1
|
Shaikh S, McKay G, Mackey HR. Light intensity effects on bioproduct recovery from fuel synthesis wastewater using purple phototrophic bacteria in a hybrid biofilm-suspended growth system. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 44:e00863. [PMID: 39687463 PMCID: PMC11647143 DOI: 10.1016/j.btre.2024.e00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/07/2024] [Revised: 09/22/2024] [Accepted: 11/05/2024] [Indexed: 12/18/2024]
Abstract
This research looked at how three different light intensities (1600, 4300, and 7200 lx) affect the biomass development, treatment of fuel synthesis wastewater and the recovery of valuable bioproducts between biofilm and suspended growth in a purple-bacteria enriched photobioreactor. Each condition was run in duplicate using an agricultural shade cloth as the biofilm support media in a continuously mixed batch reactor. The results showed that the highest chemical oxygen demand (COD) removal rate (56.8 ± 0.9 %) was found under the highest light intensity (7200 lx), which also led to the most biofilm formation and highest biofilm biomass production (1225 ± 95.7 mg). The maximum carotenoids (Crts) and bacteriochlorophylls (BChls) content occurred in the suspended growth of the 7200 lx reactor. BChls decreased with light intensity in suspended growth, while in biofilm both Crts and BChls were relatively stable between light conditions, likely due to an averaging effect as biofilm thickened at higher light intensity. Light intensity did not affect protein content of the biomass, however, biofilm showed a lower average (41.2 % to 43.7 %) than suspended biomass (45.4 % to 47.7 %). For polyhydroxybutyrate (PHB) the highest cell concentration in biofilm occurred at 1600 lx (11.4 ± 2.4 %), while for suspended growth it occurred at 7200 lx (22.7 ± 0.3 %), though total PHB productivity remained similar between reactors. Shading effects from the externally located biofilm could explain most variations in bioproduct distribution. Overall, these findings suggest that controlling light intensity can effectively influence the treatment of fuel synthesis wastewater and the recovery of valuable bioproducts in a biofilm photobioreactor.
Collapse
Affiliation(s)
- Sultan Shaikh
- Division of Sustainable Development, College of Science and Engineering, Hamad bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Hamish Robert Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad bin Khalifa University, Qatar Foundation, Doha, Qatar
- Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
2
|
Wang Y, Zhu Y, Wang K, Tan Y, Bing X, Jiang J, Fang W, Chen L, Liao H. Principles and research progress of physical prevention and control technologies for algae in eutrophic water. iScience 2024; 27:109990. [PMID: 38840838 PMCID: PMC11152667 DOI: 10.1016/j.isci.2024.109990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/07/2024] Open
Abstract
The abnormal reproduction of algae in water worldwide is prominent in the context of human interference and global climate change. This study first thoroughly analyzed the effects of physical factors, such as light, temperature, hydrodynamics, and operational strategies, on algal growth and their mechanisms. Physical control techniques are safe and have great potential for preventing abnormal algal blooms in the absence of chemical reagents. The focus was on the principles and possible engineering applications of physical shading, ultrasound, micro-current, and ultraviolet (UV) technologies, in controlling abnormal algal reproduction. Physical shading can inhibit or weaken photosynthesis in algae, thereby inhibiting their growth. Ultrasound mainly affects the physiological and biochemical activities of cells by destroying the cell walls, air cells, and active enzymes. Micro-currents destroy the algal cell structure through direct and indirect oxidation, leading to algal cell death. UV irradiation can damage DNA, causing organisms to be unable to reproduce or algal cells to die directly. This article comprehensively summarizes and analyzes the advantages of physical prevention and control technologies for the abnormal reproduction of algae, providing a scientific basis for future research. In the future, attempts will be made toward appropriately and comprehensively utilizing various physical technologies to control algal blooms. The establishment of an intelligent, comprehensive physical prevention and control system to achieve environmentally friendly, economical, and effective physical prevention and control of algae, such as the South-to-North Water Diversion Project in China, is of great importance for specific waters.
Collapse
Affiliation(s)
- Yuyao Wang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
| | - Yuanrong Zhu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kuo Wang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yidan Tan
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaojie Bing
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Juan Jiang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Environment, Hohai University, Nanjing 210098, China
| | - Wen Fang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Chen
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Haiqing Liao
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
3
|
Zheng R, Feng Y, Kong L, Wu X, Zhou J, Zhang L, Liu S. Blue-light irradiation induced partial nitrification. WATER RESEARCH 2024; 254:121381. [PMID: 38442606 DOI: 10.1016/j.watres.2024.121381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/21/2023] [Revised: 12/08/2023] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
The role of ray radiation from the sunlight acting on organisms has long-term been investigated. However, how the light with different wavelengths affects nitrification and the involved nitrifiers are still elusive. Here, we found more than 60 % of differentially expressed genes (DEGs) in nitrifiers were observed under irradiation of blue light with wavelengths of 440-480 nm, which were 13.4 % and 20.3 % under red light and white light irradiation respectively. Blue light was more helpful to achieve partial nitrification rather than white light or red light, where ammonium oxidization by ammonia-oxidizing archaea (AOA) with the increased relative abundance from 8.6 % to 14.2 % played a vital role. This was further evidenced by the enhanced TCA cycle, reactive oxygen species (ROS) scavenge and DNA repair capacity in AOA under blue-light irradiation. In contrast, nitrite-oxidizing bacteria (NOB) was inhibited severely to achieve partial nitrification, and the newly discovered encoded blue light photoreceptor proteins made them more sensitive to blue light and hindered cell activity. Ammonia-oxidizing bacteria (AOB) expressed genes for DNA repair capacity under blue-light irradiation, which ensured their tiny impact by light irradiation. This study provided valuable insights into the photosensitivity mechanism of nitrifiers and shed light on the diverse regulatory by light with different radiation wavelengths in artificial systems, broadening our comprehension of the nitrogen cycle on earth.
Collapse
Affiliation(s)
- Ru Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yiming Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Lingrui Kong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Xiaogang Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Jianhang Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Liguo Zhang
- School of Environmental and Resource Sciences, Shanxi University, Taiyuan, 030006, China.
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China.
| |
Collapse
|
4
|
Le TTA, Nguyen T. Potential of hospital wastewater treatment using locally isolated Chlorella sp. LH2 from cocoon wastewater. BIORESOUR BIOPROCESS 2024; 11:35. [PMID: 38647928 PMCID: PMC10998823 DOI: 10.1186/s40643-024-00748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/27/2023] [Accepted: 03/08/2024] [Indexed: 04/25/2024] Open
Abstract
Chlorella sp. is able to grow and transform inorganic and organic contaminants in wastewater to create biomass. In the present study, Chlorella sp. LH2 isolated from cocoon wastewater was able to thrive in hospital wastewater, then remove nutrients and eliminate E. coli ATCC 8739. The results indicated that optimal cultivation conditions of Chlorella sp. LH2 in hospital wastewater were pH of 8, light:dark cycle of 16:8 at 30oC. The inhibitory effect of chlorination on algae growth was accompanied with the chlorine concentration. BOD5:COD ratio of 0.77 indicated biodegradability of hospital wastewater. The untreated and treated wastewatee samples were collected to investigated the nutrient removal efficiency after 10 days. Untreated and treated results were192 ± 8.62 mg/l 23.91 ± 2.19 mg/l for BOD5; 245 ± 9.15 mg/l and 47.31 ± 5.71 mg/l for COD. The treated value met the required standards for hospital wastewater treatment. The removal efficiency total nitrogen and total phosphorus were 68.64% and 64.44% after 10 days, respectively. Elimination of E. coli ATCC 8739 after 7 days by Chlorella sp. LH2 was 88.92%. The results of this study suggest the nutrients and pathogens removal potential of Chlorella sp. LH2 in hospital wastewater for further practical applications.
Collapse
Affiliation(s)
- Tu Thi Anh Le
- Faculty of Biology, Dalat University, 01 Phu Dong Thien Vuong Street, Dalat, Lamdong, Vietnam.
| | - Truong Nguyen
- Faculty of Biology, Dalat University, 01 Phu Dong Thien Vuong Street, Dalat, Lamdong, Vietnam
| |
Collapse
|
5
|
Hao T, Xu Y, Liang C, Peng X, Yu S, Peng L. Establishing an efficient membrane bioreactor for simultaneous pollutant removal and purple bacteria production under salinity stress. CHEMOSPHERE 2024; 353:141535. [PMID: 38403121 DOI: 10.1016/j.chemosphere.2024.141535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/20/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Recovering resources from wastewater to alleviate the energy crisis has become the prevailing trend of technological development. Purple phototrophic bacteria (PPB), a group of fast-growing microbes, have been widely noticed for their potential in producing value-added products from waste streams. However, saline contents in these waste streams, such as food processing wastewater pose a big challenge, which not only restrain the pollutant removal efficiency, but also hinder the growth of functional microbes. To overcome this, a photo anaerobic membrane bioreactor cultivating PPB (PPB-MBR) was constructed and its performance upon long-term salinity stress was investigated. PPB-MBR achieved desirable pollutants removal performance with the average COD and NH4+ removal efficiency being 87% (±8%, n = 87) and 89% (±10%, n = 87), respectively during long-term exposure to salinity stress of 1-80 g NaCl L-1. PPB were predominant during the entire operation period of 87 days (60%-80%), obtaining maximum biomass yield of 0.67 g biomass g-1 CODremoved and protein productivity of 0.18 g L-1 d-1 at the salinity level of 20 g NaCl L-1 and 60 g NaCl L-1, respectively. The sum of value-added products in proportion to the biomass reached 58% at maximum at the salinity level of 60 g NaCl L-1 with protein, pigments and trehalose contributing to 44%, 8.7%, and 5%, respectively. Based on economic analysis, the most cost-saving scenario treating food processing wastewater was revealed at salinity level of around 20 g NaCl L-1. However, more optimization tools are needed to boost the production efficiency so that the profit from value-added products can outweigh the additional cost by excess salinity in the future implication.
Collapse
Affiliation(s)
- Tianqi Hao
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Xiaoshuai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Siwei Yu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China.
| |
Collapse
|
6
|
Lu S, Chu G, Gao C, Zhao Y, Chen W, Jin C, Wang Q, Gao M. Effect of light intensity on nitrogen transformation, enzymatic activity, antioxidant system and transcriptional response of Chlorella pyrenoidosa during treating mariculture wastewater. BIORESOURCE TECHNOLOGY 2024; 397:130465. [PMID: 38373503 DOI: 10.1016/j.biortech.2024.130465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/17/2023] [Revised: 02/01/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
The nitrogen transformation, enzymatic activity, antioxidant ability and transcriptional response of Chlorella pyrenoidosa (C. pyrenoidosa) treating mariculture wastewater were compared under different light intensities. The microalgal growth, chlorophyll synthesis and nitrogen removal ability of C. pyrenoidosa increased with the light intensity from 3000 to 7000 Lux, whereas they slightly decreased under 9000 and 11,000 Lux. The nitrogen metabolism enzymatic activities displayed obvious differences under different light intensities and affected the nitrogen transformation process. The reactive oxygen species (ROS) production increased with the increase of operational time, whereas it had distinct differences under different light intensities. The changes of antioxidant enzymatic activities were positively correlated with the ROS production. The transcriptional response of C. pyrenoidosa was in accordance with the variation of the photosynthesis, nitrogen assimilation and antioxidant system under different light intensities. This study provides theoretical basis and technical support to select suitable light intensity for algae treating mariculture wastewater.
Collapse
Affiliation(s)
- Shuailing Lu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Guangyu Chu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chang Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Wenzheng Chen
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Qianzhi Wang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
7
|
Jirasansawat K, Chiemchaisri W, Chiemchaisri C. Enhancement of sulfide removal and sulfur recovery in piggery wastewater via lighting-anaerobic digestion with bioaugmentation of phototrophic green sulfur bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13414-13425. [PMID: 38244164 DOI: 10.1007/s11356-024-31920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/16/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Anaerobic pig wastewater treatment commonly generates high sulfide concentrations in the treated wastewater. This study aims to apply phototrophic green sulfur bacteria (PGB) to promote sulfide removal in lighting-anaerobic digestion (lighting-AD) treating pig wastewater. Initially, batch AD tests of pig wastewater with/without PGB addition were carried out under dark (D) and light (L) conditions. The results showed that the lighting-AD with PGB gave a higher growth rate of PGB (0.056 h-1) and the highest COD/sulfide removals as compared to the dark-AD with PGB and lighting-AD solely. More experiments under various light intensities were performed in order to find an optimal intensity for PGB growth concurrently with metagenomic changes concerning treatment performance. It appeared that sulfide removal rates had increased as increasing light intensity up to 473 lx by giving the highest rate of 12.5 mg L-1 d-1 with the highest sulfur element content in the biomass. Contrastingly, many PGB species disappeared at 1350 lx exposure subsequently sharply decreasing the rate of sulfide removal. In sum, the application of low light intensities of 400-500 lx with bioaugmented PGB could promote PGB growth and activity in sulfide removal in pig wastewater in the lighting of the AD process.
Collapse
Affiliation(s)
- Kridsana Jirasansawat
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok, 10900, Thailand
| | - Wilai Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok, 10900, Thailand.
| | - Chart Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
8
|
Sun Y, Sun Y, Li X. Removal of pollutants and accumulation of high-value cell inclusions in a batch reactor containing Rhodopseudomonas for treating real heavy oil refinery wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118834. [PMID: 37659365 DOI: 10.1016/j.jenvman.2023.118834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/20/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 09/04/2023]
Abstract
Treating wastewater using purple non-sulfur bacteria (PNSB) is an environmentally friendly technique that can simultaneously remove pollutants and lead to the accumulation of high-value cell inclusions. However, no PNSB system for treating heavy oil refinery wastewater (HORW) and recovering high-value cell inclusions has yet been developed. In this study, five batch PNSB systems dominated by Rhodopseudomonas were used to treat real HORW for 186 d. The effects of using different hydraulic retention times (HRT), sludge retention times (SRT), trace element solutions, phosphate loads, and influent loads were investigated, and the bacteriochlorophyll, carotenoid, and coenzyme Q10 concentrations were determined. The community structure and quantity of Rhodopseudomonas in the systems were determined using a high-sequencing technique and quantitative polymerase chain reaction technique. The long-term results indicated that phosphate was the limiting factor for treating HORW in the PNSB reactor. The soluble chemical oxygen demand (SCOD) removal rates were 67.03% and 85.26% without and with phosphate added, respectively, and the NH4+-N removal rates were 32.18% and 89.22%, respectively. The NO3--N concentration in the effluent was stable at 0-3 mg/L with or without phosphate added. Adding phosphate increased the Rhodopseudomonas relative abundance and number by 13.21% and 41.61%, respectively, to 57.35% and 8.52 × 106 gene copies/μL, respectively. The SRT was the limiting factor for SCOD removal, and the bacteria concentration was the limiting factor for nitrogen removal. Once the inflow load had been increased, the total nitrogen (TN) removal rate increased as the HRT increased. Maximum TN removal rates of 64.46%, 68.06%, 73.89%, 82.15%, and 89.73% were found at HRT of 7, 10, 13, 16, and 19 d, respectively. The highest bacteriochlorophyll, carotenoid, and coenzyme Q10 concentrations were 2.92, 4.99, and 4.53 mg/L, respectively. This study provided a simple and efficient method for treating HORW and reutilizing resources, providing theoretical support and parameter guidance for the application of Rhodopseudomonas in treating HORW.
Collapse
Affiliation(s)
- Yujie Sun
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Yujiao Sun
- College of Water Science, Beijing Normal University, Beijing, 100875, China.
| | - Xiangkun Li
- Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
9
|
Tec-Campos D, Posadas C, Tibocha-Bonilla JD, Thiruppathy D, Glonek N, Zuñiga C, Zepeda A, Zengler K. The genome-scale metabolic model for the purple non-sulfur bacterium Rhodopseudomonas palustris Bis A53 accurately predicts phenotypes under chemoheterotrophic, chemoautotrophic, photoheterotrophic, and photoautotrophic growth conditions. PLoS Comput Biol 2023; 19:e1011371. [PMID: 37556472 PMCID: PMC10441798 DOI: 10.1371/journal.pcbi.1011371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2022] [Revised: 08/21/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023] Open
Abstract
The purple non-sulfur bacterium Rhodopseudomonas palustris is recognized as a critical microorganism in the nitrogen and carbon cycle and one of the most common members in wastewater treatment communities. This bacterium is metabolically extremely versatile. It is capable of heterotrophic growth under aerobic and anaerobic conditions, but also able to grow photoautotrophically as well as mixotrophically. Therefore R. palustris can adapt to multiple environments and establish commensal relationships with other organisms, expressing various enzymes supporting degradation of amino acids, carbohydrates, nucleotides, and complex polymers. Moreover, R. palustris can degrade a wide range of pollutants under anaerobic conditions, e.g., aromatic compounds such as benzoate and caffeate, enabling it to thrive in chemically contaminated environments. However, many metabolic mechanisms employed by R. palustris to breakdown and assimilate different carbon and nitrogen sources under chemoheterotrophic or photoheterotrophic conditions remain unknown. Systems biology approaches, such as metabolic modeling, have been employed extensively to unravel complex mechanisms of metabolism. Previously, metabolic models have been reconstructed to study selected capabilities of R. palustris under limited experimental conditions. Here, we developed a comprehensive metabolic model (M-model) for R. palustris Bis A53 (iDT1294) consisting of 2,721 reactions, 2,123 metabolites, and comprising 1,294 genes. We validated the model using high-throughput phenotypic, physiological, and kinetic data, testing over 350 growth conditions. iDT1294 achieved a prediction accuracy of 90% for growth with various carbon and nitrogen sources and close to 80% for assimilation of aromatic compounds. Moreover, the M-model accurately predicts dynamic changes of growth and substrate consumption rates over time under nine chemoheterotrophic conditions and demonstrated high precision in predicting metabolic changes between photoheterotrophic and photoautotrophic conditions. This comprehensive M-model will help to elucidate metabolic processes associated with the assimilation of multiple carbon and nitrogen sources, anoxygenic photosynthesis, aromatic compound degradation, as well as production of molecular hydrogen and polyhydroxybutyrate.
Collapse
Affiliation(s)
- Diego Tec-Campos
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Camila Posadas
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Juan D. Tibocha-Bonilla
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, United States of America
| | - Deepan Thiruppathy
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
- Department of Bioengineering, University of California, San Diego, La Jolla California, United States of America
| | - Nathan Glonek
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Cristal Zuñiga
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Alejandro Zepeda
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
- Department of Bioengineering, University of California, San Diego, La Jolla California, United States of America
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
10
|
Joshi K, Kumar P, Kataria R. Microbial carotenoid production and their potential applications as antioxidants: A current update. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/24/2023]
|
11
|
Serdyuk OP, Abdullatypov AV, Smolygina LD, Ashikhmin AA, Bolshakov MA. Simultaneous functioning of different light-harvesting complexes-a strategy of adaptation of purple bacterium Rhodopseudomonas palustris to low illumination conditions. PeerJ 2023; 11:e14769. [PMID: 36743963 PMCID: PMC9897067 DOI: 10.7717/peerj.14769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/15/2022] [Accepted: 12/29/2022] [Indexed: 02/03/2023] Open
Abstract
Novel peripheral light-harvesting (LH) complex designated as LL LH2 was isolated along with LH4 complex from Rhodopseudomonas palustris cells grown under low light intensity (LL). FPLC-MS/MS allowed to reveal PucABd and PucBabc apoproteins in LL LH2 complex, which is different from previously described LH4 complex containing PucABd, PucABa and PucBb. The main carotenoids in LL LH2 complex were rhodopin and 3,4-didehydrorhodopin. Three-dimensional modeling demonstrated which amino acid residues of all the β-subunits could interact with carotenoids (Car) and bacteriochlorophyll a (BChl a). Analysis of amino acid sequences of α-subunits of both LL complexes showed presence of different C-terminal motifs, IESSVNVG in αa subunit and IESSIKAV in αd subunit, in the same positions of C-termini, which could reflect different retention force of LL LH2 and LH4 on hydroxyl apatite, facilitating successful isolation of these complexes. Differences of these LL complexes in protein and carotenoid composition, in efficiency of energy transfer from Car to BChl a, which is two times lower in LL LH2 than in LH4, allow to assign it to a novel type of light-harvesting complex in Rhodopseudomonas palustris.
Collapse
Affiliation(s)
- Olga Petrovna Serdyuk
- Institute of Basic Biological Problems of the Russian Academy of Sciences—A Separate Subdivision of PSCBR RAS (IBBP RAS), Pushchino, Moscow Region, Russian Federation
| | - Azat Vadimovich Abdullatypov
- Institute of Basic Biological Problems of the Russian Academy of Sciences—A Separate Subdivision of PSCBR RAS (IBBP RAS), Pushchino, Moscow Region, Russian Federation
| | - Lidiya Dmitrievna Smolygina
- Institute of Basic Biological Problems of the Russian Academy of Sciences—A Separate Subdivision of PSCBR RAS (IBBP RAS), Pushchino, Moscow Region, Russian Federation
| | - Aleksandr Aleksandrovich Ashikhmin
- Institute of Basic Biological Problems of the Russian Academy of Sciences—A Separate Subdivision of PSCBR RAS (IBBP RAS), Pushchino, Moscow Region, Russian Federation
| | - Maxim Alexandrovich Bolshakov
- Institute of Basic Biological Problems of the Russian Academy of Sciences—A Separate Subdivision of PSCBR RAS (IBBP RAS), Pushchino, Moscow Region, Russian Federation
| |
Collapse
|
12
|
Nitrogen influence on suspended vs biofilm growth and resource recovery potential of purple non-sulfur bacteria treating fuel synthesis wastewater. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2022.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/05/2022]
|
13
|
Torpee S, Kantachote D, Sukhoom A, Tantirungkij M. Culture optimization to enhance carotenoid production of a selected purple nonsulfur bacterium and its activity against acute hepatopancreatic necrosis disease-causing Vibrio parahaemolyticus. Biotechnol Appl Biochem 2022; 69:2422-2436. [PMID: 34841569 DOI: 10.1002/bab.2292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022]
Abstract
Purple nonsulfur bacteria (PNSB) were investigated for their carotenoid production and anti-vibrio activity against acute hepatopancreatic necrosis disease (AHPND)-causing Vibrio parahaemolyticus. To test carotenoid production, selected strains were cultivated in basic isolation medium (BIM), glutamate acetate medium, G5 medium and artificial acetic acid wastewater (AAW) medium. From 144 PNSB, Rhodopseudomonas palustris KTSSG46 was selected to produce carotenoids under microaerobic light conditions in BIM. When the culture medium was optimized, strain KTSSG46 grown in BIM modified with l-glutamate at 1 g/L more effectively inhibited AHPND-causing V. parahaemolyticus strains than standard BIM with 1 g/L (NH4 )2 SO4 . BIM was further modified with 1.23 g/L MgSO4 ·7H2 O and carotenoid production increased 40.22%. Carotenoid production at day 2 by strain KTSSG46 grown in BIM modified with l-glutamate at 1 and 1.23 g/L MgSO4 ·7H2 O was the same as production in BIM modified with monosodium glutamate (MSG). Culture supernatants from all BIM formulations showed similar activity against the resistant AHPND strain SR2. Based on high-performance liquid chromatography, carotenoids of strain KTSSG46 might be canthaxanthin. Grown in BIM modified with MSG, strain KTSSG46 could produce inexpensive carotenoids and release anti-vibrio compounds that, applied as shrimp feed additive, would prevent AHPND strains.
Collapse
Affiliation(s)
- Salwa Torpee
- Department of Microbiology, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Duangporn Kantachote
- Department of Microbiology, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Ampaitip Sukhoom
- Department of Microbiology, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Manee Tantirungkij
- Research and Academic Service Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| |
Collapse
|
14
|
Wang L, Hu Z, Hu M, Zhao J, Zhou P, Zhang Y, Zheng X, Zhang Y, Hu ZT, Pan Z. Cometabolic biodegradation system employed subculturing photosynthetic bacteria: A new degradation pathway of 4-chlorophenol in hypersaline wastewater. BIORESOURCE TECHNOLOGY 2022; 361:127670. [PMID: 35878775 DOI: 10.1016/j.biortech.2022.127670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/03/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
4-chlorophenol (4-CP) as a toxic persistent pollutant is quite difficult treatment by using traditional biological processes. Herein, photosynthetic bacteria (PSB) driven cometabolic biodegradation system associated with exogeneous carbon sources (e.g., sodium acetate) has been demonstrated as an effective microbial technique. The biodegradation rate (ri) can be at 0.041 d-1 with degradation efficiency of 93% in 3094 lx. Through the study of subculturing PSB in absence of NaCl, it was found that 50% inoculation time can be saved but keeping a similar 4-CP biodegradation efficiency in scale-up salinity system. A new plausible biodegradation pathway for 4-CP in 4th G PSB cometabolic system is proposed based on the detected cyclohexanone generation followed by ring opening. It is probably ascribed to the increasement of Firmicutes and Bacteroidetes at phyla level classified based on microbial community. This study contributes to a new insight into cometabolic technology for chlorophenol treatment in industrial hypersaline wastewater.
Collapse
Affiliation(s)
- Liang Wang
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Zhongce Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Mian Hu
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Jun Zhao
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Peijie Zhou
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Yongjie Zhang
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Xin Zheng
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Yifeng Zhang
- Department of Environmental & Resource Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Zhong-Ting Hu
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China
| | - Zhiyan Pan
- College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, PR China.
| |
Collapse
|
15
|
Wu P, Li N. Small molecule carbon source promoting dairy wastewater treatment of Rhodospirillum rubrum by co-metabolism and the establishment of multivariate nonlinear equation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:457-466. [PMID: 35960830 DOI: 10.2166/wst.2022.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/15/2023]
Abstract
Rhodospirillum rubrum water treatment technology could recycle bio-resource. However, the inability to degrade macromolecular organics limited its wide application. This paper discussed the feasibility of small molecular carbon source promoting R. rubrum directly treating dairy machining wastewater (DMW) and accumulations for single cell protein and pigment, and establishment of a mathematical model. Six small molecules promoted the degradation of macromolecules (proteins) in DMW. They promoted protease secretion and non-growth matrix (protein) decomposition in DMW through co-metabolism. Among the molecules, 550 mg/L potassium sodium tartrate was the best, protease activity and protein removal rate were increased by 100% compared with control. Then chemical oxygen demand (COD) and protein removal rates reached 80%, the single cell protein, carotenoid and bacterial chlorophyll yields were increased 2 times. Meanwhile, carbon nitrogen ratio (C/N) and food microbial ratio (F/M) were identified as the most important factors by principal component analysis. A multivariate nonlinear equation model between COD removal rate and C/N, F/M, time was established.
Collapse
Affiliation(s)
- Pan Wu
- College of Architectural Engineering, Weifang University, Weifang 261061, China E-mail:
| | - Ning Li
- College of Architectural Engineering, Weifang University, Weifang 261061, China E-mail:
| |
Collapse
|
16
|
Peng L, Lou W, Xu Y, Yu S, Liang C, Alloul A, Song K, Vlaeminck SE. Regulating light, oxygen and volatile fatty acids to boost the productivity of purple bacteria biomass, protein and co-enzyme Q10. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153489. [PMID: 35122839 DOI: 10.1016/j.scitotenv.2022.153489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/30/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Purple non‑sulfur bacteria (PNSB) possess significant potential for bioresource recovery from wastewater. Effective operational tools are needed to boost productivity and direct the PNSB biomass towards abundant value-added substances (e.g., protein and co-enzyme Q10, CoQ10). This study aimed to investigate the impact of light, oxygen and volatile fatty acids (VFAs) on PNSB growth (i.e., Rhodobacter sphaeroides) and productivity of protein and CoQ10. Overall, the biomass yields and specific growth rates of PNSB were in the ranges of 0.57-1.08 g biomass g-1 CODremoved and 0.48-0.71 d-1, respectively. VFAs did not influence the biomass yield, yet acetate and VFA mixtures enhanced the specific growth rate with a factor of 1.2-1.5 compared to propionate and butyrate. The most PNSB biomass (1.08 g biomass g-1 CODremoved and 0.71 d-1) and the highest biomass quality (protein content of 609 mg g-1 dry cell weight (DCW) and CoQ10 content of 13.21 mg g-1 DCW) were obtained in the presence of VFA mixtures under natural light and microaerobic (low light alternated with darkness; dissolved oxygen (DO) between 0.5 and 1 mg L-1) conditions (vs. light anaerobic and dark aerobic cultivations). Further investigation on VFAs dynamics revealed that acetate was most rapidly consumed by PNSB in the individual VFA feeding (specific uptake rate of 0.76 g COD g-1 DCW d-1), while acetate as a co-substrate in the mixed VFAs feeding might accelerate the consumption of propionate and butyrate through providing additional cell metabolism precursor. Enzymes activities of succinate dehydrogenase and fructose-1,6-bisphosphatase as well as the concentration of photo pigments confirmed that light, oxygen and VFAs regulated the key enzymes in the energy metabolism and biomass synthesis to boost PNSB growth. These results provide a promising prospect for utilization of fermented waste stream for the harvest of PNSB biomass, protein and CoQ10.
Collapse
Affiliation(s)
- Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China.
| | - Wenjing Lou
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Siwei Yu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Abbas Alloul
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
17
|
Liu S, Li H, Daigger GT, Huang J, Song G. Material biosynthesis, mechanism regulation and resource recycling of biomass and high-value substances from wastewater treatment by photosynthetic bacteria: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153200. [PMID: 35063511 DOI: 10.1016/j.scitotenv.2022.153200] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/05/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The environmental-friendly and economic benefits generated from photosynthetic bacteria (PSB) wastewater treatment have attracted significant attention. This process of resource recovery can produce PSB biomass and high-value substances including single cell protein, Coenzyme Q10, polyhydroxyalkanoates (PHA), 5-aminolevulinic acid, carotenoids, bacteriocin, and polyhydroxy chain alkyl esters, etc. for application in various fields, such as agriculture, medical treatment, chemical, animal husbandry and food industry while treating wastewaters. The main contents of this review are summarized as follows: physiological characteristics, mechanism and application of PSB and potential of single cell protein (SCP) production are described; PSB wastewater treatment technology, including procedures and characteristics, typical cases, influencing factors and bioresource recovery by membrane bioreactor are detailed systematically. The future development of PSB-based resource recovery and wastewater treatment are also provided, particularly concerning PSB-membrane reactor (MBR) process, regulation of biosynthesis mechanism of high-value substances and downstream separation and purification technology. This will provide a promising and new alternative for wastewater treatment recycling.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou 450046, China; Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI 48109, USA.
| | - Heng Li
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI 48109, USA
| | - Jianping Huang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
| | - Gangfu Song
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China; Zhongzhou Water Holding Co., Ltd., Zhengzhou 450046, China
| |
Collapse
|
18
|
Sun Y, Li X, Liu G. Enhanced pollutants removal and high-value cell inclusions accumulation with Fe 2+ in heavy oil refinery treatment system using Rhodopseudomonas and Pseudomonas. CHEMOSPHERE 2022; 294:133520. [PMID: 35032517 DOI: 10.1016/j.chemosphere.2022.133520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/12/2021] [Revised: 12/19/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Metal ions has been widely used as a method of improving pollutant removal efficiency in wastewater biological treatment system. In order to enhance pollutants removal and high-value cell inclusions accumulation in heavy oil refinery wastewater treatment systems using PSB, different reactors were built feeding with different Fe2+ concentrations respectively, and run with enriching Rhodopseudomonas and Pseudomonas in the reactors. Solute chemical oxygen demand (SCOD), ammonia (NH4+-N), nitrate nitrogen (NO3--N), nitrous nitrogen (NO2--N), Fe2+, and related cell inclusions were all detected, moreover, microbial community structure and the quantity of Rhodopseudomonas and Pseudomonas were also detected. The results showed that at the optimal dosage of Fe2+ with 20 mg/L, the corresponding removal ratios of solute chemical oxygen demand and ammonia were 73.51% and 92.26%, respectively. The yields of carotenoid, bacteriochlorophyll, and coenzyme Q10 were 11.18, 6.75, and 9.84 mg/g-DCW respectively. Furthermore, with 20 mg/L Fe2+ dosage, the relative abundance and gene number of Rhodopseudomonas were the highest in the system, which were 91.57% and 1.843 × 106 gene copies/μL, while Fe2+ had no obvious effect on the growth of Pseudomonas. The results showed that adding Fe2+ has improved the removal of pollutants and accumulation of high-value cells inclusions, also provided theoretical guidance for the treatment of heavy oil refinery wastewater using PSB.
Collapse
Affiliation(s)
- Yujie Sun
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiangkun Li
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Gaige Liu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
19
|
The Role of Photo-Cycles in the Modulation of Growth and Biochemical Profile of Microalgae: Part I—Food Interest Compounds. Life (Basel) 2022; 12:life12030462. [PMID: 35330213 PMCID: PMC8952382 DOI: 10.3390/life12030462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this work was to evaluate the effect of different photo-cycles on the growth and biochemical profile of Scenedesmus obliquus CPCC05, focusing on food interest compounds. The photo-cycle conditions were separated into three groups: long-term photo-cycles (24:0, 22:2, 20:4, 18:6, 12:12, and 10:14 (h:h)), frequency photo-cycles (2, 4, 8, 12, 24, and 48 times per day (t/d)), and short photo-cycles (0.91:0.09, 0.83:0.17, 0.75:0.25, and 0.50:0.50 (s:s)) of light:dark, respectively. The results showed these microalgae can store enough energy to support cell growth for continuous periods of up to 2 h in the dark, without affecting the productivity of the process. This 2 h, when divided into 2 cycles per day (2 t/d), showed the best growth condition (3700 mg L−1), generation time (14.40 h), and maximum biomass productivity (21.43 mg L h−1). This photo-cycle of 2 t/d was also the best condition for the production of total sterols. However, the values of polyunsaturated fatty acids, lipid content, and amino acids obtained higher yields in the short photo-cycle of 0.75:0.25. Thus, the modulation of light cycles becomes an important tool for boosting and directing the production of target molecules in phototrophic cultures of microalgae.
Collapse
|
20
|
Lu H, He S, Zhang G, Gao F, Zhao R. Periodic oxygen supplementation drives efficient metabolism for enhancing valuable bioresource production in photosynthetic bacteria wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 347:126678. [PMID: 34999192 DOI: 10.1016/j.biortech.2022.126678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/16/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Periodic oxygen supplementation (A-O) strategy was proposed to improve pollutant removal and enhance bioresource production of photosynthetic bacteria (PSB). The A-O strategy obtained higher COD (91.4%) and NH4+-N (78.6%) removal compared with the non-oxygen supplementation (N-O) strategy, which was similar to the continuous oxygen supplementation (C-O) strategy. A-O strategy achieved the highest biomass concentration of 1338.5 mg/L. Bacteriochlorophyll and carotenoids concentration in the A-O strategy were 24.9-31.1% and 15.1-23.7% higher than those in the other two strategies; coenzyme Q10 concentration and content were 52.5% and 21.3% higher than that in the N-O strategy. The metabolomic analysis showed that the A-O strategy enhanced the tricarboxylic acid cycle after fumaric acid formation and β-alanine metabolism, then caused higher biomass accumulation. The A-O strategy reduced the inhibition of photophosphorylation by oxidative-phosphorylation and maintained both characteristics. Hence, A-O might be an economic strategy for enhancing pollutant removal and bioresource production in PSB-based wastewater treatment.
Collapse
Affiliation(s)
- Haifeng Lu
- College of Water Resource and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China
| | - Shichao He
- College of Water Resource and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China
| | - Guangming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Fengzheng Gao
- Wageningen University, Bioprocess Engineering, AlgaePARC, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Ruihan Zhao
- College of Water Resource and Civil Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China
| |
Collapse
|
21
|
Meng F, Peng M, Wang X, Zhang G. Lactic acid wastewater treatment by photosynthetic bacteria and simultaneous production of protein and pigments. ENVIRONMENTAL TECHNOLOGY 2022; 43:163-170. [PMID: 32530784 DOI: 10.1080/09593330.2020.1782479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/16/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Photosynthetic bacteria (PSB) can be used in wastewater treatment to simultaneously remove pollutants and produce valuable biomass. In this study, PSB were used to treat lactic acid wastewater and produce high-value substances (protein, carotenoid and bacteriochlorophyll). The results showed that the PSB biomass increase, COD and NH4+-N removal reached 55%, 89% and 94% in 5 days, respectively. The protein content, carotenoid and bacteriochlorophyll concentrations reached 69.1%, 2.3 and 0.8 mg/L, respectively. Furthermore, kinetic analysis showed that both NH4+-N removal and protein content fitted the Boltzmann equation, and the NH4+-N removal was positively related with the content of protein and concentration of pigments. This novel wastewater treatment method can adapt to the changes of light-oxygen condition, F/M and pH conditions.Highlights(1) PSB effectively treated real lactic acid wastewater with zero excess sludge.(2) 69% of protein and 2.3 mg/L of carotenoid were produced in the process.(3) NH4+-N removal was positively related with the content of protein and pigments.
Collapse
Affiliation(s)
- Fan Meng
- Department of Economics, Party School of the Beijing Municipal Committee of the Communist Party of China, Beijing, People's Republic of China
- School of Environment & Natural Resources, Renmin University of China, Beijing, People's Republic of China
| | - Meng Peng
- School of Environmental Science & Engineering, Tshinghua University, Beijing, People's Republic of China
| | - Xintian Wang
- School of Environment & Natural Resources, Renmin University of China, Beijing, People's Republic of China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, People's Republic of China
- School of Environment & Natural Resources, Renmin University of China, Beijing, People's Republic of China
| |
Collapse
|
22
|
Lu H, Zhang G, He S, Zhao R, Zhu D. Purple non-sulfur bacteria technology: a promising and potential approach for wastewater treatment and bioresources recovery. World J Microbiol Biotechnol 2021; 37:161. [PMID: 34436687 DOI: 10.1007/s11274-021-03133-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/12/2021] [Accepted: 08/18/2021] [Indexed: 11/24/2022]
Abstract
Shortage of water, energy, and bioresources in the world has led to the exploration of new technologies that achieve resource recovery from wastewater, which has become a new sustainable trend. Photosynthetic non-sulfur bacteria (PNSB), the most ancient photo microorganism, not only treats different wastewater types, but also generates PNSB cells, which are non-toxic bioresources and containing many value-added products. These bioresources can be used as raw materials in the agricultural, food, and medical industries. Therefore, PNSB or PNSB-based wastewater resource recovery technology can be simultaneously used to treat wastewater and produce useful bioresources. Compared with traditional wastewater treatment, this technology can reduce CO2 emissions, promote the N recovery ratio and prevent residual sludge disposal or generation. After being developed for over half a century, PNSB wastewater resource recovery technology is currently extended towards industrial applications. Here, this technology is comprehensively introduced in terms of (1) PNSB characteristics and metabolism; (2) PNSB wastewater treatment and bioresource recovery efficiency; (3) the relative factors influencing the performance of this technology, including light, oxygen, strains, wastewater types, hydraulic retention time, on wastewater treatment, and resource production; (4) PNSB value-added bioresources and their generation from wastewater; (5) the scale-up history of PNSB technology; (6) Finally, the future perspectives and challenges of this technology were also analysed and summarised.
Collapse
Affiliation(s)
- Haifeng Lu
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, 100083, China.,Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing, 100083, China
| | - Guangming Zhang
- Key Laboratory of Environmental Biotechnology, China Academy of Science, Shuangqing Road, Beijing, 100084, China. .,School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Shichao He
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, 100083, China.,Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing, 100083, China
| | - Ruihan Zhao
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, 100083, China.,Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing, 100083, China
| | - Da Zhu
- Nan Tong Ju Yi Cheng Guang Biotechnology Co. LTD., Nantong, 226321, China
| |
Collapse
|
23
|
Toward the Enhancement of Microalgal Metabolite Production through Microalgae-Bacteria Consortia. BIOLOGY 2021; 10:biology10040282. [PMID: 33915681 PMCID: PMC8065533 DOI: 10.3390/biology10040282] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/07/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Engineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential biotechnological advantages. Microalgae are promising organisms for the sustainable production of metabolites of commercial interest, such as lipids, carbohydrates, pigments, and proteins. Several studies reveal that microalgae growth and cellular storage of these metabolites can be enhanced significantly by co-cultivation with growth-promoting bacteria. This review summarizes the state of the art of microalgae-bacteria consortia for the production of microalgal metabolites. We discuss the current knowledge on microalgae-bacteria mutualism and the mechanisms of bacteria to enhance microalgae metabolism. Furthermore, the potential routes for a microalgae-bacteria biorefinery are outlined in an attempt to overcome the economic failures and negative energy balances of the existing production processes.
Collapse
|
24
|
Carotenoids as a Protection Mechanism against Oxidative Stress in Haloferax mediterranei. Antioxidants (Basel) 2020; 9:antiox9111060. [PMID: 33137984 PMCID: PMC7694103 DOI: 10.3390/antiox9111060] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/08/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Haloarchaea are extremophilic microorganisms that in their natural ecosystem encounter several sources of oxidative stress. They have developed different strategies to cope with these harsh environmental conditions, among which bacterioruberin production is a very notable strategy. Bacterioruberin (BR) is a C50 carotenoid synthesized in response to different types of stress. Previous works demonstrated that it shows interesting antioxidant properties with potential applications in biotechnology. In this study, Haloferax mediterranei strain R-4 was exposed to different concentrations of the oxidant compound H2O2 to evaluate the effect on carotenoid production focusing the attention on the synthesis of bacterioruberin. Hfx. mediterranei was able to grow in the presence of H2O2 from 1 mM to 25 mM. Cells produced between 16% and 78% (w/v) more carotenoids under the induced oxidative stress compared to control cultures. HPLC-MS analysis detected BR as the major identified carotenoid and confirmed the gradual increase of BR content as higher concentrations of hydrogen peroxide were added to the medium. These results shed some light on the biological role of bacterioruberin in haloarchaea, provide interesting information about the increase of the cellular pigmentation under oxidative stress conditions and will allow the optimization of the production of this pigment at large scale using these microbes as biofactories.
Collapse
|
25
|
Lopez-Romero J, Salgado-Manjarrez E, Torres L, Garcia-Peña EI. Enhanced carotenoid production by Rhodopseudomonas palustris ATCC 17001 under low light conditions. J Biotechnol 2020; 323:159-165. [PMID: 32827602 DOI: 10.1016/j.jbiotec.2020.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2020] [Revised: 07/08/2020] [Accepted: 08/17/2020] [Indexed: 01/06/2023]
Abstract
Carotenoids (CD) are biological pigments produced for commercial purposes. Therefore, it is necessary to study and determine the optimal conditions for increased CD production. There is no consensus in the literature about the conditions that increase CD production. Some authors stated that CD will be preferentially produced at low light intensities, at this adverse condition, microorganism will increase CD production as a survival response mechanism to get more energy. Other authors have mentioned that CD concentrations increase as the light intensity supplied increases, to avoid the overexposure of light and in turn photo-inhibition. Additionally, to increase the specific CD production is also necessary to increase the amount of biomass. In this work, the ammonium concentration (high (HAC) and low (LAC)) and the low light (LL) intensity effect on the CD production was evaluated. Data showed that a high CD-specific concentration of 8.8 mg/gcell was obtained by using R. palustris ATCC 17001 under HAC and LL intensity. CD production was similar at HAC and LAC, suggesting that the light intensity has a greater effect on the specific CD concentration than the nitrogen concentration. In general, the results showed a low biomass production compared to the literature, with high CD synthesis.
Collapse
Affiliation(s)
- J Lopez-Romero
- Bioprocesses Department, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional P.O. Box 07340, Mexico City, Mexico
| | - E Salgado-Manjarrez
- Bioengineering Department, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional P.O. Box 07340, Mexico City, Mexico
| | - L Torres
- Bioprocesses Department, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional P.O. Box 07340, Mexico City, Mexico
| | - E I Garcia-Peña
- Bioprocesses Department, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional P.O. Box 07340, Mexico City, Mexico.
| |
Collapse
|
26
|
Lu H, Wang X, Hu S, Han T, He S, Zhang G, He M, Lin X. Bioeffect of static magnetic field on photosynthetic bacteria: Evaluation of bioresources production and wastewater treatment efficiency. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1131-1141. [PMID: 32056340 DOI: 10.1002/wer.1308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/19/2019] [Revised: 01/31/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
Photosynthetic bacteria (PSB) technology is a promising method for biomass, protein, pigments, and other value-added substances generation from wastewater. However, the above bioresources production efficiency is relatively low. In this work, a static magnetic field (SMF) was used to promote bioresources production. Results showed that SMF had positive effects on value-added substances production. With 0.35 Tesla (T) SMF, the PSB biomass, protein, carotenoids, and bacteriochlorophyll concentration were promoted by 31.1%, 22.6%, 56.7%, and 73.1% compared with the control group, respectively. Biomass yield finally reached 0.58 g biomass/g COD removal, which was promoted by 37.1%. The doubling time was shortened by 37.9% in 0.35 T group, showing that SMF can promote cell growth. With 0.35 T SMF, the intracellular NADH dehydrogenase and ATP synthase activities concentration increased by 23.4% and 29.1%, respectively, thus increased the ATP content by 38.0%. Succinic dehydrogenase activity concentration greatly increased by 609.0% at 48 hr, which potentially accelerated the tricarboxylic acid cycle and COD degradation as well as enhanced biomass production. PRACTITIONER POINTS: SMF promoted PSB bioresource production during wastewater treatment processing. Biomass, protein, carotenoids, and Bchl concentration were promoted by 31.1%, 22.6%, 56.7%, and 73.1%, respectively. PSB yield of 0.35 T group was promoted by 37.1% compared with the control group. SDH concentration of 0.35 T was promoted by 609.0% compared with the control group. Increased NADH and ATP synthase activity concentration by SMF enhanced energy metabolism.
Collapse
Affiliation(s)
- Haifeng Lu
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, China
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, China
| | - Xiaodan Wang
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, China
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, China
| | - Shunfan Hu
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, China
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, China
| | - Ting Han
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, China
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, China
| | - Shichao He
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, China
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, China
| | - Guangming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Mou He
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, China
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, China
| | - Xinyu Lin
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, China
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, China
| |
Collapse
|
27
|
Capson-Tojo G, Batstone DJ, Grassino M, Vlaeminck SE, Puyol D, Verstraete W, Kleerebezem R, Oehmen A, Ghimire A, Pikaar I, Lema JM, Hülsen T. Purple phototrophic bacteria for resource recovery: Challenges and opportunities. Biotechnol Adv 2020; 43:107567. [PMID: 32470594 DOI: 10.1016/j.biotechadv.2020.107567] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
Sustainable development is driving a rapid focus shift in the wastewater and organic waste treatment sectors, from a "removal and disposal" approach towards the recovery and reuse of water, energy and materials (e.g. carbon or nutrients). Purple phototrophic bacteria (PPB) are receiving increasing attention due to their capability of growing photoheterotrophically under anaerobic conditions. Using light as energy source, PPB can simultaneously assimilate carbon and nutrients at high efficiencies (with biomass yields close to unity (1 g CODbiomass·g CODremoved-1)), facilitating the maximum recovery of these resources as different value-added products. The effective use of infrared light enables selective PPB enrichment in non-sterile conditions, without competition with other phototrophs such as microalgae if ultraviolet-visible wavelengths are filtered. This review reunites results systematically gathered from over 177 scientific articles, aiming at producing generalized conclusions. The most critical aspects of PPB-based production and valorisation processes are addressed, including: (i) the identification of the main challenges and potentials of different growth strategies, (ii) a critical analysis of the production of value-added compounds, (iii) a comparison of the different value-added products, (iv) insights into the general challenges and opportunities and (v) recommendations for future research and development towards practical implementation. To date, most of the work has not been executed under real-life conditions, relevant for full-scale application. With the savings in wastewater discharge due to removal of organics, nitrogen and phosphorus as an important economic driver, priorities must go to using PPB-enriched cultures and real waste matrices. The costs associated with artificial illumination, followed by centrifugal harvesting/dewatering and drying, are estimated to be 1.9, 0.3-2.2 and 0.1-0.3 $·kgdry biomass-1. At present, these costs are likely to exceed revenues. Future research efforts must be carried out outdoors, using sunlight as energy source. The growth of bulk biomass on relatively clean wastewater streams (e.g. from food processing) and its utilization as a protein-rich feed (e.g. to replace fishmeal, 1.5-2.0 $·kg-1) appears as a promising valorisation route.
Collapse
Affiliation(s)
- Gabriel Capson-Tojo
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia; CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Damien J Batstone
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - María Grassino
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Daniel Puyol
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, Móstoles, Spain.
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium; Avecom NV, Industrieweg 122P, 9032 Wondelgem, Belgium.
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands.
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Anish Ghimire
- Department of Environmental Science and Engineering, Kathmandu University, Dhulikhel, Nepal.
| | - Ilje Pikaar
- School of Civil Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Juan M Lema
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Tim Hülsen
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
28
|
Dalaei P, Bahreini G, Nakhla G, Santoro D, Batstone D, Hülsen T. Municipal wastewater treatment by purple phototropic bacteria at low infrared irradiances using a photo-anaerobic membrane bioreactor. WATER RESEARCH 2020; 173:115535. [PMID: 32014703 DOI: 10.1016/j.watres.2020.115535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/19/2019] [Revised: 12/09/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Light energy is one of the major costs for phototrophic systems. This study evaluated the photoreactor efficiency of purple phototropic bacteria anaerobic membrane bioreactor (PAnMBR) at low irradiance for the treatment of municipal wastewater. Infrared irradiance levels of 3.0 and 1.4 W/m2 produced by an infrared (IR) lamp emitting in the 800-900 nm wavelength range were investigated, with the ultimate goal of optimizing the irradiance energy demand. Experimental and modeling results demonstrated the ability of PPB to grow and treat raw municipal wastewater at the applied low irradiances, with effluent quality below target limits of TCOD˂50 mg/L, TN˂10 mg/L, and TP˂1 mg/L. While Monod kinetic parameters, km and Y, were determined to be lower than previous high-energy studies (1.9 mgCOD/mgVSS-d and 0.38 mgVSS/mgCOD, respectively), the photobioreactor performance were consistently maintained, indicating that energy cost associated with IR illumination can be reduced by up to 97%. To determine whether the treatment process could approach energy neutrality, subsequent anaerobic digestion experiments of the residual PPB biomass proved a potential for biogas recovery of up to 240 NmLCH4/gVSSadded, and a moderate biomass biodegradability of 41%. As a result, the net energy consumption of the process was estimated at 0.5 kWh/m3 of treated municipal wastewater, considering an energy demand for illumination of 0.67 kWh/m3 and an energy recovery attributed to the anaerobic digestion of 0.17 kWh/m3 from the excess PPB biomass wasted from PAnMBR.
Collapse
Affiliation(s)
- Peyman Dalaei
- Department of Civil and Environmental Engineering, Western University, London, ON, N6A 5B9, Canada
| | - Gholamreza Bahreini
- Department of Civil and Environmental Engineering, Western University, London, ON, N6A 5B9, Canada
| | - George Nakhla
- Department of Civil and Environmental Engineering, Western University, London, ON, N6A 5B9, Canada; Department of Chemical and Biochemical Engineering, Western University, London, ON, N6A 5B9, Canada.
| | - Domenico Santoro
- Department of Chemical and Biochemical Engineering, Western University, London, ON, N6A 5B9, Canada; Trojan Technologies, London, Ontario, N5V 4T7, Canada
| | - Damien Batstone
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Tim Hülsen
- Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
29
|
Chen J, Wei J, Ma C, Yang Z, Li Z, Yang X, Wang M, Zhang H, Hu J, Zhang C. Photosynthetic bacteria-based technology is a potential alternative to meet sustainable wastewater treatment requirement? ENVIRONMENT INTERNATIONAL 2020; 137:105417. [PMID: 32120141 DOI: 10.1016/j.envint.2019.105417] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/10/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 05/23/2023]
Abstract
A paradigm shift is underway in wastewater treatment from pollution removal to resource or energy recovery. However, conventional activated sludge (CAS) as the core technology of wastewater treatment is confronted with severe challenges on high energy consumption, sludge disposal and inevitable greenhouse gas emission, which are posing a serious impact on the current wastewater industry. It is urgent to find new alternative methods to remedy these defects. Photosynthetic bacteria (PSB) have flexible metabolic modes and high tolerance, which enhance the removal of nutrients, heavy metals and organic contaminants efficiency in different wastewater. The unique phototrophic growth of PSB breaks the restriction of nutrient metabolism in the CAS system. Recent studies have shown that PSB-based technologies can not only achieve the recovery of nutrient and energy, but also improve the degradation efficiency of refractory substances. If the application parameters can be determined, there will be great prospects and economic effects. This review summarizes the research breakthroughs and application promotion of PSB-based wastewater treatment technology in recent years. Comparing discussed the superiority and inferiority from the perspective of application range, performance differences and recovery possibility. Pathways involved in the nutrient substance and the corresponding influencing parameters are also described in detail. The mode of PSB biodegradation processes presented a promising alternative for new wastewater treatment scheme. In the future, more mechanical and model studies, deterministic operating parameters, revolutionary process design is need for large-scale industrial promotion of PSB-based wastewater treatment.
Collapse
Affiliation(s)
- Jiaqi Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jingjing Wei
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Mingsheng Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Huaqing Zhang
- Qinglin Environmental Protection Co. Ltd., Ningbo 315000, China
| | - Jiawei Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
30
|
Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103867] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023] Open
|
31
|
Liu S, Daigger GT, Kang J, Zhang G. Effects of light intensity and photoperiod on pigments production and corresponding key gene expression of Rhodopseudomonas palustris in a photobioreactor system. BIORESOURCE TECHNOLOGY 2019; 294:122172. [PMID: 31606599 DOI: 10.1016/j.biortech.2019.122172] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/12/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Light intensity and photoperiod significantly affect Rhodopseudomonas palustris growth and pigments production and their optimization is necessary for pigment biosynthesis. In this study, the impacts of different light intensity and light/dark cycles were investigated on biomass, carotenoids, bacteriochlorophyll production, together with pollutant removal, in a photobioreactor system. Results showed that R. palustris had the highest carotenoids and bacteriochlorophyll productions with light intensity of 150 μmol-photons/m2/s and light/dark cycle of 4/2 (16 h/8h). The corresponding values were 1.94 mg/g-biomass and 1.17 mg/g-biomass, respectively. The effects of light/dark cycle on crtA and bchE gene expression in pigments biosynthesis were also studied. Mechanism analysis revealed that carotenoids and bacteriochlorophyll yields represented good synergistic effect, which was consistent with the up-regulation of crtA and bchE gene expressions under optimal light/dark cycle of 4/2.
Collapse
Affiliation(s)
- Shuli Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China; Henan Key Laboratory of Water Environment Simulation and Treatment, Zhengzhou 450046, China; Henan Engineering Research Center of Water Pollution and Soil Damage Remediation, Zhengzhou 450046, China.
| | - Glen T Daigger
- Civil and Environmental Engineering, University of Michigan, 2350 Hayward St, G.G. Brown Building, Ann Arbor, MI 48109, USA.
| | - Jia Kang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450000, China; Henan Key Laboratory of Water Environment Simulation and Treatment, Zhengzhou 450046, China; Henan Engineering Research Center of Water Pollution and Soil Damage Remediation, Zhengzhou 450046, China
| | - Guangming Zhang
- School of Environment & Natural Resource, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
32
|
Qiang S, Su AP, Li Y, Chen Z, Hu CY, Meng YH. Elevated β-Carotene Synthesis by the Engineered Rhodobacter sphaeroides with Enhanced CrtY Expression. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9560-9568. [PMID: 31368704 DOI: 10.1021/acs.jafc.9b02597] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/10/2023]
Abstract
β-Carotene is a precursor of vitamin A and a dietary supplement for its antioxidant property. Producing β-carotene by microbial fermentation has attracted much attention owing to consumers' preference for the natural product. In this study, an engineered photosynthetic Rhodobacter sphaeroides producing β-carotene was constructed by the following strategies: (1) five promoters of different strengths were used to investigate the effect of the expression level of crtY on β-carotene content. It was found that PrrnB increased the β-carotene content by 109%. (2) blocking of the branched pentose phosphate pathway by zwf deletion, and (3) overexpressing dxs could restore the transcriptional levels of crtE and crtB. Finally, the engineered RS-C3 has the highest β-carotene content of 14.93 mg/g dry cell weight (DCW) among all of the reported photosynthetic bacteria and the β-carotene content reached 3.34 mg/g DCW under light conditions. Our results will be available for industrial use to supply a large quantity of natural β-carotene.
Collapse
Affiliation(s)
- Shan Qiang
- Shaanxi Engineering Lab for Food Green Processing and Security Control, College of Food Engineering and Nutritional Science , Shaanxi Normal University , 620 West Chang'an Avenue , Chang'an, Xi'an 710119 , P. R. China
- Xi'an Healthful Biotechnology Co., Ltd. , HangTuo Road , Chang'an, Xi'an 710100 , P. R. China
| | - An Ping Su
- Shaanxi Engineering Lab for Food Green Processing and Security Control, College of Food Engineering and Nutritional Science , Shaanxi Normal University , 620 West Chang'an Avenue , Chang'an, Xi'an 710119 , P. R. China
| | - Ying Li
- State Key Laboratory of Agrobiotechnology , China Agricultural University , No. 2 Yuanmingyuan West Road , Haidian District, Beijing 100193 , P. R. China
| | - Zhi Chen
- State Key Laboratory of Agrobiotechnology , China Agricultural University , No. 2 Yuanmingyuan West Road , Haidian District, Beijing 100193 , P. R. China
| | - Ching Yuan Hu
- Human Nutrition, Food, and Animal Science , University of Hawai'i at Manoa , 1955 East-West Road, AgSci. 415J , Honolulu , Hawaii 96822-2217 , United States
| | - Yong Hong Meng
- Shaanxi Engineering Lab for Food Green Processing and Security Control, College of Food Engineering and Nutritional Science , Shaanxi Normal University , 620 West Chang'an Avenue , Chang'an, Xi'an 710119 , P. R. China
| |
Collapse
|
33
|
Soundararajan M, Ledbetter R, Kusuma P, Zhen S, Ludden P, Bugbee B, Ensign SA, Seefeldt LC. Phototrophic N 2 and CO 2 Fixation Using a Rhodopseudomonas palustris-H 2 Mediated Electrochemical System With Infrared Photons. Front Microbiol 2019; 10:1817. [PMID: 31474945 PMCID: PMC6705187 DOI: 10.3389/fmicb.2019.01817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2018] [Accepted: 07/23/2019] [Indexed: 11/13/2022] Open
Abstract
A promising approach for the synthesis of high value reduced compounds is to couple bacteria to the cathode of an electrochemical cell, with delivery of electrons from the electrode driving reductive biosynthesis in the bacteria. Such systems have been used to reduce CO2 to acetate and other C-based compounds. Here, we report an electrosynthetic system that couples a diazotrophic, photoautotrophic bacterium, Rhodopseudomonas palustris TIE-1, to the cathode of an electrochemical cell through the mediator H2 that allows reductive capture of both CO2 and N2 with all of the energy coming from the electrode and infrared (IR) photons. R. palustris TIE-1 was shown to utilize a narrow band of IR radiation centered around 850 nm to support growth under both photoheterotrophic, non-diazotrophic and photoautotrophic, diazotrophic conditions with growth rates similar to those achieved using broad spectrum incandescent light. The bacteria were also successfully cultured in the cathodic compartment of an electrochemical cell with the sole source of electrons coming from electrochemically generated H2, supporting reduction of both CO2 and N2 using 850 nm photons as an energy source. Growth rates were similar to non-electrochemical conditions, revealing that the electrochemical system can fully support bacterial growth. Faradaic efficiencies for N2 and CO2 reduction were 8.5 and 47%, respectively. These results demonstrate that a microbial-electrode hybrid system can be used to achieve reduction and capture of both CO2 and N2 using low energy IR radiation and electrons provided by an electrode.
Collapse
Affiliation(s)
- Mathangi Soundararajan
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Rhesa Ledbetter
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
| | - Paul Kusuma
- Department of Plant, Soils and Climate, Utah State University, Logan, UT, United States
| | - Shuyang Zhen
- Department of Plant, Soils and Climate, Utah State University, Logan, UT, United States
| | - Paul Ludden
- Department of Biology, Southern Methodist University, Dallas, TX, United States
| | - Bruce Bugbee
- Department of Plant, Soils and Climate, Utah State University, Logan, UT, United States
| | - Scott A Ensign
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| |
Collapse
|
34
|
Improved Carotenoid Productivity and COD Removal Efficiency by Co-culture of Rhodotorula glutinis and Chlorella vulgaris Using Starch Wastewaters as Raw Material. Appl Biochem Biotechnol 2019; 189:193-205. [DOI: 10.1007/s12010-019-03016-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2019] [Accepted: 03/27/2019] [Indexed: 12/19/2022]
|
35
|
Lu H, Zhang G, Zheng Z, Meng F, Du T, He S. Bio-conversion of photosynthetic bacteria from non-toxic wastewater to realize wastewater treatment and bioresource recovery: A review. BIORESOURCE TECHNOLOGY 2019; 278:383-399. [PMID: 30683503 DOI: 10.1016/j.biortech.2019.01.070] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/24/2018] [Revised: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Generating or recycling water and resources from wastewater other than just treating wastewater is one of the most popular trends worldwide. Photosynthetic bacteria (PSB) wastewater treatment and resource recovery technology is one of the most potential methods. PSBs are non-toxic and contain lots of value-added products that can be utilized in the agricultural and food industries. They are effective to degrade pollutants and synthesize useful biomass, thus realizing wastewater treatment, bioresource production, and eliminating waste sludge. If all the nutrients in wastewaters could be bio-converted by PSB, then pollutant reductions and economic benefits would be achieved. This review paper firstly describes and summarizes this technology, including PSBs classification, metabolism, and the market application. The feasibility, technical procedures, bioreactors, pollutant removal, and bioresource production are also summarized, compared and evaluated. Issues that concern the advantages and industrialization of this technologies at the plant scale are also discussed.
Collapse
Affiliation(s)
- Haifeng Lu
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China.
| | - Guangming Zhang
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Ziqiao Zheng
- Yantai Research Institute, China Agriculture University, Yantai 264000, China
| | - Fan Meng
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Taisheng Du
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China
| | - Shichao He
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing 100083, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, Beijing 100083, China
| |
Collapse
|
36
|
Efficient Culture of Rhodopseudomonas Palustris Using Landfill Leachate. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
|
37
|
Monroy I, Guevara-López E, Buitrón G. Biohydrogen production by batch indoor and outdoor photo-fermentation with an immobilized consortium: A process model with Neural Networks. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
|
38
|
Qi X, Ren Y, Liang P, Wang X. New insights in photosynthetic microbial fuel cell using anoxygenic phototrophic bacteria. BIORESOURCE TECHNOLOGY 2018; 258:310-317. [PMID: 29571891 DOI: 10.1016/j.biortech.2018.03.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/22/2018] [Revised: 03/05/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
Anoxygenic phototrophic bacteria (APB) pay a key role in biogeochemical cycles, and it can convert light energy to chemical energy by photosynthesis process. Photosynthetic microbial fuel cell (photo-MFC) is regarded as a promising energy-harvesting technology, which is also applied to environment treatment in recent years. The previous studies show that photo-MFC with APB have higher power putout than other bioelectrochemical systems. However, photo-MFC with APB is not reviewed due to some limited factors in the development process. In this review, photo-MFC with APB is treated according to its electron transfer pathways, the current understanding, APB strains, application, influence of substrates, and economic assessment. Meanwhile, knowledge of photosynthesis components and electron transfer pathways of APB is crucial for developing new energy and easing the serious energy crisis. Moreover, some new insights (the optimization of light source and self-sustaining bioelectricity generation) are proposed for the future explorations.
Collapse
Affiliation(s)
- Xiang Qi
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing 100084, PR China; University of Chinese Academy of Sciences, Beijing 101407, PR China
| | - Yiwei Ren
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 101407, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xingzu Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 101407, PR China.
| |
Collapse
|
39
|
Meng F, Yang A, Wang H, Zhang G, Li X, Zhang Y, Zou Z. One-step treatment and resource recovery of high-concentration non-toxic organic wastewater by photosynthetic bacteria. BIORESOURCE TECHNOLOGY 2018; 251:121-127. [PMID: 29274518 DOI: 10.1016/j.biortech.2017.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/27/2017] [Revised: 11/29/2017] [Accepted: 12/02/2017] [Indexed: 06/07/2023]
Abstract
In order to achieve simple pollutant removal and simultaneous resource recovery in high-COD-non-toxic wastewater treatment, a one-step photosynthetic bacteria (PSB) method was established using batch study experiment. The effluent COD met the national discharge standard, and biomass with rich protein and high-value substances was efficiently produced. It eliminated the demand of post-treatment for conventional PSB treatment. Results showed that Rhodopseudomonas effectively treated brewery wastewater and achieved biomass proliferation. Yeast extract was the best additive for PSB growth and the effluent COD was below 80 mg/L with 400 mg/L yeast extract, meeting the national discharge standard. In addition, the PSB biomass increased by 2.6 times, and the cells were rich in protein, polysaccharide, carotenoids, bacteriochlorophyll and coenzyme Q10, reaching 420.9, 177.6, 2.53, 10.75 and 38.6 mg/g respectively. This work demonstrated the great potential of PSB for high-COD non-toxic wastewater treatment in one-step process.
Collapse
Affiliation(s)
- Fan Meng
- School of Environment and Natural Resource, Renmin University of China, 59 Zhongguanchun Street, Beijing 100872, China
| | - Anqi Yang
- School of Environment and Natural Resource, Renmin University of China, 59 Zhongguanchun Street, Beijing 100872, China
| | - Hangyao Wang
- School of Environment and Natural Resource, Renmin University of China, 59 Zhongguanchun Street, Beijing 100872, China
| | - Guangming Zhang
- School of Environment and Natural Resource, Renmin University of China, 59 Zhongguanchun Street, Beijing 100872, China.
| | - Xuemei Li
- School of Environment and Natural Resource, Renmin University of China, 59 Zhongguanchun Street, Beijing 100872, China
| | - Yi Zhang
- Shandong Public Holdings Tongtai Environment Limited, Jinin 277200, China
| | - Zhiguo Zou
- Shandong Public Holdings Tongtai Environment Limited, Jinin 277200, China
| |
Collapse
|
40
|
Peng M, Yang A, Chen Y, Zhang G, Meng F, Ma X, Li Y. Microbiology community changes during the start-up and operation of a photosynthetic bacteria-membrane bioreactor for wastewater treatment. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
|
41
|
Benchmark study of photosynthetic bacteria bio-conversion of wastewater: Carbon source range, fundamental kinetics of substrate degradation and cell proliferation. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022]
|
42
|
Qi X, Ren Y, Tian E, Wang X. The exploration of monochromatic near-infrared LED improved anoxygenic photosynthetic bacteria Rhodopseudomonas sp. for wastewater treatment. BIORESOURCE TECHNOLOGY 2017; 241:620-626. [PMID: 28605726 DOI: 10.1016/j.biortech.2017.05.202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/23/2017] [Revised: 05/27/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
The future wastewater treatment requires high-efficiency and energy-saving technology. Anoxygenic photosynthetic bacteria (APB) is deemed as an eco-friendly microorganism, which could be employed in wastewater treatment. Here, monochromatic near-infrared (MNIR) light emitting diode (LED) was used, and three key factors (light quality, light intensity and photoperiod) of it were analyzed by a response surface methodology (RSM) in APB wastewater treatment. The results showed that light quality was the biggest impact factor in APB wastewater treatment, and nearly 58.07% of NH4+-N and 70.62% of chemical oxygen demand (COD) could be removed based on 46.4% of that theoretically possible. The light quality's study revealed that APB had the highest NH4+-N and COD removal, biomass production, and bacteriochlorophyll a production with 850nm IR LED. Moreover, the application of optimal MNIR LED could not only save energy, but also avoid algae bloom of photo-bioreactors (PBR).
Collapse
Affiliation(s)
- Xiang Qi
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 101407, China
| | - Yiwei Ren
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing Industrial Technology Innovation Institute of Environmental Protection Membrane Materials and Equipment Technology, Chongqing 408400, China
| | - Enling Tian
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xingzu Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
43
|
Tsioptsias C, Lionta G, Samaras P. Microalgae-activated sludge treatment of molasses wastewater in sequencing batch photo-bioreactor. ENVIRONMENTAL TECHNOLOGY 2017; 38:1120-1126. [PMID: 27494440 DOI: 10.1080/09593330.2016.1218552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/06/2023]
Abstract
The aim of this work was the examination of the treatment potential of molasses wastewater, by the utilization of activated sludge and microalgae. The systems used included a sequencing batch bioreactor and a similar photo-bioreactor, favoring microalgae growth. The microalgae treatment of molasses wastewater mixture resulted in a considerable reduction in the total nitrogen content. A reduction in the ammonium and nitrate content was observed in the photo-bioreactor, while the effluent's total nitrogen consisted mainly of 50% organic nitrogen. The transformation of the nitrogen forms in the photo-bioreactor was attributed to microalgae activity, resulting in the production of a better quality effluent. Lower COD removal was observed for the photo-bioreactor than the control, which however increased, by the replacement of the anoxic phase by a long aeration period. The mechanism of nitrogen removal included both the denitrification process during the anoxic stage and the microalgae activities, as the replacement of the anoxic stage resulted in low total nitrogen removal capacities. A decrease in the photobioreactor performance was observed after 35 days of operation due to biofilm formation on the light tube surface, while the operation at higher temperature accelerated microalgae growth, resulting thus in the early failure of the photoreactor.
Collapse
Affiliation(s)
- Costas Tsioptsias
- a Department of Food Technology , Alexander Technological Educational Institute of Thessaloniki , Sindos, Greece
| | - Gesthimani Lionta
- a Department of Food Technology , Alexander Technological Educational Institute of Thessaloniki , Sindos, Greece
| | - Petros Samaras
- a Department of Food Technology , Alexander Technological Educational Institute of Thessaloniki , Sindos, Greece
| |
Collapse
|
44
|
Fernandes BS, Vieira JPF, Contesini FJ, Mantelatto PE, Zaiat M, Pradella JGDC. High value added lipids produced by microorganisms: a potential use of sugarcane vinasse. Crit Rev Biotechnol 2017; 37:1048-1061. [DOI: 10.1080/07388551.2017.1304356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023]
Affiliation(s)
- Bruna Soares Fernandes
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Centre of Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - João Paulo Fernandes Vieira
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Centre of Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Fabiano Jares Contesini
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Centre of Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Paulo Eduardo Mantelatto
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Centre of Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Marcelo Zaiat
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Centre of Research in Energy and Materials (CNPEM), Campinas, Brazil
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Carlos, Brazil
| | - José Geraldo da Cruz Pradella
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Centre of Research in Energy and Materials (CNPEM), Campinas, Brazil
| |
Collapse
|
45
|
Liu J, Xia B, Du X, Zeng T, Liu Y, Chen L, Lu L, Li C. Effects of water supplemented with Bacillus subtilis and photosynthetic bacteria on egg production, egg quality, serum immunoglobulins and digestive enzyme activity of ducks. JOURNAL OF APPLIED ANIMAL RESEARCH 2017. [DOI: 10.1080/09712119.2017.1299741] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jun Liu
- Hangzhou Tea Research Institute, China COOP, Hangzhou, People’s Republic of China
| | - Bing Xia
- Hangzhou Tea Research Institute, China COOP, Hangzhou, People’s Republic of China
| | - Xue Du
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou, People’s Republic of China
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou, People’s Republic of China
| | - Yali Liu
- The Agriculture Department of Zhejiang Province, Bureau of Animal Husbandry and Veterinary Medicine, Hangzhou, People’s Republic of China
| | - Li Chen
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou, People’s Republic of China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou, People’s Republic of China
| | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| |
Collapse
|
46
|
Muzziotti D, Adessi A, Faraloni C, Torzillo G, De Philippis R. Acclimation strategy of Rhodopseudomonas palustris to high light irradiance. Microbiol Res 2017; 197:49-55. [PMID: 28219525 DOI: 10.1016/j.micres.2017.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2016] [Revised: 01/02/2017] [Accepted: 01/23/2017] [Indexed: 12/30/2022]
Abstract
The ability of Rhodopseudomonas palustris cells to rapidly acclimate to high light irradiance is an essential issue when cells are grown under sunlight. The aim of this study was to investigate the photo-acclimation process in Rhodopseudomonas palustris 42OL under different culturing conditions: (i) anaerobic (AnG), (ii) aerobic (AG), and (iii) under H2-producing (HP) conditions both at low (LL) and high light (HL) irradiances. The results obtained clearly showed that the photosynthetic unit was significantly affected by the light irradiance at which Rp. palustris 42OL was grown. The synthesis of carotenoids was affected by both illumination and culturing conditions. At LL, lycopene was the main carotenoid synthetized under all conditions tested, while at HL under HP conditions, it resulted the predominant carotenoid. Oppositely, under AnG and AG at HL, rhodovibrin was the major carotenoid detected. The increase in light intensity produced a deeper variation in light-harvesting complexes (LHC) ratio. These findings are important for understanding the ecological distribution of PNSB in natural environments, mostly characterized by high light intensities, and for its growth outdoors.
Collapse
Affiliation(s)
- Dayana Muzziotti
- Department of Agrifood Production and Environmental Sciences, University of Florence, via Maragliano 77, 50144, Florence, Italy.
| | - Alessandra Adessi
- Department of Agrifood Production and Environmental Sciences, University of Florence, via Maragliano 77, 50144, Florence, Italy; Institute of Chemistry of Organometallic Compounds (ICCOM), CNR, Via Madonna del Piano, 10-50019 Sesto Fiorentino, Florence, Italy.
| | - Cecilia Faraloni
- Institute of Ecosystem Study (ISE), CNR, Via Madonna del Piano, 10-50019 Sesto Fiorentino, Florence, Italy.
| | - Giuseppe Torzillo
- Institute of Ecosystem Study (ISE), CNR, Via Madonna del Piano, 10-50019 Sesto Fiorentino, Florence, Italy.
| | - Roberto De Philippis
- Department of Agrifood Production and Environmental Sciences, University of Florence, via Maragliano 77, 50144, Florence, Italy; Institute of Chemistry of Organometallic Compounds (ICCOM), CNR, Via Madonna del Piano, 10-50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
47
|
Saejung C, Thammaratana T. Biomass recovery during municipal wastewater treatment using photosynthetic bacteria and prospect of production of single cell protein for feedstuff. ENVIRONMENTAL TECHNOLOGY 2016; 37:3055-3061. [PMID: 27070497 DOI: 10.1080/09593330.2016.1175512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/05/2023]
Abstract
Utilization of photosynthetic bacteria (PSB) for wastewater treatment and production of biomass for economical single cell protein production is a feasible option. In this study, Rhodopseudomonas sp. CSK01 was used for municipal wastewater treatment and the effect of initial pH, light intensity and additional carbon source was investigated. Optimum chemical oxygen demand (COD) removal and biomass production were achieved when the initial pH and light intensity were 7 and 4000 lux, respectively. The specific growth rate, biomass yield and biomass productivity were found to be 0.4/d, 3.2 g/g COD and 2.1 g/L/d, respectively, which were improved by 100%, 167% and 200% relative to the original condition. Under the optimal conditions, COD removal reached 85% and maximum biomass was 6.2 g/L accomplished within three days of cultivation. The biomass had a relatively high protein content (60.1%) consisting of all essential amino acids. The contents of histidine, lysine, phenylalanine and leucine were superior to those of the previously described PSB. Results showed that COD removal was not improved in the presence of additional carbon sources (glucose, sucrose and malic acid). The addition of malic acid significantly increased the biomass accumulation by 279% relative to the original condition, whereas COD removal was declined due to carbon catabolite repression. In this study, PSB biomass recovery and catabolite repression are proposed in municipal wastewater treatment by Rhodopseudomonas sp.
Collapse
Affiliation(s)
- Chewapat Saejung
- a Department of Microbiology, Faculty of Science , Khon Kaen University , Khon Kaen , Thailand
- b Applied Taxonomic Research Center, Faculty of Science , Khon Kaen University , Khon Kaen , Thailand
| | - Thani Thammaratana
- a Department of Microbiology, Faculty of Science , Khon Kaen University , Khon Kaen , Thailand
| |
Collapse
|
48
|
Tsioptsias C, Lionta G, Deligiannis A, Samaras P. Enhancement of the performance of a combined microalgae-activated sludge system for the treatment of high strength molasses wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 183:126-132. [PMID: 27589919 DOI: 10.1016/j.jenvman.2016.08.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/13/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 05/07/2023]
Abstract
The treatment of molasses wastewater, by a combined microalgae-activated sludge process, for the simultaneous organics and total nitrogen reduction, was examined. Further enhancement of the performance of the combined process was accomplished, by means of biofilm carriers or electrocoagulation. A LED light tube was immersed into the reactor tank aiming to enhance the growth of photosynthetic microalgae, while in a similar unit, biofilm carriers were added to the system, representing a moving bed bioreactor. Exposure of the activated sludge biocommunity to light source, resulted in the growth of microalgae and photoreactors exhibited higher removal rates of total nitrogen and nitrates. However, operation at longer times resulted in low effluent quality due to the presence of microalgae cells as a result of high growth rates, and potential light shading effect. Nevertheless, the moving bed system was more beneficial than the single photoreactor, as biofilm carriers provided a self cleaning capacity of the light source, reducing the effect of microalgae deposition. Advanced treatment of the biological effluents, by electrocoagulation, increased even more the process efficiency: the combined photobioreactor and electrocoagulation process resulted in about 78% COD removal and more than 35% total nitrogen removal in the effluent, where nitrates represented almost the single form of total nitrogen.
Collapse
Affiliation(s)
- Costas Tsioptsias
- Department of Food Technology, Alexander Technological Education Institute of Thessaloniki, Sindos, GR-57400 Thessaloniki, Greece.
| | - Gesthimani Lionta
- Department of Food Technology, Alexander Technological Education Institute of Thessaloniki, Sindos, GR-57400 Thessaloniki, Greece
| | - Andreas Deligiannis
- Department of Food Technology, Alexander Technological Education Institute of Thessaloniki, Sindos, GR-57400 Thessaloniki, Greece
| | - Petros Samaras
- Department of Food Technology, Alexander Technological Education Institute of Thessaloniki, Sindos, GR-57400 Thessaloniki, Greece
| |
Collapse
|
49
|
Wen S, Liu H, He H, Luo L, Li X, Zeng G, Zhou Z, Lou W, Yang C. Treatment of anaerobically digested swine wastewater by Rhodobacter blasticus and Rhodobacter capsulatus. BIORESOURCE TECHNOLOGY 2016; 222:33-38. [PMID: 27697735 DOI: 10.1016/j.biortech.2016.09.102] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/04/2016] [Revised: 09/21/2016] [Accepted: 09/25/2016] [Indexed: 05/28/2023]
Abstract
Two strains of photosynthetic bacteria, Rhodobacter blasticus and Rhodobacter capsulatus, were used in this work to investigate the feasibility of using photosynthetic bacteria for the treatment of anaerobically digested swine wastewater. The effects of crucial factors which influence the pollutants removal efficiency were also examined. Results showed that anaerobically digested swine wastewater could be treated effectively by photosynthetic bacteria. The treatment efficiency was significantly higher by the mixed photosynthetic bacteria than that by any unitary bacterium. The optimal treatment condition by mixed bacteria was inoculation of 10.0%(v/v) of the two bacteria by 1:1, initial pH of 7.0 and initial chemical oxygen demand of 4800mgL-1. Under these conditions, the removal rate of chemical oxygen demand was 83.3%, which was 19.3% higher than when using Rhodobacter blasticus or 10.6% higher than when using Rhodobacter capsulatus separately. This mixed photosynthetic bacteria achieved high chemical oxygen demand removal and cell yields.
Collapse
Affiliation(s)
- Shan Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hongyu Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Huijun He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Le Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiang Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zili Zhou
- Hunan Hikee Environmental Technology Co., Ltd., Changsha 410001, PR China
| | - Wei Lou
- Hunan Hikee Environmental Technology Co., Ltd., Changsha 410001, PR China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
50
|
Fanelli F, Reveglia P, Masi M, Mulè G, Zonno MC, Cimmino A, Vurro M, Evidente A. Influence of light on the biosynthesis of ophiobolin A by Bipolaris maydis. Nat Prod Res 2016; 31:909-917. [PMID: 27820961 DOI: 10.1080/14786419.2016.1253084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023]
Abstract
Ophiobolin A (O-A) is a sesterpenoid with numerous biological activities, including potential anticancer effects. Its production at an industrial level is hampered due to inability of fungus Bipolaris maydis to biosynthesise it in vitro in large amount. Among the environmental factors regulating fungal metabolism, light plays a crucial role. In this study, the use of different light wavelength (light emitting diodes (LEDs)) was evaluated to increase the O-A production. The white light allowed the highest production of the metabolite. The blue and green lights showed an inhibitory effect, reducing the production to 50%, as well as red and yellow but at a lower level. No correlation between fungal growth and metabolite production was found in relation to the light type. A novel application of LED technologies, which can be optimised to foster specific pathways and promote the production of metabolites having scientific and industrial interest was proposed.
Collapse
Affiliation(s)
- Francesca Fanelli
- a Institute of Sciences of Food Production , National Research Council , Bari , Italy
| | - Pierluigi Reveglia
- b Department of Chemical Sciences , University of Naples "Federico II", Complesso Universitario Monte S. Angelo , Napoli , Italy
| | - Marco Masi
- b Department of Chemical Sciences , University of Naples "Federico II", Complesso Universitario Monte S. Angelo , Napoli , Italy
| | - Giuseppina Mulè
- a Institute of Sciences of Food Production , National Research Council , Bari , Italy
| | - Maria Chiara Zonno
- a Institute of Sciences of Food Production , National Research Council , Bari , Italy
| | - Alessio Cimmino
- b Department of Chemical Sciences , University of Naples "Federico II", Complesso Universitario Monte S. Angelo , Napoli , Italy
| | - Maurizio Vurro
- a Institute of Sciences of Food Production , National Research Council , Bari , Italy
| | - Antonio Evidente
- b Department of Chemical Sciences , University of Naples "Federico II", Complesso Universitario Monte S. Angelo , Napoli , Italy
| |
Collapse
|