1
|
Romero-Vargas A, Fdez-Güelfo LA, Blandino A, Díaz MJ, Díaz AB. Rugulopteryx okamurae: Effect of hydrothermal acid pretreatment on the saccharification process. BIORESOURCE TECHNOLOGY 2023; 388:129721. [PMID: 37730140 DOI: 10.1016/j.biortech.2023.129721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
The biological invasion caused by the invasive macroalga Rugulopteryx okamurae is causing increasing concern in southern Europe. To reduce its impact, this brown alga can be treated from a biorefinery approach. In this study, the macroalga is used as raw material to obtain fermentable sugars, which can be converted into high value-added products. The alga was exposed to hydrothermal and hydrothermal acid pretreatment and the pretreated biomass was used for enzymatic hydrolysis, achieving a hydrolysate with a reducing sugar concentration of almost 25 g/L (49.2% more than with non-pretreated alga). In addition, the combined severity factor was calculated to identify the best pretreatment conditions, finding the optimum in those pretreatments performed with 0.2 N HCl concentration and 15 min reaction time. Based on the results, it would be interesting to carry out new studies using the saccharified medium obtained under optimal conditions to obtain value-added compounds by fermentation.
Collapse
Affiliation(s)
- Agustín Romero-Vargas
- Department of Chemical Engineering and Food Technology, Wine and Agrifood Research Institute (IVAGRO), University of Cádiz - International Campus of Excellence (ceiA3), 11510 Puerto Real, Cádiz, Spain.
| | - Luis Alberto Fdez-Güelfo
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cádiz - International Campus of Excellence (ceiA3), 11510 Puerto Real, Cádiz, Spain.
| | - Ana Blandino
- Department of Chemical Engineering and Food Technology, Wine and Agrifood Research Institute (IVAGRO), University of Cádiz - International Campus of Excellence (ceiA3), 11510 Puerto Real, Cádiz, Spain.
| | - Manuel J Díaz
- Department of Chemical Engineering and Food Technology, Wine and Agrifood Research Institute (IVAGRO), University of Cádiz - International Campus of Excellence (ceiA3), 11510 Puerto Real, Cádiz, Spain.
| | - Ana Belén Díaz
- Department of Chemical Engineering and Food Technology, Wine and Agrifood Research Institute (IVAGRO), University of Cádiz - International Campus of Excellence (ceiA3), 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
2
|
Ricci A, Díaz AB, Lazzi C, Blandino Garrido AM. Valorization of orange peels exploiting fungal solid-state and lacto-fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4614-4624. [PMID: 36860131 DOI: 10.1002/jsfa.12537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Orange peels can serve as a cost-effective raw material for the production of lactic acid. Indeed, given their high concentration of carbohydrates and low content of lignin, they represent an important source of fermentable sugars, recoverable after a hydrolytic step. RESULTS In the present article, the fermented solid, obtained after 5 days of Aspergillus awamori growth, was used as the only source of enzymes, mainly composed of xylanase (40.6 IU g-1 of dried washed orange peels) and exo-polygalacturonase (16.3 IU g-1 of dried washed orange peels) activities. After the hydrolysis, the highest concentration of reducing sugars (24.4 g L-1 ) was achieved with 20% fermented and 80% non-fermented orange peels. The hydrolysate was fermented with three lactic acid bacteria strains (Lacticaseibacillus casei 2246 and 2240 and Lacticaseibacillus rhamnosus 1019) which demonstrated good growth ability. The yeast extract supplementation increased the lactic acid production rate and yield. Overall, L. casei 2246 produced the highest concentration of lactic acid in mono-culture. CONCLUSION To the best of our knowledge this is the first study exploiting orange peels as low-cost raw material for the production of lactic acid avoiding the employment of commercial enzymes. The enzymes necessary for the hydrolyses were directly produced during A. awamori fermentation and the reducing sugars obtained were fermented for lactic acid production. Despite this preliminary work carried out to study the feasibility of this approach, the concentrations of reducing sugars and lactic acid produced were encouraging, leaving open the possibility of other studies for the optimization of the strategy proposed here. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Annalisa Ricci
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Ana Belen Díaz
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Agro-Food Campus of Excellence (CeiA3), University of Cadiz, Puerto Real, Spain
| | - Camilla Lazzi
- Department of Food and Drug, University of Parma, Parma, Italy
- Interdepartmental Center, SITEIA.PARMA-Centro Interdipartimentale sulla Sicurezza, Tecnologie e Innovazione Agroalimentare, University of Parma, Parma, Italy
| | - Ana María Blandino Garrido
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Agro-Food Campus of Excellence (CeiA3), University of Cadiz, Puerto Real, Spain
| |
Collapse
|
3
|
Marzo C, Díaz AB, Caro I, Blandino A. Valorisation of fungal hydrolysates of exhausted sugar beet pulp for lactic acid production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4108-4117. [PMID: 33368320 DOI: 10.1002/jsfa.11046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/24/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Exhausted sugar beet pulp pellets (ESBPP) were used as raw material for lactic acid (LA) fermentation. The enzymatic hydrolysis of ESBPP was performed with the solid obtained after the fungal solid-state fermentation of ESBPP as a source of hydrolytic enzymes. Subsequently, a medium rich in glucose and arabinose was obtained, which was used to produce LA by fermentation. For LA production, two Lactobacillus strains were assayed and the effects of the supplementation of the hydrolysate with a nitrogen source and the mode of pH regulation of the fermentation were investigated. Moreover, a kinetic model for LA fermentation by Lactobacillus plantarum of ESBPP hydrolysates was developed. RESULTS L. plantarum produced a LA concentration 34% higher than that produced by L. casei. The highest LA concentration (30 g L-1 ) was obtained with L. plantarum when the hydrolysate was supplemented with 5 g L-1 yeast extract and the pH was controlled with CaCO3 . The concentration of acetic acid differed depending on the concentration of CaCO3 added, producing its maximum value with 27 g L-1 CaCO3 . The proposed kinetic model was able to predict the evolution of substrates and products depending on the variation of the pH in the hydrolysate, according to the amount of CaCO3 added. CONCLUSIONS ESBPP can be revalorised to produce LA. A pure LA stream or a mixture of LA and acetic acid, depending on the pH control method of the fermentation, can be produced. Thus, this control is of great interest depending on the destination of the effluent. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cristina Marzo
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, IVAGRO, University of Cádiz, Puerto Real, Spain
| | - Ana Belén Díaz
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, IVAGRO, University of Cádiz, Puerto Real, Spain
| | - Ildefonso Caro
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, IVAGRO, University of Cádiz, Puerto Real, Spain
| | - Ana Blandino
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, IVAGRO, University of Cádiz, Puerto Real, Spain
| |
Collapse
|
4
|
Conversion of Exhausted Sugar Beet Pulp into Fermentable Sugars from a Biorefinery Approach. Foods 2020; 9:foods9101351. [PMID: 32987649 PMCID: PMC7598709 DOI: 10.3390/foods9101351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022] Open
Abstract
In this study, the production of a hydrolysate rich in fermentable sugars, which could be used as a generic microbial culture medium, was carried out by using exhausted sugar beet pulp pellets (ESBPPs) as raw material. For this purpose, the hydrolysis was performed through the direct addition of the fermented ESBPPs obtained by fungal solid-state fermentation (SSF) as an enzyme source. By directly using this fermented solid, the stages for enzyme extraction and purification were avoided. The effects of temperature, fermented to fresh solid ratio, supplementation of fermented ESBPP with commercial cellulase, and the use of high-solid fed-batch enzymatic hydrolysis were studied to obtain the maximum reducing sugar (RS) concentration and productivity. The highest RS concentration and productivity, 127.3 g·L−1 and 24.3 g·L−1·h−1 respectively, were obtained at 50 °C and with an initial supplementation of 2.17 U of Celluclast® per gram of dried solid in fed-batch mode. This process was carried out with a liquid to solid ratio of 4.3 mL·g−1 solid, by adding 15 g of fermented solid and 13.75 g of fresh solid at the beginning of the hydrolysis, and then the same amount of fresh solid 3 times every 2.5 h. By this procedure, ESBPP can be used to produce a generic microbial feedstock, which contains a high concentration of monosaccharides.
Collapse
|
5
|
Díaz AB, González C, Marzo C, Caro I, Blandino A. Feasibility of exhausted sugar beet pulp as raw material for lactic acid production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3036-3045. [PMID: 32057099 DOI: 10.1002/jsfa.10334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Exhausted sugar beet pulp pellets (ESBPP), a sugar industry by-product generated after sugar extraction in the sugar production process, have been used as a raw material for lactic acid (LA) production via hydrolysis and fermentation by Lactobacillus casei. To design a more cost-effective process, simultaneous saccharification and fermentation (SSF) of ESBPP is proposed in the present study. The effects of pH control, nutrient supplementation and solid addition in fed-batch SSF on lactic acid production were investigated. RESULTS The highest LA concentration (26.88 g L-1 ) was reached in fed-batch SSF at a solid/liquid loading of 0.2 g mL-1 , with pH control (by adding 30 g L-1 CaCO3 to the medium) and nutrient supplementation (by adding 20 mL of MRS medium per 100 mL of buffer). Under these conditions, a maximum productivity of 0.63 g L-1 h-1 was achieved, which is 2.7 times higher than that attained in the control experiment (SSF inoculated at time 0 h). However, a slightly lower LA yield was obtained, revealing the need of an increasing dose of enzymes at high solid loading SSF. CONCLUSION An efficient fed-batch SSF strategy with pH control and MRS supplementation is described in the present study, attaining higher LA productivity compared to separate hydrolysis and fermentation and SSF. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana Belén Díaz
- Department of Chemical Engineering and Food Technology, IVAGRO Institute, Universidad de Cádiz, Puerto Real, Spain
| | - Claudia González
- Department of Chemical Engineering and Food Technology, IVAGRO Institute, Universidad de Cádiz, Puerto Real, Spain
| | - Cristina Marzo
- Department of Chemical Engineering and Food Technology, IVAGRO Institute, Universidad de Cádiz, Puerto Real, Spain
| | - Ildefonso Caro
- Department of Chemical Engineering and Food Technology, IVAGRO Institute, Universidad de Cádiz, Puerto Real, Spain
| | - Ana Blandino
- Department of Chemical Engineering and Food Technology, IVAGRO Institute, Universidad de Cádiz, Puerto Real, Spain
| |
Collapse
|
6
|
Pipitone G, Zoppi G, Frattini A, Bocchini S, Pirone R, Bensaid S. Aqueous phase reforming of sugar-based biorefinery streams: from the simplicity of model compounds to the complexity of real feeds. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.09.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Ricci A, Diaz AB, Caro I, Bernini V, Galaverna G, Lazzi C, Blandino A. Orange peels: from by-product to resource through lactic acid fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6761-6767. [PMID: 31353470 DOI: 10.1002/jsfa.9958] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/08/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Considering the large amounts of by-products derived from orange processing, which are generally discarded, the present study aimed to explore the feasibility of using orange peel for lactic acid production in solid state fermentation. RESULTS Different species of lactic acid bacteria were employed, singly and in co-culture, to evaluate their ability to ferment orange peel and produce lactic acid. Among the single cultures tested, Lactobacillus casei 2246 was the most efficient strain, reaching the highest concentration of lactic acid (209.65 g kg-1 ) and yield (0.88 g g-1 ). The use of Lactobacillus plantarum 285 and Lactobacillus paracasei 4186 in co-culture produced a comparable amount of lactic acid, showing a better performance than the same strains in single cultures. CONCLUSION Orange peels represent a suitable raw material for solid state fermentation employing lactic acid bacteria. Lactic acid was obtained that consumed the most of sugars available, leading to high yields. Despite all the strains tested showing the same growth ability, different peculiarities in lactic acid production were revealed, dependent on the species/strains, suggesting the relevance of strain selection. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Annalisa Ricci
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Ana Belen Diaz
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Agro-Food Campus of Excellence (CeiA3), University of Cadiz, Puerto Real, Spain
| | - Ildefonso Caro
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Agro-Food Campus of Excellence (CeiA3), University of Cadiz, Puerto Real, Spain
| | | | | | - Camilla Lazzi
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Ana Blandino
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, International Agro-Food Campus of Excellence (CeiA3), University of Cadiz, Puerto Real, Spain
| |
Collapse
|
8
|
Akar T, Güray T, Yilmazer DT, Tunali Akar S. Biosorptive detoxification of zearalenone biotoxin by surface-modified renewable biomass: process dynamics and application. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1850-1861. [PMID: 30264397 DOI: 10.1002/jsfa.9379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/25/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Contamination of food, feed, beverages and even drinking water with biotoxins is a growing global concern because of their potential health risks. In this work, surface-modified sugar beet pulp waste was used for the biosorptive removal of zearalenone biotoxin from contaminated aquatic media. RESULTS Infrared, Boehm titration, BET (Brunauer-Emmett-Teller) surface area and point of zero charge analysis were employed for surface characterization. Kinetic and equilibrium studies showed that biotoxin biosorption was well predicted by the pseudo-second-order kinetic model and the Langmuir isotherm model. Zearalenone was removed from the solution over a wide pH range (3.0-8.0) and within a short time (15 min). Maximum uptake capacity of modified biomass was recorded as 23.30 ± 0.17 g kg-1 . Highest removal yield in a dynamic flow mode (94.56 ± 0.13%) was achieved at 2 mL min-1 flow rate using 30 mg biosorbent. Regeneration experiments revealed high reusability potential of suggested biosorbent. Moreover, its application potential was tested in spiked samples of malt, beer and canned corn liquid. CONCLUSION Detoxification potential of this renewable biomass was significantly enhanced after modification. Modified biomass could be used as an efficient and low-cost green-type material with good application potential for zearalenone detoxification. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tamer Akar
- Department of Chemistry, Faculty of Arts and Science, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Tufan Güray
- Department of Chemistry, Faculty of Arts and Science, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Dilek Tunc Yilmazer
- Department of Chemistry, Graduate School of Natural and Applied Sciences, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Sibel Tunali Akar
- Department of Chemistry, Faculty of Arts and Science, Eskişehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
9
|
Marzo C, Díaz AB, Caro I, Blandino A. Valorization of agro-industrial wastes to produce hydrolytic enzymes by fungal solid-state fermentation. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2019; 37:149-156. [PMID: 30222065 DOI: 10.1177/0734242x18798699] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nowadays, significant amounts of agro-industrial wastes are discarded by industries; however, they represent interesting raw materials for the production of high-added value products. In this regard, orange peels (ORA) and exhausted sugar beet cossettes (ESBC) have turned out to be promising raw materials for hydrolytic enzymes production by solid state fermentation (SSF) and also a source of sugars which could be fermented to different high-added value products. The maximum activities of xylanase and exo-polygalacturonase (exo-PG) measured in the enzymatic extracts obtained after the SSF of ORA were 31,000 U·kg-1 and 17,600 U·kg-1, respectively; while for ESBC the maximum values reached were 35,000 U·kg-1 and 28,000 U·kg-1, respectively. The enzymatic extracts obtained in the SSF experiments were also employed for the hydrolysis of ORA and ESBC. Furthermore, it was found that extracts obtained from SSF of ORA, supplemented with commercial cellulase, were more efficient for the hydrolysis of ORA and ESBC than a commercial enzyme cocktail typically used for this purpose. In this case, maximum reducing sugars concentrations of 57 and 47 g·L-1 were measured after the enzymatic hydrolysis of ESBC and ORA, respectively.
Collapse
Affiliation(s)
- C Marzo
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, IVAGRO, University of Cádiz, Spain
| | - A B Díaz
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, IVAGRO, University of Cádiz, Spain
| | - I Caro
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, IVAGRO, University of Cádiz, Spain
| | - A Blandino
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, IVAGRO, University of Cádiz, Spain
| |
Collapse
|
10
|
Abaide ER, Ugalde G, Di Luccio M, Moreira RDFPM, Tres MV, Zabot GL, Mazutti MA. Obtaining fermentable sugars and bioproducts from rice husks by subcritical water hydrolysis in a semi-continuous mode. BIORESOURCE TECHNOLOGY 2019; 272:510-520. [PMID: 30391844 DOI: 10.1016/j.biortech.2018.10.075] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
This work aimed at producing fermentable sugars and bioproducts from rice husks by subcritical water hydrolysis at 25 MPa in a semi-continuous mode. The influences of temperature (180 °C; 220 °C; 260 °C) and liquid/solid ratio (7.5 g water/g husks; 15 g water/g husks) on reducing sugar yield (YRS), efficiency (E), kinetic profiles (0-15 min), composition of sugars, inhibitors and organic acids, and physicochemical characteristics of the remaining solid material were evaluated and discussed in the work. The highest YRS (18.0 ± 2.9 g/100 g husks) and E (39.5 ± 1.7 g sugars/100 g carbohydrates) were obtained at 220 °C and 7.5 gwater/g husks. In such condition, the hydrolyzed solutions presented cellobiose (18.0 g/L), xylose 17.7 g/L), arabinose (3.6 g/L), glucose (1.5 g/L), and levulinic acid (0.7 g/L). The fermentable sugars and bioproducts can be applied in several industrial fields, especially for the production of bioethanol and other higher value-added chemical compounds.
Collapse
Affiliation(s)
- Ederson R Abaide
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), 1040, Sete de Setembro St, Center DC, Cachoeira do Sul - RS 96508-010, Brazil
| | - Gustavo Ugalde
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Marco Di Luccio
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, SC 88040-900, Brazil
| | - Regina de F P M Moreira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, SC 88040-900, Brazil
| | - Marcus V Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), 1040, Sete de Setembro St, Center DC, Cachoeira do Sul - RS 96508-010, Brazil
| | - Giovani L Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), 1040, Sete de Setembro St, Center DC, Cachoeira do Sul - RS 96508-010, Brazil.
| | - Marcio A Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
11
|
A Bibliometric Study of Scientific Publications regarding Hemicellulose Valorization during the 2000–2016 Period: Identification of Alternatives and Hot Topics. CHEMENGINEERING 2018. [DOI: 10.3390/chemengineering2010007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
|