna, Vienna, Austria
| | - Rainer Seidl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Lisa Bartha-Doering
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Sanders AFP, Tirado B, Seider NA, Triplett RL, Lean RE, Neil JJ, Miller JP, Tillman R, Smyser TA, Barch DM, Luby JL, Rogers CE, Smyser CD, Warner BB, Chen E, Miller GE. Prenatal exposure to maternal disadvantage-related inflammatory biomarkers: associations with neonatal white matter microstructure. Transl Psychiatry 2024; 14:72. [PMID: 38307841 PMCID: PMC10837200 DOI: 10.1038/s41398-024-02782-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/04/2024] Open
Abstract
Prenatal exposure to heightened maternal inflammation has been associated with adverse neurodevelopmental outcomes, including atypical brain maturation and psychiatric illness. In mothers experiencing socioeconomic disadvantage, immune activation can be a product of the chronic stress inherent to such environmental hardship. While growing preclinical and clinical evidence has shown links between altered neonatal brain development and increased inflammatory states in utero, the potential mechanism by which socioeconomic disadvantage differentially impacts neural-immune crosstalk remains unclear. In the current study, we investigated associations between socioeconomic disadvantage, gestational inflammation, and neonatal white matter microstructure in 320 mother-infant dyads over-sampled for poverty. We analyzed maternal serum levels of four cytokines (IL-6, IL-8, IL-10, TNF-α) over the course of pregnancy in relation to offspring white matter microstructure and socioeconomic disadvantage. Higher average maternal IL-6 was associated with very low socioeconomic status (SES; INR < 200% poverty line) and lower neonatal corticospinal fractional anisotropy (FA) and lower uncinate axial diffusivity (AD). No other cytokine was associated with SES. Higher average maternal IL-10 was associated with lower FA and higher radial diffusivity (RD) in corpus callosum and corticospinal tracts, higher optic radiation RD, lower uncinate AD, and lower FA in inferior fronto-occipital fasciculus and anterior limb of internal capsule tracts. SES moderated the relationship between average maternal TNF-α levels during gestation and neonatal white matter diffusivity. When these interactions were decomposed, the patterns indicated that this association was significant and positive among very low SES neonates, whereby TNF-α was inversely and significantly associated with inferior cingulum AD. By contrast, among the more advantaged neonates (lower-to-higher SES [INR ≥ 200% poverty line]), TNF-α was positively and significantly associated with superior cingulum AD. Taken together, these findings suggest that the relationship between prenatal cytokine exposure and white matter microstructure differs as a function of SES. These patterns are consistent with a scenario where gestational inflammation's effects on white matter development diverge depending on the availability of foundational resources in utero.
Collapse
Affiliation(s)
- Ashley F P Sanders
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Brian Tirado
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Nicole A Seider
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Regina L Triplett
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rachel E Lean
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jeffrey J Neil
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - J Philip Miller
- Division of Biostatistics, Institute for Informatics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rebecca Tillman
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tara A Smyser
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Christopher D Smyser
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Newborn Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Edith Chen
- Institute for Policy Research, Northwestern University, Evanston, IL, 60208, USA
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Gregory E Miller
- Institute for Policy Research, Northwestern University, Evanston, IL, 60208, USA
- Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
10
|
Kumpulainen V, Copeland A, Pulli EP, Silver E, Kataja EL, Saukko E, Merisaari H, Lewis JD, Karlsson L, Karlsson H, Tuulari JJ. Prenatal and Postnatal Maternal Depressive Symptoms Are Associated With White Matter Integrity in 5-Year-Olds in a Sex-Specific Manner. Biol Psychiatry 2023; 94:924-935. [PMID: 37220833 DOI: 10.1016/j.biopsych.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/18/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Prenatal and postnatal maternal psychological distress predicts various detrimental consequences on social, behavioral, and cognitive development of offspring, especially in girls. Maturation of white matter (WM) continues from prenatal development into adulthood and is thus susceptible to exposures both before and after birth. METHODS WM microstructural features of 130 children (mean age, 5.36 years; range, 5.04-5.79 years; 63 girls) and their association with maternal prenatal and postnatal depressive and anxiety symptoms were investigated with diffusion tensor imaging, tract-based spatial statistics, and regression analyses. Maternal questionnaires were collected during first, second, and third trimesters and at 3, 6, and 12 months postpartum with the Edinburgh Postnatal Depression Scale (EPDS) for depressive symptoms and Symptom Checklist-90 for general anxiety. Covariates included child's sex; child's age; maternal prepregnancy body mass index; maternal age; socioeconomic status; and exposures to smoking, selective serotonin reuptake inhibitors, and synthetic glucocorticoids during pregnancy. RESULTS Prenatal second-trimester EPDS scores were positively associated with fractional anisotropy in boys (p < .05, 5000 permutations) after controlling for EPDS scores 3 months postpartum. In contrast, postpartum EPDS scores at 3 months correlated negatively with fractional anisotropy (p < .01, 5000 permutations) in widespread areas only in girls after controlling for prenatal second-trimester EPDS scores. Perinatal anxiety was not associated with WM structure. CONCLUSIONS These results suggest that prenatal and postnatal maternal psychological distress is associated with brain WM tract developmental alterations in a sex- and timing-dependent manner. Future studies including behavioral data are required to consolidate associative outcomes for these alterations.
Collapse
Affiliation(s)
- Venla Kumpulainen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland.
| | - Anni Copeland
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Elmo P Pulli
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Eero Silver
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Eeva-Leena Kataja
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Ekaterina Saukko
- Department of Radiology, Turku University Hospital, Turku, Finland
| | - Harri Merisaari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland; Department of Radiology, Turku University Hospital, Turku, Finland
| | - John D Lewis
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland; Department of Clinical Medicine, Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland; Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland; Department of Psychiatry, Turku University Hospital and University of Turku, Turku, Finland; Turku Collegium for Science, Medicine and Technology, University of Turku, Turku, Finland; Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Santos R, Lokmane L, Ozdemir D, Traoré C, Agesilas A, Hakibilen C, Lenkei Z, Zala D. Local glycolysis fuels actomyosin contraction during axonal retraction. J Cell Biol 2023; 222:e202206133. [PMID: 37902728 PMCID: PMC10616508 DOI: 10.1083/jcb.202206133] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 04/04/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
In response to repulsive cues, axonal growth cones can quickly retract. This requires the prompt activity of contractile actomyosin, which is formed by the non-muscle myosin II (NMII) bound to actin filaments. NMII is a molecular motor that provides the necessary mechanical force at the expense of ATP. Here, we report that this process is energetically coupled to glycolysis and is independent of cellular ATP levels. Induction of axonal retraction requires simultaneous generation of ATP by glycolysis, as shown by chemical inhibition and genetic knock-down of GAPDH. Co-immunoprecipitation and proximal-ligation assay showed that actomyosin associates with ATP-generating glycolytic enzymes and that this association is strongly enhanced during retraction. Using microfluidics, we confirmed that the energetic coupling between glycolysis and actomyosin necessary for axonal retraction is localized to the growth cone and near axonal shaft. These results indicate a tight coupling between on-demand energy production by glycolysis and energy consumption by actomyosin contraction suggesting a function of glycolysis in axonal guidance.
Collapse
Affiliation(s)
- Renata Santos
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
- Institut des Sciences Biologiques, Centre national de la recherche scientifique, Paris, France
| | - Ludmilla Lokmane
- Institut de Biologie de l’Ecole Normale Supérieure, École Normale Supérieure, Centre national de la recherche scientifique, Paris Sciences et Lettres Research University, Paris, France
| | - Dersu Ozdemir
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
| | - Clément Traoré
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| | - Annabelle Agesilas
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| | - Coralie Hakibilen
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| | - Zsolt Lenkei
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Diana Zala
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Laboratory of Dynamics of Neuronal Structure in Health and Disease, Paris, France
- Brain Plasticity Unit, École Supérieure de Physique et de Chimie Industrielles–ParisTech, Paris, France
| |
Collapse
|
12
|
Lee JY, Lee HJ, Jang YH, Kim H, Im K, Yang S, Hoh JK, Ahn JH. Maternal pre-pregnancy obesity affects the uncinate fasciculus white matter tract in preterm infants. Front Pediatr 2023; 11:1225960. [PMID: 38034827 PMCID: PMC10684693 DOI: 10.3389/fped.2023.1225960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Background A growing body of evidence suggests an association between a higher maternal pre-pregnancy body mass index (BMI) and adverse long-term neurodevelopmental outcomes for their offspring. Despite recent attention to the effects of maternal obesity on fetal and neonatal brain development, changes in the brain microstructure of preterm infants born to mothers with pre-pregnancy obesity are still not well understood. This study aimed to detect the changes in the brain microstructure of obese mothers in pre-pregnancy and their offspring born as preterm infants using diffusion tensor imaging (DTI). Methods A total of 32 preterm infants (born to 16 mothers with normal BMI and 16 mothers with a high BMI) at <32 weeks of gestation without brain injury underwent brain magnetic resonance imaging at term-equivalent age (TEA). The BMI of all pregnant women was measured within approximately 12 weeks before pregnancy or the first 2 weeks of gestation. We analyzed the brain volume using a morphologically adaptive neonatal tissue segmentation toolbox and calculated the major white matter (WM) tracts using probabilistic maps of the Johns Hopkins University neonatal atlas. We investigated the differences in brain volume and WM microstructure between preterm infants of mothers with normal and high BMI. The DTI parameters were compared among groups using analysis of covariance adjusted for postmenstrual age at scan and multiple comparisons. Results Preterm infants born to mothers with a high BMI showed significantly increased cortical gray matter volume (p = 0.001) and decreased WM volume (p = 0.003) after controlling for postmenstrual age and multiple comparisons. We found a significantly lower axial diffusivity in the uncinate fasciculus (UNC) in mothers with high BMI than that in mothers with normal BMI (1.690 ± 0.066 vs. 1.762 ± 0.101, respectively; p = 0.005). Conclusion Our study is the first to demonstrate that maternal obesity impacts perinatal brain development patterns in preterm infants at TEA, even in the absence of apparent brain injury. These findings provide evidence for the detrimental effects of maternal obesity on brain developmental trajectories in offspring and suggest potential neurodevelopmental outcomes based on an altered UNC WM microstructure, which is known to be critical for language and social-emotional functions.
Collapse
Affiliation(s)
- Joo Young Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Division of Neonatology and Development Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| | - Yong Hun Jang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Hyuna Kim
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul, Republic of Korea
| | - Kiho Im
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
- Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Seung Yang
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Pediatrics, Hanyang University Hospital, Seoul, Republic of Korea
| | - Jeong-Kyu Hoh
- Department of Obstetrics and Gynecology, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Hanyang University Hospital, Seoul, Republic of Korea
| | - Ja-Hye Ahn
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
- Division of Neonatology and Development Medicine, Hanyang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
13
|
Taylor RL, Rogers CE, Smyser CD, Barch DM. Associations Between Preterm Birth, Inhibitory Control-Implicated Brain Regions and Tracts, and Inhibitory Control Task Performance in Children: Consideration of Socioeconomic Context. Child Psychiatry Hum Dev 2023:10.1007/s10578-023-01531-y. [PMID: 37119410 PMCID: PMC10949152 DOI: 10.1007/s10578-023-01531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 05/01/2023]
Abstract
Preterm birth (PTB) is associated with increased risk for unfavorable outcomes such as deficits in attentional control and related brain structure alterations. Crucially, PTB is more likely to occur within the context of poverty. The current study examined associations between PTB and inhibitory control (IC) implicated brain regions/tracts and task performance, as well as the moderating role of early life poverty on the relation between PTB and IC-implicated regions/tracts/task performance. 2,899 children from the ABCD study were sampled for this study. Mixed effects models examined the relation between PTB and subsequent IC performance as well as prefrontal gray matter volume, white matter fractional anisotropy (FA), and mean diffusivity (MD). Household income was examined as a moderator. PTB was significantly associated with less improvement in IC task performance over time and decreased FA in left uncinate fasciculus (UF) and cingulum bundle (CB). Early life poverty moderated the relation between PTB and both CB FA and UF MD.
Collapse
Affiliation(s)
- Rita L Taylor
- Department of Psychological and Brain Sciences, Washington University, One Brookings Drive, Box 1125, St. Louis, MO, 63130, USA.
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University, St. Louis, MO, USA
- Department of Pediatrics, Washington University, St. Louis, MO, USA
| | - Christopher D Smyser
- Department of Pediatrics, Washington University, St. Louis, MO, USA
- Department of Neurology, Washington University, St. Louis, MO, USA
- Department of Radiology, Washington University, St. Louis, MO, USA
| | - Deanna M Barch
- Department of Psychological and Brain Sciences, Washington University, One Brookings Drive, Box 1125, St. Louis, MO, 63130, USA
- Department of Psychiatry, Washington University, St. Louis, MO, USA
- Department of Radiology, Washington University, St. Louis, MO, USA
| |
Collapse
|
14
|
DiPiero M, Rodrigues PG, Gromala A, Dean DC. Applications of advanced diffusion MRI in early brain development: a comprehensive review. Brain Struct Funct 2023; 228:367-392. [PMID: 36585970 PMCID: PMC9974794 DOI: 10.1007/s00429-022-02605-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
Brain development follows a protracted developmental timeline with foundational processes of neurodevelopment occurring from the third trimester of gestation into the first decade of life. Defining structural maturational patterns of early brain development is a critical step in detecting divergent developmental trajectories associated with neurodevelopmental and psychiatric disorders that arise later in life. While considerable advancements have already been made in diffusion magnetic resonance imaging (dMRI) for pediatric research over the past three decades, the field of neurodevelopment is still in its infancy with remarkable scientific and clinical potential. This comprehensive review evaluates the application, findings, and limitations of advanced dMRI methods beyond diffusion tensor imaging, including diffusion kurtosis imaging (DKI), constrained spherical deconvolution (CSD), neurite orientation dispersion and density imaging (NODDI) and composite hindered and restricted model of diffusion (CHARMED) to quantify the rapid and dynamic changes supporting the underlying microstructural architectural foundations of the brain in early life.
Collapse
Affiliation(s)
- Marissa DiPiero
- Department of Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Alyssa Gromala
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
15
|
Hiscox LV, Fairchild G, Donald KA, Groenewold NA, Koen N, Roos A, Narr KL, Lawrence M, Hoffman N, Wedderburn CJ, Barnett W, Zar HJ, Stein DJ, Halligan SL. Antenatal maternal intimate partner violence exposure is associated with sex-specific alterations in brain structure among young infants: Evidence from a South African birth cohort. Dev Cogn Neurosci 2023; 60:101210. [PMID: 36764039 PMCID: PMC9929680 DOI: 10.1016/j.dcn.2023.101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023] Open
Abstract
Maternal psychological distress during pregnancy has been linked to adverse outcomes in children with evidence of sex-specific effects on brain development. Here, we investigated whether in utero exposure to intimate partner violence (IPV), a particularly severe maternal stressor, is associated with brain structure in young infants from a South African birth cohort. Exposure to IPV during pregnancy was measured in 143 mothers at 28-32 weeks' gestation and infants underwent structural and diffusion magnetic resonance imaging (mean age 3 weeks). Subcortical volumetric estimates were compared between IPV-exposed (n = 63; 52% female) and unexposed infants (n = 80; 48% female), with white matter microstructure also examined in a subsample (IPV-exposed, n = 28, 54% female; unexposed infants, n = 42, 40% female). In confound adjusted analyses, maternal IPV exposure was associated with sexually dimorphic effects in brain volumes: IPV exposure predicted a larger caudate nucleus among males but not females, and smaller amygdala among females but not males. Diffusivity alterations within white matter tracts of interest were evident in males, but not females exposed to IPV. Results were robust to the removal of mother-infant pairs with pregnancy complications. Further research is required to understand how these early alterations are linked to the sex-bias in neuropsychiatric outcomes later observed in IPV-exposed children.
Collapse
Affiliation(s)
- Lucy V Hiscox
- Department of Psychology, University of Bath, Bath, UK.
| | | | - Kirsten A Donald
- Department of Pediatrics and Child Health, Red Cross War Memorial Children's Hospital and University of Cape Town, Cape Town, South Africa; The Neuroscience institute, University of Cape Town, Cape Town, South Africa
| | - Nynke A Groenewold
- Department of Pediatrics and Child Health, Red Cross War Memorial Children's Hospital and University of Cape Town, Cape Town, South Africa; The Neuroscience institute, University of Cape Town, Cape Town, South Africa; Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Nastassja Koen
- The Neuroscience institute, University of Cape Town, Cape Town, South Africa; SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Annerine Roos
- The Neuroscience institute, University of Cape Town, Cape Town, South Africa; Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Katherine L Narr
- Departments of Neurology, Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Marina Lawrence
- Department of Pediatrics and Child Health, Red Cross War Memorial Children's Hospital and University of Cape Town, Cape Town, South Africa
| | - Nadia Hoffman
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Catherine J Wedderburn
- Department of Pediatrics and Child Health, Red Cross War Memorial Children's Hospital and University of Cape Town, Cape Town, South Africa; The Neuroscience institute, University of Cape Town, Cape Town, South Africa; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Whitney Barnett
- Department of Psychology and Human Development, Vanderbilt University, USA
| | - Heather J Zar
- Department of Pediatrics and Child Health, Red Cross War Memorial Children's Hospital and University of Cape Town, Cape Town, South Africa; SA MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- The Neuroscience institute, University of Cape Town, Cape Town, South Africa; SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Sarah L Halligan
- Department of Psychology, University of Bath, Bath, UK; Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa; Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
16
|
Wang R, Zhao F, Li Y, Zhu J, Liu Y, Li J, Yao G, Liu H, Guan S, Ma S. The effects of chronic unpredicted mild stress on maternal negative emotions and gut microbiota and metabolites in pregnant rats. PeerJ 2023; 11:e15113. [PMID: 37090110 PMCID: PMC10117386 DOI: 10.7717/peerj.15113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/02/2023] [Indexed: 04/25/2023] Open
Abstract
Background Chronic long-term stress is associated with a range of disorders, including depression and a variety of other chronic illnesses. It is well known that maternal exposure to psychosocial stress during pregnancy significantly increases the likelihood of adverse pregnancy outcomes. The gut microbiota has been a popular topic, it is a key mediator of the gut-brain axis and plays an important role in human health; changes in the gut microbiota have been related to chronic stress-induced health impairment, however, the relationship between maternal negative emotions and abnormal gut microbiota and its metabolites during maternal exposure to chronic stress during pregnancy remains unclear. Methods Pregnant rats were subjected to chronic unpredicted mild stress (CUMS) to establish the rat model of chronic stress during pregnancy. The behavioral changes were recorded using sucrose preference test (SPT) and open-field test (OFT), plasma corticosterone levels were determined by radioimmunoassay, and a comprehensive method combining 16S rRNA gene sequencing and gas chromatography-mass spectrometry (GC-MS) metabolomics was used to study the effects of stress during pregnancy on the function of intestinal microbiota and its metabolites. Results Chronic stress during pregnancy not only increased maternal plasma corticosterone (P < 0.05), but also caused maternal depression-like behaviors (P < 0.05). Chronic stress during pregnancy changed the species composition at the family level of maternal gut microbiota, the species abundance of Ruminococcaceae in the stress group (23.45%) was lower than the control group (32.67%) and the species abundance of Prevotellaceae in the stress group (10.45%) was higher than the control group (0.03%) (P < 0.05). Vertical locomotion and 1% sucrose preference percentage in pregnant rats were negatively correlated with Prevotellaceae (r = - 0.90, P < 0.05). Principal component analysis with partial least squares discriminant analysis showed that the integration points of metabolic components in the stress and control groups were completely separated, indicating that there were significant differences in the metabolic patterns of the two groups, and there were seven endogenous metabolites that differed (P < 0.05). Conclusions The negative emotional behaviors that occur in pregnant rats as a result of prenatal chronic stress may be associated with alterations in the gut microbiota and its metabolites. These findings provide a basis for future targeted metabolomics and gut flora studies on the effects of chronic stress during pregnancy on gut flora.
Collapse
Affiliation(s)
- Rui Wang
- Ningxia Medical University, Ningxia, People’s Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia, People’s Republic of China
| | - Feng Zhao
- Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ye Li
- Ningxia Medical University, Ningxia, People’s Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia, People’s Republic of China
| | - Jiashu Zhu
- Ningxia Medical University, Ningxia, People’s Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia, People’s Republic of China
| | - Yifei Liu
- Ningxia Medical University, Ningxia, People’s Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia, People’s Republic of China
| | - Jiaqi Li
- Ningxia Medical University, Ningxia, People’s Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia, People’s Republic of China
| | - Guixiang Yao
- Ningxia Medical University, Ningxia, People’s Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia, People’s Republic of China
| | - Hongya Liu
- Chongqing Medical University, Chongqing, People’s Republic of China
| | - Suzhen Guan
- Ningxia Medical University, Ningxia, People’s Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia, People’s Republic of China
| | - Shuqin Ma
- General hospital of Ningxia Medical University, Ningxia, People’s Republic of China
| |
Collapse
|
17
|
Nolvi S, Merz EC, Kataja EL, Parsons CE. Prenatal Stress and the Developing Brain: Postnatal Environments Promoting Resilience. Biol Psychiatry 2022; 93:942-952. [PMID: 36870895 DOI: 10.1016/j.biopsych.2022.11.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/25/2022]
Abstract
Heightened maternal stress during pregnancy is associated with atypical brain development and an elevated risk for psychopathology in offspring. Supportive environments during early postnatal life may promote brain development and reverse atypical developmental trajectories induced by prenatal stress. We reviewed studies focused on the role of key early environmental factors in moderating associations between prenatal stress exposure and infant brain and neurocognitive outcomes. Specifically, we focused on the associations between parental caregiving quality, environmental enrichment, social support, and socioeconomic status with infant brain and neurocognitive outcomes. We examined the evidence that these factors may moderate the effects of prenatal stress on the developing brain. Complementing findings from translational models, human research suggests that high-quality early postnatal environments are associated with indices of infant neurodevelopment that have also been associated with prenatal stress, such as hippocampal volume and frontolimbic connectivity. Human studies also suggest that maternal sensitivity and higher socioeconomic status may attenuate the effects of prenatal stress on established neurocognitive and neuroendocrine mediators of risk for psychopathology, such as hypothalamic-pituitary-adrenal axis functioning. Biological pathways that may underlie the effects of positive early environments on the infant brain, including the epigenome, oxytocin, and inflammation, are also discussed. Future research in humans should examine resilience-promoting processes in relation to infant brain development using large sample sizes and longitudinal designs. The findings from this review could be incorporated into clinical models of risk and resilience during the perinatal period and used to design more effective early programs that reduce risk for psychopathology.
Collapse
Affiliation(s)
- Saara Nolvi
- Department of Psychology and Speech-Language Pathology, Turku Institute for Advanced Studies, University of Turku, Turku, Finland; Department of Clinical Medicine, FinnBrain Birth Cohort Study, Center for Population Health Research, University of Turku, Turku, Finland.
| | - Emily C Merz
- Department of Psychology, Colorado State University, Fort Collins, Colorado
| | - Eeva-Leena Kataja
- Department of Clinical Medicine, FinnBrain Birth Cohort Study, Center for Population Health Research, University of Turku, Turku, Finland
| | - Christine E Parsons
- Department of Clinical Medicine, Interacting Minds Center, Aarhus University, Aarhus, Denmark
| |
Collapse
|
18
|
Vulnerability of the Neonatal Connectome following Postnatal Stress. J Neurosci 2022; 42:8948-8959. [PMID: 36376077 PMCID: PMC9732827 DOI: 10.1523/jneurosci.0176-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Stress following preterm birth can disrupt the emerging foundation of the neonatal brain. The current study examined how structural brain development is affected by a stressful early environment and whether changes in topological architecture at term-equivalent age could explain the increased vulnerability for behavioral symptoms during early childhood. Longitudinal changes in structural brain connectivity were quantified using diffusion-weighted imaging (DWI) and tractography in preterm born infants (gestational age <28 weeks), imaged at 30 and/or 40 weeks of gestation (N = 145, 43.5% female). A global index of postnatal stress was determined based on the number of invasive procedures during hospitalization (e.g., heel lance). Higher stress levels impaired structural connectivity growth in a subnetwork of 48 connections (p = 0.003), including the amygdala, insula, hippocampus, and posterior cingulate cortex. Findings were replicated in an independent validation sample (N = 123, 39.8% female, n = 91 with follow-up). Classifying infants into vulnerable and resilient based on having more or less internalizing symptoms at two to five years of age (n = 71) revealed lower connectivity in the hippocampus and amygdala for vulnerable relative to resilient infants (p < 0.001). Our findings suggest that higher stress exposure during hospital admission is associated with slower growth of structural connectivity. The preservation of global connectivity of the amygdala and hippocampus might reflect a stress-buffering or resilience-enhancing factor against a stressful early environment and early-childhood internalizing symptoms.SIGNIFICANCE STATEMENT The preterm brain is exposed to various external stimuli following birth. The effects of early chronic stress on neonatal brain networks and the remarkable degree of resilience are not well understood. The current study aims to provide an increased understanding of the impact of postnatal stress on third-trimester brain development and describe the topological architecture of a resilient brain. We observed a sparser neonatal brain network in infants exposed to higher postnatal stress. Limbic regulatory regions, including the hippocampus and amygdala, may play a key role as crucial convergence sites of protective factors. Understanding how stress-induced alterations in early brain development might lead to brain (re)organization may provide essential insights into resilient functioning.
Collapse
|
19
|
Lean RE, Smyser CD, Brady RG, Triplett RL, Kaplan S, Kenley JK, Shimony JS, Smyser TA, Miller JP, Barch DM, Luby JL, Warner BB, Rogers CE. Prenatal exposure to maternal social disadvantage and psychosocial stress and neonatal white matter connectivity at birth. Proc Natl Acad Sci U S A 2022; 119:e2204135119. [PMID: 36219693 PMCID: PMC9586270 DOI: 10.1073/pnas.2204135119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Early life adversity (social disadvantage and psychosocial stressors) is associated with altered microstructure in fronto-limbic pathways important for socioemotional development. Understanding when these associations begin to emerge may inform the timing and design of preventative interventions. In this longitudinal study, 399 mothers were oversampled for low income and completed social background measures during pregnancy. Measures were analyzed with structural equation analysis resulting in two latent factors: social disadvantage (education, insurance status, income-to-needs ratio [INR], neighborhood deprivation, and nutrition) and psychosocial stress (depression, stress, life events, and racial discrimination). At birth, 289 healthy term-born neonates underwent a diffusion MRI (dMRI) scan. Mean diffusivity (MD) and fractional anisotropy (FA) were measured for the dorsal and inferior cingulum bundle (CB), uncinate, and fornix using probabilistic tractography in FSL. Social disadvantage and psychosocial stress were fitted to dMRI parameters using regression models adjusted for infant postmenstrual age at scan and sex. Social disadvantage, but not psychosocial stress, was independently associated with lower MD in the bilateral inferior CB and left uncinate, right fornix, and lower MD and higher FA in the right dorsal CB. Results persisted after accounting for maternal medical morbidities and prenatal drug exposure. In moderation analysis, psychosocial stress was associated with lower MD in the left inferior CB among the lower-to-higher socioeconomic status (SES) (INR ≥ 200%) group, but not the extremely low SES (INR < 200%) group. Increasing access to social welfare programs that reduce the burden of social disadvantage and related psychosocial stressors may be an important target to protect fetal brain development in fronto-limbic pathways.
Collapse
Affiliation(s)
- Rachel E. Lean
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Christopher D. Smyser
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Rebecca G. Brady
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Regina L. Triplett
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Sydney Kaplan
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Jeanette K. Kenley
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Joshua S. Shimony
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Tara A. Smyser
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - J. Phillip Miller
- Department of Biostatistics, Institute for Informatics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Deanna M. Barch
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Department of Psychological and Brain Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO 63130
| | - Joan L. Luby
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Barbara B. Warner
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Department of Newborn Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Cynthia E. Rogers
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| |
Collapse
|
20
|
Perinatal and early childhood biomarkers of psychosocial stress and adverse experiences. Pediatr Res 2022; 92:956-965. [PMID: 35091705 DOI: 10.1038/s41390-022-01933-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 01/23/2023]
Abstract
The human brain develops through a complex interplay of genetic and environmental influences. During critical periods of development, experiences shape brain architecture, often with long-lasting effects. If experiences are adverse, the effects may include the risk of mental and physical disease, whereas positive environments may increase the likelihood of healthy outcomes. Understanding how psychosocial stress and adverse experiences are embedded in biological systems and how we can identify markers of risk may lead to discovering new approaches to improve patient care and outcomes. Biomarkers can be used to identify specific intervention targets and at-risk children early when physiological system malleability increases the likelihood of intervention success. However, identifying reliable biomarkers has been challenging, particularly in the perinatal period and the first years of life, including in preterm infants. This review explores the landscape of psychosocial stress and adverse experience biomarkers. We highlight potential benefits and challenges of identifying risk clinically and different sub-signatures of stress, and in their ability to inform targeted interventions. Finally, we propose that the combination of preterm birth and adversity amplifies the risk for abnormal development and calls for a focus on this group of infants within the field of psychosocial stress and adverse experience biomarkers. IMPACT: Reviews the landscape of biomarkers of psychosocial stress and adverse experiences in the perinatal period and early childhood and highlights the potential benefits and challenges of their clinical utility in identifying risk status in children, and in developing targeted interventions. Explores associations between psychosocial stress and adverse experiences in childhood with prematurity and identifies potential areas of assessment and intervention to improve outcomes in this at-risk group.
Collapse
|
21
|
Lautarescu A, Bonthrone AF, Pietsch M, Batalle D, Cordero-Grande L, Tournier JD, Christiaens D, Hajnal JV, Chew A, Falconer S, Nosarti C, Victor S, Craig MC, Edwards AD, Counsell SJ. Maternal depressive symptoms, neonatal white matter, and toddler social-emotional development. Transl Psychiatry 2022; 12:323. [PMID: 35945202 PMCID: PMC9363426 DOI: 10.1038/s41398-022-02073-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Maternal prenatal depression is associated with increased likelihood of neurodevelopmental and psychiatric conditions in offspring. The relationship between maternal depression and offspring outcome may be mediated by in-utero changes in brain development. Recent advances in magnetic resonance imaging (MRI) have enabled in vivo investigations of neonatal brains, minimising the effect of postnatal influences. The aim of this study was to examine associations between maternal prenatal depressive symptoms, infant white matter, and toddler behaviour. 413 mother-infant dyads enrolled in the developing Human Connectome Project. Mothers completed the Edinburgh Postnatal Depression Scale (median = 5, range = 0-28, n = 52 scores ≥ 11). Infants (n = 223 male) (median gestational age at birth = 40 weeks, range 32.14-42.29) underwent MRI (median postmenstrual age at scan = 41.29 weeks, range 36.57-44.71). Fixel-based fibre metrics (mean fibre density, fibre cross-section, and fibre density modulated by cross-section) were calculated from diffusion imaging data in the left and right uncinate fasciculi and cingulum bundle. For n = 311, internalising and externalising behaviour, and social-emotional abilities were reported at a median corrected age of 18 months (range 17-24). Statistical analysis used multiple linear regression and mediation analysis with bootstrapping. Maternal depressive symptoms were positively associated with infant fibre density in the left (B = 0.0005, p = 0.003, q = 0.027) and right (B = 0.0006, p = 0.003, q = 0.027) uncinate fasciculus, with left uncinate fasciculus fibre density, in turn, positively associated with social-emotional abilities in toddlerhood (B = 105.70, p = 0.0007, q = 0.004). In a mediation analysis, higher maternal depressive symptoms predicted toddler social-emotional difficulties (B = 0.342, t(307) = 3.003, p = 0.003), but this relationship was not mediated by fibre density in the left uncinate fasciculus (Sobel test p = 0.143, bootstrapped indirect effect = 0.035, SE = 0.02, 95% CI: [-0.01, 0.08]). There was no evidence of an association between maternal depressive and cingulum fibre properties. These findings suggest that maternal perinatal depressive symptoms are associated with neonatal uncinate fasciculi microstructure, but not fibre bundle size, and toddler behaviour.
Collapse
Affiliation(s)
- Alexandra Lautarescu
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK.
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Alexandra F Bonthrone
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Maximilian Pietsch
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - J-Donald Tournier
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Daan Christiaens
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Joseph V Hajnal
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Andrew Chew
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Shona Falconer
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Chiara Nosarti
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Suresh Victor
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Neonatal Unit, Evelina London Children's Hospital, London, UK
| | - Michael C Craig
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Female Hormone Clinic, South London and Maudsley National Health Service Foundation Trust, London, UK
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
- Neonatal Unit, Evelina London Children's Hospital, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- EPSRC/Wellcome Centre for Medical Engineering, King's College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| |
Collapse
|
22
|
Craig MC, Sethna V, Gudbrandsen M, Pariante CM, Seneviratne T, Stoencheva V, Sethi A, Catani M, Brammer M, Murphy DGM, Daly E. Birth of the blues: emotional sound processing in infants exposed to prenatal maternal depression. Psychol Med 2022; 52:2017-2023. [PMID: 35786785 PMCID: PMC9386434 DOI: 10.1017/s0033291720002688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/16/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Offspring exposed to prenatal maternal depression (PMD) are vulnerable to depression across their lifespan. The underlying cause(s) for this elevated intergenerational risk is most likely complex. However, depression is underpinned by a dysfunctional frontal-limbic network, associated with core information processing biases (e.g. attending more to sad stimuli). Aberrations in this network might mediate transmission of this vulnerability in infants exposed to PMD. In this study, we aimed to explore the association between foetal exposure to PMD and frontal-limbic network function in infancy, hypothesising that, in response to emotional sounds, infants exposed to PMD would exhibit atypical activity in these regions, relative to those not exposed to PMD. METHOD We employed a novel functional magnetic resonance imaging sequence to compare brain function, whilst listening to emotional sounds, in 78 full-term infants (3-6 months of age) born to mothers with and without a diagnosis of PMD. RESULTS After exclusion of 19 datasets due to infants waking up, or moving excessively, we report between-group brain activity differences, between 29 infants exposed to PMD and 29 infants not exposed to PMD, occurring in temporal, striatal, amygdala/parahippocampal and frontal regions (p < 0.005). The offspring exposed to PMD exhibited a relative increase in activation to sad sounds and reduced (or unchanged) activation to happy sounds in frontal-limbic clusters. CONCLUSIONS Findings of a differential response to positive and negative valanced sounds by 3-6 months of age may have significant implications for our understanding of neural mechanisms that underpin the increased risk for later-life depression in this population.
Collapse
Affiliation(s)
- Michael C. Craig
- Department of Forensic & Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Natbrainlab, Department of Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Female Hormone Clinic, Maudsley Hospital, SLAM NHS Foundation Trust, London, UK
| | - Vaheshta Sethna
- Department of Forensic & Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Maria Gudbrandsen
- Department of Forensic & Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Carmine M. Pariante
- Stress, Psychiatry and Immunology & Perinatal Psychiatry Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Trudi Seneviratne
- Perinatal Services, Maudsley Hospital, SLAM NHS Foundation Trust, London, UK
| | - Vladimira Stoencheva
- Department of Forensic & Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Arjun Sethi
- Department of Forensic & Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Natbrainlab, Department of Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Marco Catani
- Department of Forensic & Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Natbrainlab, Department of Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mick Brammer
- Department of Forensic & Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Declan G. M. Murphy
- Department of Forensic & Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Eileen Daly
- Department of Forensic & Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
23
|
Cathomas F, Holt LM, Parise EM, Liu J, Murrough JW, Casaccia P, Nestler EJ, Russo SJ. Beyond the neuron: Role of non-neuronal cells in stress disorders. Neuron 2022; 110:1116-1138. [PMID: 35182484 PMCID: PMC8989648 DOI: 10.1016/j.neuron.2022.01.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
Stress disorders are leading causes of disease burden in the U.S. and worldwide, yet available therapies are fully effective in less than half of all individuals with these disorders. Although to date, much of the focus has been on neuron-intrinsic mechanisms, emerging evidence suggests that chronic stress can affect a wide range of cell types in the brain and periphery, which are linked to maladaptive behavioral outcomes. Here, we synthesize emerging literature and discuss mechanisms of how non-neuronal cells in limbic regions of brain interface at synapses, the neurovascular unit, and other sites of intercellular communication to mediate the deleterious, or adaptive (i.e., pro-resilient), effects of chronic stress in rodent models and in human stress-related disorders. We believe that such an approach may one day allow us to adopt a holistic "whole body" approach to stress disorder research, which could lead to more precise diagnostic tests and personalized treatment strategies. Stress is a major risk factor for many psychiatric disorders. Cathomas et al. review new insight into how non-neuronal cells mediate the deleterious effects, as well as the adaptive, protective effects, of stress in rodent models and human stress-related disorders.
Collapse
Affiliation(s)
- Flurin Cathomas
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leanne M Holt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center, Program in Biology and Biochemistry at The Graduate Center of The City University of New York, New York, NY, USA
| | - James W Murrough
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrizia Casaccia
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Neuroscience Initiative, Advanced Science Research Center, Program in Biology and Biochemistry at The Graduate Center of The City University of New York, New York, NY, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
24
|
Lovato I, Vanes LD, Sacchi C, Simonelli A, Hadaya L, Kanel D, Falconer S, Counsell S, Redshaw M, Kennea N, Edwards AD, Nosarti C. Early Childhood Temperamental Trajectories following Very Preterm Birth and Their Association with Parenting Style. CHILDREN (BASEL, SWITZERLAND) 2022; 9:508. [PMID: 35455552 PMCID: PMC9025945 DOI: 10.3390/children9040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 11/30/2022]
Abstract
Childhood temperament is an early characteristic shaping later life adjustment. However, little is currently known about the stability of early temperament and its susceptibility to the environment in children born very preterm (VPT; <33 weeks’ gestation). Here, we investigated infant-to-childhood temperamental trajectories, and their interaction with parental practices, in VPT children. Maternal reports of infant temperament were collected in 190 infants (mean age: 11.27 months; range 9−18 months) enrolled in the longitudinal Evaluation of Preterm Imaging (ePrime; Eudra: CT 2009-011602-42) study, using the ePrime questionnaire on infant temperament. At 4−7 years of age, further assessments of child temperament (Children’s Behavior Questionnaire—Very Short Form) and parenting style (Arnold’s Parenting Scale) were conducted. Results showed that more difficult temperament in infancy was associated with increased Negative Affectivity in childhood, regardless of parenting practices. This lends support to the stability of early temperamental traits reflecting negative emotionality. In contrast, a lax parenting style moderated the relationship between easy infant temperament and Negative Affectivity at 4−7 years, such that an easier infant temperament was increasingly associated with higher childhood Negative Affectivity scores as parental laxness increased. These results highlight a potential vulnerability of VPT infants considered by their mothers to be easy to handle, as they may be more susceptible to the effects of suboptimal parenting in childhood.
Collapse
Affiliation(s)
- Irene Lovato
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK; (I.L.); (L.D.V.); (L.H.); (D.K.); (S.F.); (S.C.); (A.D.E.)
- Department of Developmental Psychology and Socialization, University of Padova, 35151 Padova, Italy; (C.S.); (A.S.)
| | - Lucy D. Vanes
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK; (I.L.); (L.D.V.); (L.H.); (D.K.); (S.F.); (S.C.); (A.D.E.)
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Chiara Sacchi
- Department of Developmental Psychology and Socialization, University of Padova, 35151 Padova, Italy; (C.S.); (A.S.)
| | - Alessandra Simonelli
- Department of Developmental Psychology and Socialization, University of Padova, 35151 Padova, Italy; (C.S.); (A.S.)
| | - Laila Hadaya
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK; (I.L.); (L.D.V.); (L.H.); (D.K.); (S.F.); (S.C.); (A.D.E.)
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Dana Kanel
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK; (I.L.); (L.D.V.); (L.H.); (D.K.); (S.F.); (S.C.); (A.D.E.)
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK; (I.L.); (L.D.V.); (L.H.); (D.K.); (S.F.); (S.C.); (A.D.E.)
| | - Serena Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK; (I.L.); (L.D.V.); (L.H.); (D.K.); (S.F.); (S.C.); (A.D.E.)
| | - Maggie Redshaw
- National Perinatal Epidemiology Unit, University of Oxford, Oxford OX3 7LF, UK;
| | - Nigel Kennea
- Neonatal Unit, St George’s Hospital, London SW17 0QT, UK;
| | - Anthony David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK; (I.L.); (L.D.V.); (L.H.); (D.K.); (S.F.); (S.C.); (A.D.E.)
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EH, UK; (I.L.); (L.D.V.); (L.H.); (D.K.); (S.F.); (S.C.); (A.D.E.)
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| |
Collapse
|
25
|
A Review of Family Environment and Neurobehavioral Outcomes Following Pediatric Traumatic Brain Injury: Implications of Early Adverse Experiences, Family Stress, and Limbic Development. Biol Psychiatry 2022; 91:488-497. [PMID: 34772505 DOI: 10.1016/j.biopsych.2021.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022]
Abstract
Pediatric traumatic brain injury (TBI) is a public health crisis, with neurobehavioral morbidity observed years after an injury associated with changes in related brain structures. A substantial literature base has established family environment as a significant predictor of neurobehavioral outcomes following pediatric TBI. The neural mechanisms linking family environment to neurobehavioral outcomes have, however, received less empiric study in this population. In contrast, limbic structural differences as well as challenges with emotional adjustment and behavioral regulation in non-TBI populations have been linked to a multitude of family environmental factors, including family stress, parenting style, and adverse childhood experiences. In this article, we systematically review the more comprehensive literature on family environment and neurobehavioral outcomes in pediatric TBI and leverage the work in both TBI and non-TBI populations to expand our understanding of the underlying neural mechanisms. Thus, we summarize the extant literature on the family environment's role in neurobehavioral sequelae in children with TBI and explore potential neural correlates by synthesizing the wealth of literature on family environment and limbic development, specifically related to the amygdala. This review underscores the critical role of environmental factors, especially those predating the injury, in modeling recovery outcomes post-TBI in childhood, and discusses clinical and research implications across pediatric populations. Given the public health crisis of pediatric TBI, along with the context of sparse available medical interventions, a broader understanding of factors contributing to outcomes is warranted to expand the range of intervention targets.
Collapse
|
26
|
Spry EA, Letcher P, Patton GC, Sanson AV, Olsson CA. The developmental origins of stress reactivity: an intergenerational life-course perspective. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Chen Y, Lin D. Maternal depression and preeclampsia: Effects on the maternal and offspring's mental and physical health. HEART AND MIND 2022. [DOI: 10.4103/hm.hm_41_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
28
|
Zhao F, Guan S, Fu Y, Wang K, Liu Z, Ng TB. Lycium barbarum polysaccharide attenuates emotional injury of offspring elicited by prenatal chronic stress in rats via regulation of gut microbiota. Biomed Pharmacother 2021; 143:112087. [PMID: 34474339 DOI: 10.1016/j.biopha.2021.112087] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/23/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
Stress during pregnancy is not only detrimental to a woman's own physical and mental health, but can also cause changes in the intrauterine environment and even have an impact on later growth and development, this study was designed to understand the changes of gut microbiota in the maternal and offspring caused by prenatal chronic stress, and to explore the regulatory effect of LBP on gut microbiota, and then to improve the emotional damage caused by prenatal chronic stress in the offspring. A rat model of prenatal chronic stress was made and used LBP to intervene by gavage. Fresh feces of offspring were collected, the concentration of microbial metabolites were tested by ELISA. Illumina MiSeqPE300 sequencing technology was used to determine the sequence of 16S rRNA V3-V4 of microorganisms. On the PND 42, the emotional function of offspring were tested by open-field test (OFT), sucrose preference test (SPT) and tail of suspend test (TST). Results indicated that stress factors increased the plasma corticosterone level of rats during pregnancy and they appeared depressive behaviors. The body weight of offspring during prenatal chronic stress was lower than the control group, and the plasma corticosterone level was increased. Prenatal chronic stress had a significant impact on emotional performance of the offspring on OFT, SPT and TST. Alpha diversity of gut microbiota and microbiota composition in offspring of prenatal chronic stress was attenuated and some relationships existed between these parameters. LBP treatment reduced offspring's plasma corticosterone level and improved their body weight, changed the emotional function, increased the diversity of gut microbiota. Collectively, these findings disclose that prenatal chronic stress not only causes emotional injury on the offspring, but also changes the gut microbiota of the mother and offspring; LBP may regulate the intestinal flora of the mother, then reducing the influence of stress factors on the emotional injury of offspring.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Occupational Health and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750001, Ningxia, China
| | - Suzhen Guan
- Department of Occupational Health and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750001, Ningxia, China
| | - Youjuan Fu
- Department of Occupational Health and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750001, Ningxia, China
| | - Kai Wang
- Department of Occupational Health and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750001, Ningxia, China
| | - Zhihong Liu
- Department of Occupational Health and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan 750001, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750001, Ningxia, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
29
|
Thomason ME, Palopoli AC, Jariwala NN, Werchan DM, Chen A, Adhikari S, Espinoza-Heredia C, Brito NH, Trentacosta CJ. Miswiring the brain: Human prenatal Δ9-tetrahydrocannabinol use associated with altered fetal hippocampal brain network connectivity. Dev Cogn Neurosci 2021; 51:101000. [PMID: 34388638 PMCID: PMC8363827 DOI: 10.1016/j.dcn.2021.101000] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 01/16/2023] Open
Abstract
Increasing evidence supports a link between maternal prenatal cannabis use and altered neural and physiological development of the child. However, whether cannabis use relates to altered human brain development prior to birth, and specifically, whether maternal prenatal cannabis use relates to connectivity of fetal functional brain systems, remains an open question. The major objective of this study was to identify whether maternal prenatal cannabis exposure (PCE) is associated with variation in human brain hippocampal functional connectivity prior to birth. Prenatal drug toxicology and fetal fMRI data were available in a sample of 115 fetuses [43 % female; mean age 32.2 weeks (SD = 4.3)]. Voxelwise hippocampal connectivity analysis in a subset of age and sex-matched fetuses revealed that PCE was associated with alterations in fetal dorsolateral, medial and superior frontal, insula, anterior temporal, and posterior cingulate connectivity. Classification of group differences by age 5 outcomes suggest that compared to the non-PCE group, the PCE group is more likely to have increased connectivity to regions associated with less favorable outcomes and to have decreased connectivity to regions associated with more favorable outcomes. This is preliminary evidence that altered fetal neural connectome may contribute to neurobehavioral vulnerability observed in children exposed to cannabis in utero.
Collapse
Affiliation(s)
- Moriah E Thomason
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA; Department of Population Health, New York University Medical Center, New York, NY, USA; Neuroscience Institute, New York University Medical Center, New York, NY, USA.
| | - Ava C Palopoli
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Nicki N Jariwala
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA
| | - Denise M Werchan
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA
| | - Alan Chen
- Department of Population Health, New York University Medical Center, New York, NY, USA
| | - Samrachana Adhikari
- Department of Population Health, New York University Medical Center, New York, NY, USA
| | - Claudia Espinoza-Heredia
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA
| | - Natalie H Brito
- Department of Applied Psychology, New York University, New York, NY, USA
| | | |
Collapse
|
30
|
Kanel D, Vanes LD, Pecheva D, Hadaya L, Falconer S, Counsell SJ, Edwards DA, Nosarti C. Neonatal White Matter Microstructure and Emotional Development during the Preschool Years in Children Who Were Born Very Preterm. eNeuro 2021; 8:ENEURO.0546-20.2021. [PMID: 34373253 PMCID: PMC8489022 DOI: 10.1523/eneuro.0546-20.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
Children born very preterm (<33 weeks of gestation) are at a higher risk of developing socio-emotional difficulties compared with those born at term. In this longitudinal study, we tested the hypothesis that diffusion characteristics of white matter (WM) tracts implicated in socio-emotional processing assessed in the neonatal period are associated with socio-emotional development in 151 very preterm children previously enrolled into the Evaluation of Preterm Imaging study (EudraCT 2009-011602-42). All children underwent diffusion tensor imaging at term-equivalent age and fractional anisotropy (FA) was quantified in the uncinate fasciculus (UF), inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), and superior longitudinal fasciculus (SLF). Children's socio-emotional development was evaluated at preschool age (median = 4.63 years). Exploratory factor analysis conducted on the outcome variables revealed a three-factor structure, with latent constructs summarized as: "emotion moderation," "social function," and "empathy." Results of linear regression analyses, adjusting for full-scale IQ and clinical and socio-demographic variables, showed an association between lower FA in the right UF and higher "emotion moderation" scores (β = -0.280; p < 0.001), which was mainly driven by negative affectivity scores (β = -0.281; p = 0.001). Results further showed an association between higher full-scale IQ and better social functioning (β = -0.334, p < 0.001). Girls had higher empathy scores than boys (β = -0.341, p = 0.006). These findings suggest that early alterations of diffusion characteristics of the UF could represent a biological substrate underlying the link between very preterm birth and emotional dysregulation in childhood and beyond.
Collapse
Affiliation(s)
- Dana Kanel
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Lucy D Vanes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Diliana Pecheva
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Laila Hadaya
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - David A Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| |
Collapse
|
31
|
Thomason ME, Hect JL, Waller R, Curtin P. Interactive relations between maternal prenatal stress, fetal brain connectivity, and gestational age at delivery. Neuropsychopharmacology 2021; 46:1839-1847. [PMID: 34188185 PMCID: PMC8357800 DOI: 10.1038/s41386-021-01066-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Studies reporting significant associations between maternal prenatal stress and child outcomes are frequently confounded by correlates of prenatal stress that influence the postnatal rearing environment. The major objective of this study is to identify whether maternal prenatal stress is associated with variation in human brain functional connectivity prior to birth. We utilized fetal fMRI in 118 fetuses [48 female; mean age 32.9 weeks (SD = 3.87)] to evaluate this association and further addressed whether fetal neural differences were related to maternal health behaviors, social support, or birth outcomes. Community detection was used to empirically define networks and enrichment was used to isolate differential within- or between-network connectivity effects. Significance for χ2 enrichment was determined by randomly permuting the subject pairing of fetal brain connectivity and maternal stress values 10,000 times. Mixtures modelling was used to test whether fetal neural differences were related to maternal health behaviors, social support, or birth outcomes. Increased maternal prenatal negative affect/stress was associated with alterations in fetal frontoparietal, striatal, and temporoparietal connectivity (β = 0.82, p < 0.001). Follow-up analysis demonstrated that these associations were stronger in women with better health behaviors, more positive interpersonal support, and lower overall stress (β = 0.16, p = 0.02). Additionally, magnitude of stress-related differences in neural connectivity was marginally correlated with younger gestational age at delivery (β = -0.18, p = 0.05). This is the first evidence that negative affect/stress during pregnancy is reflected in functional network differences in the human brain in utero, and also provides information about how positive interpersonal and health behaviors could mitigate prenatal brain programming.
Collapse
Affiliation(s)
- Moriah E Thomason
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA.
- Department of Population Health, New York University Medical Center, New York, NY, USA.
- Neuroscience Institute, NYU Langone Health, New York, NY, USA.
| | - Jasmine L Hect
- Medical Scientist Training Program, University of Pittsburgh & Carnegie Mellon University, Pittsburgh, PA, USA
| | - Rebecca Waller
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
32
|
Silva-Suarez G, Rabionet SE, Zorrilla CD, Perez-Menendez H, Rivera-Leon S. Pregnant Women's Experiences during Hurricane Maria: Impact, Personal Meaning, and Health Care Needs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8541. [PMID: 34444290 PMCID: PMC8394861 DOI: 10.3390/ijerph18168541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/18/2023]
Abstract
During a disaster, pregnant women are considered among the most vulnerable. BACKGROUND On 20 September 2017, the Caribbean was hit by a category 4 hurricane. The purpose of the study was to explore the impact on pregnant women during and after the hurricane regarding access to health care, social services, and support systems. METHODS In-depth interviews were conducted to 10 women that were pregnant during the event. Qualitative inquiry based on the Interpretative Phenomenological Analysis framework was used to interpret the narratives. RESULTS Five major themes emerged: meaning of living through a disaster, fear, the dual burden of protecting themselves and their unborn baby, disruption in health care, and coping mechanisms. Despite the negative feelings, most participants experienced positive transformations. They narrated how they stayed calm and coped in order to protect their pregnancy. Their overall evaluation of the healthcare system was positive. The support of friends and family was crucial pre and post-disaster. CONCLUSIONS The interviews provided a wealth of firsthand information of women experiencing a natural disaster while pregnant. The findings underscore the need to incorporate emotional support in the preparedness and response plans for pregnant women. Educating, empowering, and incorporating families and communities is vital in these efforts.
Collapse
Affiliation(s)
- Georgina Silva-Suarez
- Department of Sociobehavioral and Administrative Pharmacy, Nova Southeastern University, San Juan, PR 00926, USA
| | - Silvia E. Rabionet
- Department of Sociobehavioral and Administrative Pharmacy, Nova Southeastern University, Davie, FL 33328, USA;
- School of Public Health, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; (H.P.-M.); (S.R.-L.)
| | - Carmen D. Zorrilla
- School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA;
| | - Hulda Perez-Menendez
- School of Public Health, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; (H.P.-M.); (S.R.-L.)
| | - Solaritza Rivera-Leon
- School of Public Health, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; (H.P.-M.); (S.R.-L.)
| |
Collapse
|
33
|
Moog NK, Nolvi S, Kleih TS, Styner M, Gilmore JH, Rasmussen JM, Heim CM, Entringer S, Wadhwa PD, Buss C. Prospective association of maternal psychosocial stress in pregnancy with newborn hippocampal volume and implications for infant social-emotional development. Neurobiol Stress 2021; 15:100368. [PMID: 34355050 PMCID: PMC8319845 DOI: 10.1016/j.ynstr.2021.100368] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/30/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Maternal psychosocial stress during pregnancy can impact the developing fetal brain and influence offspring mental health. In this context, animal studies have identified the hippocampus and amygdala as key brain regions of interest, however, evidence in humans is sparse. We, therefore, examined the associations between maternal prenatal psychosocial stress, newborn hippocampal and amygdala volumes, and child social-emotional development. In a sample of 86 mother-child dyads, maternal perceived stress was assessed serially in early, mid and late pregnancy. Following birth, newborn (aged 5–64 postnatal days, mean: 25.8 ± 12.9) hippocampal and amygdala volume was assessed using structural magnetic resonance imaging. Infant social-emotional developmental milestones were assessed at 6- and 12-months age using the Bayley-III. After adjusting for covariates, maternal perceived stress during pregnancy was inversely associated with newborn left hippocampal volume (β = −0.26, p = .019), but not with right hippocampal (β = −0.170, p = .121) or bilateral amygdala volumes (ps > .5). Furthermore, newborn left hippocampal volume was positively associated with infant social-emotional development across the first year of postnatal life (B = 0.01, p = .011). Maternal perceived stress was indirectly associated with infant social-emotional development via newborn left hippocampal volume (B = −0.34, 95% CIBC [-0.97, −0.01]), suggesting mediation. This study provides prospective evidence in humans linking maternal psychosocial stress in pregnancy with newborn hippocampal volume and subsequent infant social-emotional development across the first year of life. These findings highlight the importance of maternal psychosocial state during pregnancy as a target amenable to interventions to prevent or attenuate its potentially unfavorable neural and behavioral consequences in the offspring. Maternal perceived stress predicted smaller neonatal left hippocampal volume (HCV). Neonatal left HCV was positively associated with infant social-emotional function. Variation in HCV may mediate maternal stress-related effects on child mental health.
Collapse
Affiliation(s)
- Nora K Moog
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Medical Psychology, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Saara Nolvi
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Medical Psychology, Augustenburger Platz 1, 13353, Berlin, Germany.,Turku Institute for Advanced Studies, Department of Psychology and Speech-Language Pathology, University of Turku, Finland
| | - Theresa S Kleih
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Medical Psychology, Augustenburger Platz 1, 13353, Berlin, Germany.,Institute of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Styner
- Departments of Psychiatry and Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jerod M Rasmussen
- Development, Health, and Disease Research Program, Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine, CA, USA
| | - Christine M Heim
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Medical Psychology, Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Biobehavioral Health, Pennsylvania State University, College of Health and Human Development, University Park, PA, USA
| | - Sonja Entringer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Medical Psychology, Augustenburger Platz 1, 13353, Berlin, Germany.,Development, Health, and Disease Research Program, Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, University of California, Irvine, School of Medicine, Orange, CA, USA
| | - Pathik D Wadhwa
- Development, Health, and Disease Research Program, Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, University of California, Irvine, School of Medicine, Orange, CA, USA.,Departments of Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Orange, CA, USA
| | - Claudia Buss
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Medical Psychology, Augustenburger Platz 1, 13353, Berlin, Germany.,Development, Health, and Disease Research Program, Departments of Pediatrics, Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine, CA, USA.,Department of Pediatrics, University of California, Irvine, School of Medicine, Orange, CA, USA
| |
Collapse
|
34
|
Dean DC, Madrid A, Planalp EM, Moody JF, Papale LA, Knobel KM, Wood EK, McAdams RM, Coe CL, Hill Goldsmith H, Davidson RJ, Alisch RS, Kling PJ. Cord blood DNA methylation modifications in infants are associated with white matter microstructure in the context of prenatal maternal depression and anxiety. Sci Rep 2021; 11:12181. [PMID: 34108589 PMCID: PMC8190282 DOI: 10.1038/s41598-021-91642-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Maternal and environmental factors influence brain networks and architecture via both physiological pathways and epigenetic modifications. In particular, prenatal maternal depression and anxiety symptoms appear to impact infant white matter (WM) microstructure, leading us to investigate whether epigenetic modifications (i.e., DNA methylation) contribute to these WM differences. To determine if infants of women with depression and anxiety symptoms exhibit epigenetic modifications linked to neurodevelopmental changes, 52 umbilical cord bloods (CBs) were profiled. We observed 219 differentially methylated genomic positions (DMPs; FDR p < 0.05) in CB that were associated with magnetic resonance imaging measures of WM microstructure at 1 month of age and in regions previously described to be related to maternal depression and anxiety symptoms. Genomic characterization of these associated DMPs revealed 143 unique genes with significant relationships to processes involved in neurodevelopment, GTPase activity, or the canonical Wnt signaling pathway. Separate regression models for female (n = 24) and male (n = 28) infants found 142 associated DMPs in females and 116 associated DMPs in males (nominal p value < 0.001, R > 0.5), which were annotated to 98 and 81 genes, respectively. Together, these findings suggest that umbilical CB DNA methylation levels at birth are associated with 1-month WM microstructure.
Collapse
Affiliation(s)
- Douglas C Dean
- Department of Pediatrics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, USA.,Department of Medical Physics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Waisman Center, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Andy Madrid
- Department of Neurosurgery, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth M Planalp
- Waisman Center, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Psychology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason F Moody
- Department of Medical Physics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ligia A Papale
- Department of Neurosurgery, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Karla M Knobel
- Waisman Center, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth K Wood
- Harlow Center for Biological Psychology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan M McAdams
- Department of Pediatrics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, USA
| | - Christopher L Coe
- Waisman Center, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Psychology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Harlow Center for Biological Psychology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - H Hill Goldsmith
- Waisman Center, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Psychology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard J Davidson
- Waisman Center, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Psychology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Center for Healthy Minds, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Psychiatry, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Reid S Alisch
- Department of Neurosurgery, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | - Pamela J Kling
- Department of Pediatrics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, USA
| |
Collapse
|
35
|
Campbell KSJ, Williams LJ, Bjornson BH, Weik E, Brain U, Grunau RE, Miller SP, Oberlander TF. Prenatal antidepressant exposure and sex differences in neonatal corpus callosum microstructure. Dev Psychobiol 2021; 63:e22125. [PMID: 33942888 DOI: 10.1002/dev.22125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/09/2022]
Abstract
Prenatal exposure to selective serotonin reuptake inhibitor (SSRI) antidepressants may influence white matter (WM) development, as previous studies report widespread microstructural alterations and reduced interhemispheric connectivity in SSRI-exposed infants. In rodents, perinatal SSRIs had sex-specific disruptions in corpus callosum (CC) axon architecture and connectivity; yet it is unknown whether SSRI-related brain outcomes in humans are sex specific. In this study, the neonate CC was selected as a region-of-interest to investigate whether prenatal SSRI exposure has sex-specific effects on early WM microstructure. On postnatal day 7, diffusion tensor imaging was used to assess WM microstructure in SSRI-exposed (n = 24; 12 male) and nonexposed (n = 48; 28 male) term-born neonates. Fractional anisotropy was extracted from CC voxels and a multivariate discriminant analysis was used to identify latent patterns differing between neonates grouped by SSRI-exposure and sex. Analysis revealed localized variations in CC fractional anisotropy that significantly discriminated neonate groups and correctly predicted group membership with an 82% accuracy. Such effects were identified across three dimensions, representing sex differences in SSRI-exposed neonates (genu, splenium), SSRI-related effects independent of sex (genu-to-rostral body), and sex differences in nonexposed neonates (isthmus-splenium, posterior midbody). Our findings suggest that CC microstructure may have a sex-specific, localized, developmental sensitivity to prenatal SSRI exposure.
Collapse
Affiliation(s)
- Kayleigh S J Campbell
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Obstetrics & Gynaecology, University of British Columbia, Vancouver, Canada
| | | | - Bruce H Bjornson
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Ella Weik
- BC Children's Hospital Research Institute, Vancouver, Canada
| | - Ursula Brain
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Ruth E Grunau
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Steven P Miller
- Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Canada
| | - Tim F Oberlander
- BC Children's Hospital Research Institute, Vancouver, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
36
|
Vasistha NA, Khodosevich K. The impact of (ab)normal maternal environment on cortical development. Prog Neurobiol 2021; 202:102054. [PMID: 33905709 DOI: 10.1016/j.pneurobio.2021.102054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/01/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022]
Abstract
The cortex in the mammalian brain is the most complex brain region that integrates sensory information and coordinates motor and cognitive processes. To perform such functions, the cortex contains multiple subtypes of neurons that are generated during embryogenesis. Newly born neurons migrate to their proper location in the cortex, grow axons and dendrites, and form neuronal circuits. These developmental processes in the fetal brain are regulated to a large extent by a great variety of factors derived from the mother - starting from simple nutrients as building blocks and ending with hormones. Thus, when the normal maternal environment is disturbed due to maternal infection, stress, malnutrition, or toxic substances, it might have a profound impact on cortical development and the offspring can develop a variety of neurodevelopmental disorders. Here we first describe the major developmental processes which generate neuronal diversity in the cortex. We then review our knowledge of how most common maternal insults affect cortical development, perturb neuronal circuits, and lead to neurodevelopmental disorders. We further present a concept of selective vulnerability of cortical neuronal subtypes to maternal-derived insults, where the vulnerability of cortical neurons and their progenitors to an insult depends on the time (developmental period), place (location in the developing brain), and type (unique features of a cell type and an insult). Finally, we provide evidence for the existence of selective vulnerability during cortical development and identify the most vulnerable neuronal types, stages of differentiation, and developmental time for major maternal-derived insults.
Collapse
Affiliation(s)
- Navneet A Vasistha
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
37
|
Lautarescu A, Hadaya L, Craig MC, Makropoulos A, Batalle D, Nosarti C, Edwards AD, Counsell SJ, Victor S. Exploring the relationship between maternal prenatal stress and brain structure in premature neonates. PLoS One 2021; 16:e0250413. [PMID: 33882071 PMCID: PMC8059832 DOI: 10.1371/journal.pone.0250413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/06/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Exposure to maternal stress in utero is associated with a range of adverse outcomes. We previously observed an association between maternal stress and white matter microstructure in a sample of infants born prematurely. In this study, we aimed to investigate the relationship between maternal trait anxiety, stressful life events and brain volumes. METHODS 221 infants (114 males, 107 females) born prematurely (median gestational age = 30.43 weeks [range 23.57-32.86]) underwent magnetic resonance imaging around term-equivalent age (mean = 42.20 weeks, SD = 1.60). Brain volumes were extracted for the following regions of interest: frontal lobe, temporal lobe, amygdala, hippocampus, thalamus and normalized to total brain volume. Multiple linear regressions were conducted to investigate the relationship between maternal anxiety/stress and brain volumes, controlling for gestational age at birth, postmenstrual age at scan, socioeconomic status, sex, days on total parenteral nutrition. Additional exploratory Tensor Based Morphometry analyses were performed to obtain voxel-wise brain volume changes from Jacobian determinant maps. RESULTS AND CONCLUSION In this large prospective study, we did not find evidence of a relationship between maternal prenatal stress or trait anxiety and brain volumes. This was the case for both the main analysis using a region-of-interest approach, and for the exploratory analysis using Jacobian determinant maps. We discuss these results in the context of conflicting evidence from previous studies and highlight the need for further research on premature infants, particularly including term-born controls.
Collapse
Affiliation(s)
- Alexandra Lautarescu
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Laila Hadaya
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Michael C. Craig
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- National Female Hormone Clinic, South London and Maudsley National Health Service Foundation Trust, London, United Kingdom
| | - Antonis Makropoulos
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Dafnis Batalle
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Chiara Nosarti
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - A. David Edwards
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Serena J. Counsell
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Suresh Victor
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
38
|
Zhang H, Wong TY, Broekman BFP, Chong YS, Shek LP, Gluckman PD, Tan KH, Meaney MJ, Fortier MV, Qiu A. Maternal Adverse Childhood Experience and Depression in Relation with Brain Network Development and Behaviors in Children: A Longitudinal Study. Cereb Cortex 2021; 31:4233-4244. [PMID: 33825872 DOI: 10.1093/cercor/bhab081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/14/2021] [Accepted: 03/10/2021] [Indexed: 01/28/2023] Open
Abstract
Maternal childhood maltreatment and depression increase risks for the psychopathology of the offspring. This study employed a longitudinal dataset of mother-child dyads to investigate the developmental trajectories of brain functional networks and behaviors of children in relation with maternal childhood adverse experience and depression. Maternal childhood trauma was retrospectively assessed via childhood trauma questionnaire, whereas maternal depressive symptoms were prospectively evaluated during pregnancy and after delivery (n = 518). Child brain scans were acquired at age of 4.5, 6, and 7.5 years (n = 163) and behavioral problems were measured at 7.5 years using the Child Behavior Checklist. We found the functional connectivity of the language network with the sensorimotor, frontal, and attentional networks as a function of maternal adverse experience that interacted with sex and age. Girls exposed to mothers with depressive symptoms or childhood abuse showed the increased development of the functional connectivity of the language network with the visual networks, which was associated with social problems. Girls exposed to mothers with depressive symptoms showed the slower growth of the functional connectivity of the language network with the sensorimotor networks. Our findings, in a community sample, suggest the language network organization as neuroendophenotypes for maternal childhood trauma and depression.
Collapse
Affiliation(s)
- Han Zhang
- School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China.,Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Ting-Yat Wong
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Birit F P Broekman
- Singapore Institute for Clinical Sciences, Singapore 117609, Singapore.,Department of Psychiatry, OLVG and Amsterdam UMC, VU University, Amsterdam 1081 HJ, the Netherlands
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences, Singapore 117609, Singapore.,Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore 119228, Singapore
| | - Lynette P Shek
- Department of Pediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University of Singapore, Singapore 119228, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, Singapore 117609, Singapore
| | - Kok Hian Tan
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences, Singapore 117609, Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.,Douglas Mental Health University Institute, McGill University, Montreal H4H 1R3, Canada
| | - Marielle V Fortier
- Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
39
|
Alnoud MAH, Chen W, Liu N, Zhu W, Qiao J, Chang S, Wu Y, Wang S, Yang Y, Sun Q, Kang J. Sirt7-p21 Signaling Pathway Mediates Glucocorticoid-Induced Inhibition of Mouse Neural Stem Cell Proliferation. Neurotox Res 2021; 39:444-455. [PMID: 33025360 DOI: 10.1007/s12640-020-00294-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/24/2022]
Abstract
Prenatal glucocorticoid (GC) overexposure impacts fetal hippocampal neural stem cells (NSCs) and increases the risk for relative cognitive and mood disorders in offspring. However, the precise underlying mechanisms remain elusive. Here, we treated mouse hippocampal NSCs with dexamethasone (DEX) in vitro and found that DEX inhibited cell proliferation and Sirt7 expression. In addition, prenatal mouse overexposure to DEX induced the suppression of Sirt7 in the hippocampus of offspring. Sirt7 knockdown significantly decreased the percentage of proliferating cells but did not further reduce the NSC proliferation rate in the presence of DEX, whereas Sirt7 overexpression rescued DEX-induced inhibition of hippocampal NSC proliferation. Moreover, DEX inhibited Sirt7 expression through the glucocorticoid receptor (GR), and p21 was found to mediate the functional effect of DEX-induced Sirt7 suppression. In conclusion, our data demonstrate for the first time the effect of DEX on the Sirt7-p21 pathway in hippocampal NSCs, identifying a new potential therapeutic target for prenatal GC overexposure-related neurodevelopmental disorders in offspring.
Collapse
Affiliation(s)
- Mohammed A H Alnoud
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wen Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Nana Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wei Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jing Qiao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shujuan Chang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shanshan Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yiwei Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Qiaoyi Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
40
|
Wang Y, Wang Q, Xie J, Zhu Y, Zhang D, Li G, Zhu X, Li Y. Mediation on the Association Between Stressful Life Events and Depression by Abnormal White Matter Microstructures. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:162-170. [PMID: 33775928 DOI: 10.1016/j.bpsc.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Stressful life events (SLEs) are an important causal factor in depression; however, the mechanism by which SLEs cause depression remains unclear. Recent studies suggested that white matter (WM) microstructures might be a potential mediator between SLEs and depression. Hence, we aimed to investigate the concrete correspondence among them using mediation effect models. METHODS In participants (N = 194) with SLEs experience prospectively recruited from six residential communities, WM microstructures were detected with diffusion tensor imaging. The interrelationship among SLEs, WM microstructures, and depression was explored with multiple linear regression models and logistic regression models. Furthermore, the influence of WM microstructures on the association between SLEs and depression was tested with mediation effect models. RESULTS Successfully established mediation effect models showed the specific influence of fractional anisotropy of the corpus callosum and left uncinate fasciculus on the association between SLEs and depression onset (ab path = 0.032; ab path = 0.026, respectively) and between SLEs and depressive severity (ab path = 0.052; ab path = 0.067, respectively). In addition, significant total mediation effects on the association between SLEs and depression onset (ab path = 0.031) and severity (ab path = 0.075) through fractional anisotropy of the corpus callosum and left uncinate fasciculus were noted. CONCLUSIONS WM microstructure alterations impose a substantial mediation effect on the association between SLEs and depression, which suggest that changes in WM microstructure integrity might increase the risk of depression onset and unfavorable disease courses induced by the SLEs.
Collapse
Affiliation(s)
- Yun Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Clinical Psychology, Zhenjiang Mental Health Center, Zhenjiang, China
| | - Qi Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Xie
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yan Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Danwei Zhang
- Department of Clinical Psychology, Zhenjiang Mental Health Center, Zhenjiang, China
| | - Guohai Li
- Department of Clinical Psychology, Zhenjiang Mental Health Center, Zhenjiang, China.
| | - Xiaolan Zhu
- Department of Central Laboratory, the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuefeng Li
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Clinical Psychology, Zhenjiang Mental Health Center, Zhenjiang, China.
| |
Collapse
|
41
|
Fitzgerald E, Parent C, Kee MZL, Meaney MJ. Maternal Distress and Offspring Neurodevelopment: Challenges and Opportunities for Pre-clinical Research Models. Front Hum Neurosci 2021; 15:635304. [PMID: 33643013 PMCID: PMC7907173 DOI: 10.3389/fnhum.2021.635304] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pre-natal exposure to acute maternal trauma or chronic maternal distress can confer increased risk for psychiatric disorders in later life. Acute maternal trauma is the result of unforeseen environmental or personal catastrophes, while chronic maternal distress is associated with anxiety or depression. Animal studies investigating the effects of pre-natal stress have largely used brief stress exposures during pregnancy to identify critical periods of fetal vulnerability, a paradigm which holds face validity to acute maternal trauma in humans. While understanding these effects is undoubtably important, the literature suggests maternal stress in humans is typically chronic and persistent from pre-conception through gestation. In this review, we provide evidence to this effect and suggest a realignment of current animal models to recapitulate this chronicity. We also consider candidate mediators, moderators and mechanisms of maternal distress, and suggest a wider breadth of research is needed, along with the incorporation of advanced -omics technologies, in order to understand the neurodevelopmental etiology of psychiatric risk.
Collapse
Affiliation(s)
- Eamon Fitzgerald
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - Carine Parent
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - Michelle Z. L. Kee
- Translational Neuroscience Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Michael J. Meaney
- Department of Psychiatry, Faculty of Medicine, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, QC, Canada
- Translational Neuroscience Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
42
|
Lammertink F, Vinkers CH, Tataranno ML, Benders MJNL. Premature Birth and Developmental Programming: Mechanisms of Resilience and Vulnerability. Front Psychiatry 2021; 11:531571. [PMID: 33488409 PMCID: PMC7820177 DOI: 10.3389/fpsyt.2020.531571] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
The third trimester of pregnancy represents a sensitive phase for infant brain plasticity when a series of fast-developing cellular events (synaptogenesis, neuronal migration, and myelination) regulates the development of neural circuits. Throughout this dynamic period of growth and development, the human brain is susceptible to stress. Preterm infants are born with an immature brain and are, while admitted to the neonatal intensive care unit, precociously exposed to stressful procedures. Postnatal stress may contribute to altered programming of the brain, including key systems such as the hypothalamic-pituitary-adrenal axis and the autonomic nervous system. These neurobiological systems are promising markers for the etiology of several affective and social psychopathologies. As preterm birth interferes with early development of stress-regulatory systems, early interventions might strengthen resilience factors and might help reduce the detrimental effects of chronic stress exposure. Here we will review the impact of stress following premature birth on the programming of neurobiological systems and discuss possible stress-related neural circuits and pathways involved in resilience and vulnerability. Finally, we discuss opportunities for early intervention and future studies.
Collapse
Affiliation(s)
- Femke Lammertink
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Christiaan H. Vinkers
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Maria L. Tataranno
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manon J. N. L. Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
43
|
Bonthrone AF, Chew A, Kelly CJ, Almedom L, Simpson J, Victor S, Edwards AD, Rutherford MA, Nosarti C, Counsell SJ. Cognitive function in toddlers with congenital heart disease: The impact of a stimulating home environment. INFANCY 2021; 26:184-199. [PMID: 33210418 PMCID: PMC7894304 DOI: 10.1111/infa.12376] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/27/2020] [Accepted: 10/26/2020] [Indexed: 11/27/2022]
Abstract
Infants born with congenital heart disease (CHD) are at increased risk of neurodevelopmental difficulties in childhood. The extent to which perioperative factors, cardiac physiology, brain injury severity, socioeconomic status, and home environment influence early neurodevelopment is not clear. Sixty-nine newborns with CHD were recruited from St Thomas' Hospital. Infants underwent presurgical magnetic resonance imaging on a 3-Tesla scanner situated on the neonatal unit. At 22 months, children completed the Bayley Scales of Infant and Toddler Development-3rd edition and parents completed the cognitively stimulating parenting scale to assess cognitive stimulation at home. Level of maternal education and total annual household income were also collected. Hospital records were reviewed to calculate days on the intensive care unit post-surgery, time on bypass during surgery, and days to corrective or definitive palliative surgical intervention. In the final analysis of 56 infants, higher scores on the cognitively stimulating parenting scale were associated with higher cognitive scores at age 22 months, correcting for gestational age at birth, sex, and maternal education. There were no relationships between outcome scores and clinical factors; socioeconomic status; or brain injury severity. Supporting parents to provide a stimulating home environment for children may promote cognitive development in this high-risk population.
Collapse
Affiliation(s)
- Alexandra F. Bonthrone
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUK
| | - Andrew Chew
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUK
| | - Christopher J. Kelly
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUK
| | - Leeza Almedom
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUK
| | - John Simpson
- Paediatric Cardiology DepartmentEvelina London Children’s HealthcareLondonUK
| | - Suresh Victor
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUK
| | - A. David Edwards
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUK
| | - Mary A. Rutherford
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUK
| | - Chiara Nosarti
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUK
- Department of Child and Adolescent PsychiatryInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Serena J. Counsell
- Centre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing’s College LondonLondonUK
| |
Collapse
|
44
|
Aberrant Maturation of the Uncinate Fasciculus Follows Exposure to Unpredictable Patterns of Maternal Signals. J Neurosci 2020; 41:1242-1250. [PMID: 33328295 DOI: 10.1523/jneurosci.0374-20.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 01/31/2023] Open
Abstract
Across species, unpredictable patterns of maternal behavior are emerging as novel predictors of aberrant cognitive and emotional outcomes later in life. In animal models, exposure to unpredictable patterns of maternal behavior alters brain circuit maturation and cognitive and emotional outcomes. However, whether exposure to such signals in humans alters the development of brain pathways is unknown. In mother-child dyads, we tested the hypothesis that exposure to more unpredictable maternal signals in infancy is associated with aberrant maturation of corticolimbic pathways. We focused on the uncinate fasciculus, the primary fiber bundle connecting the amygdala to the orbitofrontal cortex and a key component of the medial temporal lobe-prefrontal cortex circuit. Infant exposure to unpredictable maternal sensory signals was assessed at 6 and 12 months. Using high angular resolution diffusion imaging, we quantified the integrity of the uncinate fasciculus using generalized fractional anisotropy (GFA). Higher maternal unpredictability during infancy presaged greater uncinate fasciculus GFA in children 9-11 years of age (n = 69, 29 female). In contrast to the uncinate, GFA of a second corticolimbic projection, the hippocampal cingulum, was not associated with maternal unpredictability. Addressing the overall functional significance of the uncinate and cingulum relationships, we found that the resulting imbalance of medial temporal lobe-prefrontal cortex connectivity partially mediated the association between unpredictable maternal sensory signals and impaired episodic memory function. These results suggest that unbalanced maturation of corticolimbic circuits is a mechanism by which early unpredictable sensory signals may impact cognition later in life.SIGNIFICANCE STATEMENT Our prior work across species demonstrated that unpredictable patterns of maternal care are associated with compromised memory function. However, the neurobiological mechanisms by which this occurs in humans remain unknown. Here, we identify an association of exposure to unpredictable patterns of maternal sensory signals with the integrity of corticolimbic circuits involved in emotion and cognition using state-of-the-art diffusion imaging techniques and analyses. We find that exposure to early unpredictability is associated with higher integrity of the uncinate fasciculus with no effect on a second corticolimbic pathway, the cingulum. The resulting imbalance of corticolimbic circuit development is a novel mediator of the association between unpredictable patterns of maternal care and poorer episodic memory.
Collapse
|
45
|
Kleine I, Falconer S, Roth S, Counsell S, Redshaw M, Kennea N, Edwards A, Nosarti C. Early postnatal maternal trait anxiety is associated with the behavioural outcomes of children born preterm <33 weeks. J Psychiatr Res 2020; 131:160-168. [PMID: 32977236 PMCID: PMC7676467 DOI: 10.1016/j.jpsychires.2020.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/14/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
Abstract
Maternal ante- and postnatal anxiety have been associated with children's socio-emotional development. Moreover, maternal anxiety has been studied as both a contributing factor and consequence of preterm birth, and children born preterm are more likely to develop behavioural problems compared to term-born controls. This study investigated the association between maternal anxiety measured soon after birth and mental health in 215 ex-preterm children, born at <33 weeks, who participated in the Evaluation of Preterm Imaging Study. Children were followed-up at a median age of 4.6 years (range 4.2-6.6), and received behavioural and cognitive evaluation. Maternal trait anxiety was assessed with the Spielberger State-Trait Anxiety Index at term corrected age. Primary outcome measures were children's Strengths and Difficulties Questionnaire (SDQ) and Social Responsiveness Scale 2 (SRS-2) scores, indicative of generalised psychopathology and autism symptomatology, respectively. IQ was assessed with the Wechsler Preschool and Primary Scales of Intelligence. The final sample, after excluding participants with missing data and multiple pregnancy (n = 75), consisted of 140 children (51.4% male). Results showed that increased maternal trait anxiety at term corrected age was associated with children's higher SDQ scores (β = 0.25, 95% CI 0.09-0.41, p = 0.003, f2 = 0.08) and SRS-2 scores (β = 0.15, 95% CI 0.02-0.28, p = 0.03, f2 = 0.04). Our findings indicate that children born preterm whose mothers are more anxious in the early postnatal period may show poorer mental health outcomes at pre-school age. Further research is needed to investigate preventative measures that can be offered to high-risk premature babies and their families.
Collapse
Affiliation(s)
- I. Kleine
- Centre for the Developing Brain, Faculty of Life Sciences & Medicine, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - S. Falconer
- Centre for the Developing Brain, Faculty of Life Sciences & Medicine, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - S. Roth
- Centre for the Developing Brain, Faculty of Life Sciences & Medicine, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - S.J. Counsell
- Centre for the Developing Brain, Faculty of Life Sciences & Medicine, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - M. Redshaw
- Policy Research Unit in Maternal Health and Care, National Perinatal Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - N. Kennea
- St George's Hospital NHS Trust, Blackshaw Road, London, SW17 0QT, UK
| | - A.D. Edwards
- Centre for the Developing Brain, Faculty of Life Sciences & Medicine, King's College London, St Thomas' Hospital, London, SE1 7EH, UK
| | - C. Nosarti
- Centre for the Developing Brain, Faculty of Life Sciences & Medicine, King's College London, St Thomas' Hospital, London, SE1 7EH, UK,Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK,Corresponding author. Centre for the Developing Brain, Faculty of Life Sciences & Medicine, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
46
|
Environmental regulation of the chloride transporter KCC2: switching inflammation off to switch the GABA on? Transl Psychiatry 2020; 10:349. [PMID: 33060559 PMCID: PMC7562743 DOI: 10.1038/s41398-020-01027-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Chloride homeostasis, the main determinant factor for the dynamic tuning of GABAergic inhibition during development, has emerged as a key element altered in a wide variety of brain disorders. Accordingly, developmental disorders such as schizophrenia, Autism Spectrum Disorder, Down syndrome, epilepsy, and tuberous sclerosis complex (TSC) have been associated with alterations in the expression of genes codifying for either of the two cotransporters involved in the excitatory-to-inhibitory GABA switch, KCC2 and NKCC1. These alterations can result from environmental insults, including prenatal stress and maternal separation which share, as common molecular denominator, the elevation of pro-inflammatory cytokines. In this review we report and systemize recent research articles indicating that different perinatal environmental perturbations affect the expression of chloride transporters, delaying the developmental switch of GABA signaling, and that inflammatory cytokines, in particular interleukin 1β, may represent a key causal factor for this phenomenon. Based on literature data, we provide therefore a unifying conceptual framework, linking environmental hits with the excitatory-to-inhibitory GABA switch in the context of brain developmental disorders.
Collapse
|
47
|
Amygdala-Prefrontal Structural Connectivity Mediates the Relationship between Prenatal Depression and Behavior in Preschool Boys. J Neurosci 2020; 40:6969-6977. [PMID: 32788182 DOI: 10.1523/jneurosci.0481-20.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 01/18/2023] Open
Abstract
Prenatal depression is common, underrecognized, and undertreated. It has negative consequences on child behavior and brain development, yet the relationships among prenatal depression, child behavior, and children's brain structure remain unclear. The aim of this study was to determine whether altered brain connectivity mediates relationships between prenatal maternal depressive symptoms and child behavior. This study included 54 human mother-child pairs. Mothers completed the Edinburgh Postnatal Depression Scale during the second and third trimesters of pregnancy and 3 months postpartum. Their children had diffusion MRI at age 4.1 ± 0.8 years, and children's behavior was assessed using the Child Behavior Checklist within 6 months of their MRI scan. Structural brain connectivity of the amygdala, fornix, uncinate fasciculus, and cingulum was assessed using fractional anisotropy and mean diffusivity and analyzed with maternal prenatal depressive symptoms as well as child behavior. Third trimester maternal Edinburgh Postnatal Depression Scale scores were positively associated with mean diffusivity in the amygdala-frontal tract and the cingulum, controlling for postpartum depression. Externalizing behavior had a sex interaction in the amygdala-frontal pathway; weaker connectivity (lower fractional anisotropy, higher mean diffusivity) was associated with worse behavior in boys. Amygdala-frontal connectivity mediated the relationship between third trimester depressive symptoms and child externalizing behavior in males. These findings suggest that altered brain structure is a mechanism via which prenatal depressive symptoms can impact child behavior, highlighting the importance of both recognition and intervention in prenatal depression.SIGNIFICANCE STATEMENT Understanding how prenatal maternal depression impacts child behavior is critical for appropriately treating prenatal maternal mental health problems and improving child outcomes. Here, we show white matter changes in young children exposed to maternal prenatal depressive symptoms. Children of mothers with worse depressive symptoms had weaker white matter connectivity between areas related to emotional processing. Furthermore, connectivity between the amygdala and prefrontal cortex mediated the relationship between maternal depressive symptoms and externalizing behavior in boys, showing that altered brain structure is a possible mechanism via which maternal prenatal depression impacts children's behavior. This provides important information for understanding why children of depressed mothers may be more vulnerable to depression themselves and may help shape future guidelines on maternal prenatal care.
Collapse
|
48
|
Theoharides TC. Effect of Stress on Neuroimmune Processes. Clin Ther 2020; 42:1007-1014. [PMID: 32451121 DOI: 10.1016/j.clinthera.2020.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/12/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Psychological stress worsens many diseases, especially those with inflammatory components, such as atopic dermatitis (AD) and autism spectrum disorder (ASD), conditions that are significantly correlated in large epidemiologic studies. However, how stress contributes to these conditions is still poorly understood. This narrative review of the relevant literature advances the premise that stress affects inflammatory processes in AD and ASD via stimulation of mast cells (MCs). METHODS MEDLINE was searched between 1980 and 2019 using the terms allergies, atopic dermatitis, autism spectrum disorder, brain, corticotropin-releasing hormone, inflammation, hypothalamic-pituitary-adrenal axis, mast cells, neuropeptides, stress, neurotensin, and substance P. FINDINGS Exposure to psychological stress is associated with onset and/or exacerbation of AD and ASD. This association could be attributable to activation of MCs, which are ubiquitous in the body, including the brain, and could contribute to inflammation. IMPLICATIONS Understanding and addressing the connection between stress and MCs is important in clarifying the pathogenesis and developing effective treatments for diseases that worsen with stress and involve inflammation, such as AD and ASD.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; Sackler School of Graduate Biomedical Sciences, Program in Pharmacology and Experimental Therapeutics, Tufts University, Boston, MA, USA; Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
49
|
Effects of Maternal Prenatal Stress on the Fetal Brain and Hope for the Prevention of Psychopathology. Biol Psychiatry 2020; 87:487-488. [PMID: 32081251 DOI: 10.1016/j.biopsych.2019.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 02/08/2023]
|
50
|
Boardman JP, Counsell SJ. Invited Review: Factors associated with atypical brain development in preterm infants: insights from magnetic resonance imaging. Neuropathol Appl Neurobiol 2019; 46:413-421. [PMID: 31747472 PMCID: PMC7496638 DOI: 10.1111/nan.12589] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022]
Abstract
Preterm birth (PTB) is a leading cause of neurodevelopmental and neurocognitive impairment in childhood and is closely associated with psychiatric disease. The biological and environmental factors that confer risk and resilience for healthy brain development and long‐term outcome after PTB are uncertain, which presents challenges for risk stratification and for the discovery and evaluation of neuroprotective strategies. Neonatal magnetic resonance imaging reveals a signature of PTB that includes dysconnectivity of neural networks and atypical development of cortical and deep grey matter structures. Here we provide a brief review of perinatal factors that are associated with the MRI signature of PTB. We consider maternal and foetal factors including chorioamnionitis, foetal growth restriction, socioeconomic deprivation and prenatal alcohol, drug and stress exposures; and neonatal factors including co‐morbidities of PTB, nutrition, pain and medication during neonatal intensive care and variation conferred by the genome/epigenome. Association studies offer the first insights into pathways to adversity and resilience after PTB. Future challenges are to analyse quantitative brain MRI data with collateral biological and environmental data in study designs that support causal inference, and ultimately to use the output of such analyses to stratify infants for clinical trials of therapies designed to improve outcome.
Collapse
Affiliation(s)
- J P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - S J Counsell
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|