1
|
Chen Z, Wang L. Process simulation and evaluation of scaled-up biocatalytic systems: Advances, challenges, and future prospects. Biotechnol Adv 2024; 77:108470. [PMID: 39437878 DOI: 10.1016/j.biotechadv.2024.108470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
With the increased demand for bio-based products and the rapid development of biomanufacturing technologies, biocatalytic reactions including microorganisms and enzyme based, have become promising approaches. Prior to the scale-up of production process, environmental and economic feasibility analysis are essential for the development of a sustainable and intelligent bioeconomy in the context of industry 4.0. To achieve these goals, process simulation supports system optimization, improves energy and resource utilization efficiencies, and supports digital bioprocessing. However, due to the insufficient understanding of cellular metabolism and interaction mechanisms, there is still a lack of rational and transparent simulation tools to efficiently simulate, control, and optimize microbial/enzymatic reaction processes. Therefore, there is an urgent need to develop frameworks that integrate kinetic modeling, process simulation, and sustainability analysis for bioreaction simulations and their optimization. This review summarizes and compares the advantages and disadvantages of different process simulation software and models in simulating biocatalytic processes, identifies the limitations of traditional reaction kinetics models, and proposes the requirement of simulations close to real reactions. In addition, we explore the current state of kinetic modeling at the microscopic scale and how process simulation can be linked to kinetic models of cellular metabolism and computational fluid dynamics modeling. Finally, this review discusses the requirement of sensitivity analysis and how machine learning can assist with optimization of simulations to improve energy efficiency and product yields from techno-economic and life cycle assessment perspectives.
Collapse
Affiliation(s)
- Zhonghao Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lei Wang
- Zhejiang Key Laboratory of Low-Carbon Intelligent Synthetic Biology, Westlake University, Hangzhou, Zhejiang 310030, China; School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
2
|
Elrhayam Y, El Bachiri A. Study of the effect of heat temperature on the chemical changes and hygroscopicity of eucalyptus wood by FT-IR and prediction of mechanical properties by the MLR regression method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124576. [PMID: 38945009 DOI: 10.1016/j.saa.2024.124576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/01/2023] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
This study describes the effect of heat treatment on some physical, chemical, and mechanical properties of Eucalyptus Camaldulensis (EC) wood at different temperatures and treatment times (200 °C-260 °C for 5, 60, and 90 min). The evaluation of hygroscopic properties was determined by relative humidity, mass loss, dimensional stability tests, and density. The results showed that the heat treatment leads to an increase in mass loss of 5.2 %-11.9 % at 200 °C. The density changed significantly for this studied species as well as the dimensional stabilization. Chemical changes in wood structure were assessed by Fourier Transform Infrared Spectroscopy.To verify the validity of the superposition "Mass loss-Density-water absorption" on the mechanical properties (modulus of elasticity (MOE) and modulus of rupture (MOR)) during heat treatment, we have developed a mathematical model based on Multiple Linear Regression (MLR), in order to establish a relationship between the independent parameters and the dependent parameters (MOE and MOR). The evaluation of the quality of the models developed was based on several statistical tools, namely R = 0.99, R2 = 0.99, R2adj = 0.98, and F = 132.33. The results demonstrated that elaborate models of mechanical properties have a high predictive capacity (MOR and MOE). The wood's carbohydrates (particularly hemicelluloses) are then degraded during the heat treatment. The % of carbon increases from 47.8 to 49.8 %, which is proportional to mass loss, while the % of oxygen decreases by 46.1 %, which is inversely proportional to mass loss. Furthermore, FTIR analysis revealed that the effect of heat-treated wood chemical changes was related to the hydroxyl OH function of cellulose, functional groups, and aromatic system of lignin. In conclusion, the results demonstrated that at 200 °C, heat treatment caused a 5.2-11.9 % increase in mass loss; dimensional stability and density underwent considerable changes. FTIR spectroscopy confirmed the chemical changes in the wood structure during heat treatment. Furthermore, the "MLR" mathematical model showed that density contributed to the increase in MOR and MOE properties, while water absorption and mass loss contributed to the decrease in MOR and MOE properties. Finally, the % of oxygen decreased by 46.1 %, which is inversely proportional to the loss of mass, and the % of carbon increased from 47.8 % to 49.8 %, which is proportional to the loss of mass.
Collapse
Affiliation(s)
- Youssef Elrhayam
- Laboratory of Advanced Materials and Process Engineering, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, B.P. 14000, Kenitra, Morroco; Laboratory of Organic Chemistry, Catalysis and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, B.P. 14000, Kenitra, Morroco.
| | - Abderrahim El Bachiri
- University Department, Royal Naval School of Marine Engineering - Boulevard Sour Jdid Casablanca, Morocco
| |
Collapse
|
3
|
Bajpai N, Bagchi D. Bioenergy feedstock production in Chlamydomonas reinhardtii (microalgae) cultivated under mixotrophic growth with cellulose hydrolysate from agricultural waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34258-x. [PMID: 38980485 DOI: 10.1007/s11356-024-34258-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/04/2023] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
In the present study, cellulose purified from finger millet agricultural waste is subjected to enzymatic hydrolysis, and the hydrolysate (predominantly glucose) is used as a carbon source supplement in the media for the mixotrophic growth of Chlamydomonas reinhardtii. Interestingly, a switch between excess starch production and excess lipid (triacylglycerols, TAG) production occurs by a small change in hydrolysate concentration in the media. Starch production increased 4.5-fold with respect to the photoautotrophic control, with a glucose concentration of 3 mg/mL in the media after hydrolysate addition. This culture had TAG production enhancement by 1.5-fold. However, mixotrophic cultivation with 4 mg/mL glucose concentration in the media with hydrolysate addition resulted in TAG productivity enhancement by 4.2-fold compared to control and starch amount increase of 1.3-fold. The organic carbon source (glucose) and the inorganic carbon source (citrate ions) in the hydrolysate together played a role in this delicate switching between starch and lipid pathways. Proteins, starch, and TAG molecules are analyzed in the microalgal cells grown under different conditions with FTIR spectroscopy, a rapid, high-throughput method of biomolecular estimation. High-resolution single-cell AFM studies of the cell wall structure reveal enhanced corrugations in surface morphology during mixotrophic growth with cellulose hydrolysate, illustrating an adaptive mechanism with improved mechanical stress management. Lipid droplet morphology at the single-cell level points to two distinct mechanisms of lipid accumulation: one in which the lipids are segregated as droplets, and the other in which lipid molecules are uniformly dispersed in the cytosol as unresolved, ultra-small droplets. The present study therefore analyzes both the bulk and the single-cell level changes when cellulose hydrolysate is used as a carbon source for Chlamydomonas reinhardtii mixotrophic cultivation, which serves a four-fold purpose: value from waste, fixation of atmospheric CO2, production of lipids for biodiesel, and starch for bioethanol.
Collapse
Affiliation(s)
- Nandita Bajpai
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Debjani Bagchi
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
4
|
Das S, Chandukishore T, Ulaganathan N, Dhodduraj K, Gorantla SS, Chandna T, Gupta LK, Sahoo A, Atheena PV, Raval R, Anjana PA, DasuVeeranki V, Prabhu AA. Sustainable biorefinery approach by utilizing xylose fraction of lignocellulosic biomass. Int J Biol Macromol 2024; 266:131290. [PMID: 38569993 DOI: 10.1016/j.ijbiomac.2024.131290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Lignocellulosic biomass (LCB) has been a lucrative feedstock for developing biochemical products due to its rich organic content, low carbon footprint and abundant accessibility. The recalcitrant nature of this feedstock is a foremost bottleneck. It needs suitable pretreatment techniques to achieve a high yield of sugar fractions such as glucose and xylose with low inhibitory components. Cellulosic sugars are commonly used for the bio-manufacturing process, and the xylose sugar, which is predominant in the hemicellulosic fraction, is rejected as most cell factories lack the five‑carbon metabolic pathways. In the present review, more emphasis was placed on the efficient pretreatment techniques developed for disintegrating LCB and enhancing xylose sugars. Further, the transformation of the xylose to value-added products through chemo-catalytic routes was highlighted. In addition, the review also recapitulates the sustainable production of biochemicals by native xylose assimilating microbes and engineering the metabolic pathway to ameliorate biomanufacturing using xylose as the sole carbon source. Overall, this review will give an edge on the bioprocessing of microbial metabolism for the efficient utilization of xylose in the LCB.
Collapse
Affiliation(s)
- Satwika Das
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - T Chandukishore
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Nivedhitha Ulaganathan
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Kawinharsun Dhodduraj
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Sai Susmita Gorantla
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Teena Chandna
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Laxmi Kumari Gupta
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - P V Atheena
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - P A Anjana
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Venkata DasuVeeranki
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashish A Prabhu
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India.
| |
Collapse
|
5
|
Eom T, Isanapong J, Kumnorkaew P, Sriariyanun M, Pornwongthong P. 1-Ethyl-3-methylimidazolium acetate pretreatment for maximizing reducing sugar recovery from mixed cabbage residue. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15491-15502. [PMID: 38300494 DOI: 10.1007/s11356-024-32189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/19/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
Vegetable waste, including mixed cabbage residue (MCR), is considered a promising raw material for bioenergy production because of its high lignocellulosic component. In this study, the pretreatment of MCR by ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) was optimized based on response surface methodology. The optimal condition for MCR pretreatment was determined at 55.8 °C, with a reaction of 2.65 h and liquid-solid ratio of 4.60:1 v/w. Hydrolysis of pretreated MCR from optimal pretreatment conditions generated a maximum glucose yield of 156.65 ± 7.66 mg/g MCR. Untreated and pretreated MCRs were successfully characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The pretreated MCR exhibited increased clear pores and incomplete structure. Moreover, compared with untreated biomass, decreased lignin, decreased hemicellulose, increased surface area, and cellulose crystallinity were observed. Thus, [Emim][OAc] pretreatment is a promising alternative approach for higher glucose production from MCR.
Collapse
Affiliation(s)
- Tokla Eom
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Jantiya Isanapong
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Pisist Kumnorkaew
- Innovative Nanocoating Research Team, National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Malinee Sriariyanun
- Biorefinery and Process Automation Engineering Center, Department of Chemical and Process Engineering, TGGS, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Peerapong Pornwongthong
- Department of Agro-Industrial, Food and Environmental Technology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand.
- Food and Agro-Industry Research Center, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand.
- Agritech and Innovation Center, King Mongkut's University of Technology North Bangkok Techno Park, Bangkok, Thailand.
| |
Collapse
|
6
|
Lignocellulosic Biorefinery Technologies: A Perception into Recent Advances in Biomass Fractionation, Biorefineries, Economic Hurdles and Market Outlook. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/06/2023]
Abstract
Lignocellulosic biomasses (LCB) are sustainable and abundantly available feedstocks for the production of biofuel and biochemicals via suitable bioconversion processing. The main aim of this review is to focus on strategies needed for the progression of viable lignocellulosic biomass-based biorefineries (integrated approaches) to generate biofuels and biochemicals. Processing biomass in a sustainable manner is a major challenge that demands the accomplishment of basic requirements relating to cost effectiveness and environmental sustainability. The challenges associated with biomass availability and the bioconversion process have been explained in detail in this review. Limitations associated with biomass structural composition can obstruct the feasibility of biofuel production, especially in mono-process approaches. In such cases, biorefinery approaches and integrated systems certainly lead to improved biofuel conversion. This review paper provides a summary of mono and integrated approaches, their limitations and advantages in LCB bioconversion to biofuel and biochemicals.
Collapse
|
7
|
Cardona-Alzate CA, Ortiz-Sanchez M, Solarte-Toro JC. Design strategy of food residues biorefineries based on multifeedstocks analysis for increasing sustainability of value chains. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/25/2023]
|
8
|
Ruiz HA, Sganzerla WG, Larnaudie V, Veersma RJ, van Erven G, Ríos-González LJ, Rodríguez-Jasso RM, Rosero-Chasoy G, Ferrari MD, Kabel MA, Forster-Carneiro T, Lareo C. Advances in process design, techno-economic assessment and environmental aspects for hydrothermal pretreatment in the fractionation of biomass under biorefinery concept. BIORESOURCE TECHNOLOGY 2023; 369:128469. [PMID: 36509309 DOI: 10.1016/j.biortech.2022.128469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/30/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The development and sustainability of second-generation biorefineries are essential for the production of high added value compounds and biofuels and their application at the industrial level. Pretreatment is one of the most critical stages in biomass processing. In this specific case, hydrothermal pretreatments (liquid hot water [LHW] and steam explosion [SE]) are considered the most promising process for the fractionation, hydrolysis and structural modifications of biomass. This review focuses on architecture of the plant cell wall and composition, fundamentals of hydrothermal pretreatment, process design integration, the techno-economic parameters of the solubilization of lignocellulosic biomass (LCB) focused on the operational costs for large-scale process implementation and the global manufacturing cost. In addition, profitability indicators are evaluated between the value-added products generated during hydrothermal pretreatment, advocating a biorefinery implementation in a circular economy framework. In addition, this review includes an analysis of environmental aspects of sustainability involved in hydrothermal pretreatments.
Collapse
Affiliation(s)
- Héctor A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico.
| | | | - Valeria Larnaudie
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad de La República, J. Herrera y Reissig 565, CP 11300 Montevideo, Uruguay
| | - Romy J Veersma
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Gijs van Erven
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; Wageningen Food and Biobased Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Leopoldo J Ríos-González
- Department of Biotechnology, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Gilver Rosero-Chasoy
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Mario Daniel Ferrari
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad de La República, J. Herrera y Reissig 565, CP 11300 Montevideo, Uruguay
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Tânia Forster-Carneiro
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Claudia Lareo
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad de La República, J. Herrera y Reissig 565, CP 11300 Montevideo, Uruguay
| |
Collapse
|
9
|
Hydrothermal and Chemical Pretreatment Process for Bioethanol Production from Agricultural and Forest Lignocellulosic Wastes: Design and Modeling. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
|
10
|
A Detailed Process and Techno-Economic Analysis of Methanol Synthesis from H2 and CO2 with Intermediate Condensation Steps. Processes (Basel) 2022. [DOI: 10.3390/pr10081535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
In order to increase the typically low equilibrium CO2 conversion to methanol using commercially proven technology, the addition of two intermediate condensation units between reaction steps is evaluated in this work. Detailed process simulations with heat integration and techno-economic analyses of methanol synthesis from green H2 and captured CO2 are presented here, comparing the proposed process with condensation steps with the conventional approach. In the new process, a CO2 single-pass conversion of 53.9% was achieved, which is significantly higher than the conversion of the conventional process (28.5%) and its equilibrium conversion (30.4%). Consequently, the total recycle stream flow was halved, which reduced reactant losses in the purge stream and the compression work of the recycle streams, lowering operating costs by 4.8% (61.2 M€·a−1). In spite of the additional number of heat exchangers and flash drums related to the intermediate condensation units, the fixed investment costs of the improved process decreased by 22.7% (94.5 M€). This was a consequence of the increased reaction rates and lower recycle flows, reducing the required size of the main equipment. Therefore, intermediate condensation steps are beneficial for methanol synthesis from H2/CO2, significantly boosting CO2 single-pass conversion, which consequently reduces both the investment and operating costs.
Collapse
|
11
|
Zhou M, Tian X. Development of different pretreatments and related technologies for efficient biomass conversion of lignocellulose. Int J Biol Macromol 2022; 202:256-268. [PMID: 35032493 DOI: 10.1016/j.ijbiomac.2022.01.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 11/05/2022]
Abstract
Lignocellulose, a kind of biological resource widely existing in nature, which can be transformed into value-added biochemical products through saccharification, fermentation or chemical catalysis. Pretreatments are the necessary step to increase the accessibility and digestibility of lignocellulose. This paper comprehensively reviewed different pretreatment progress of lignocellulose in recent year, including mechanical/thermal, biological, inorganic solvent, organic solvent and unconventional physical-chemical pretreatments, focusing on quantifying the influence of pretreatments on subsequent biomass conversion. In addition, related pretreatment techniques such as genetic engineering, reactor configurations, downstream process and visualization technology of pretreatment were discussed. Finally, this review presented the challenge of lignocellulose pretreatment in the future.
Collapse
Affiliation(s)
- Min Zhou
- School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xingjun Tian
- School of Life Sciences, Nanjing University, Nanjing 210023, People's Republic of China.
| |
Collapse
|
12
|
Lee AC, Ibrahim MF, Abd‐Aziz S. Lignin‐Degrading Enzymes. BIOREFINERY OF OIL PRODUCING PLANTS FOR VALUE‐ADDED PRODUCTS 2022:179-198. [DOI: 10.1002/9783527830756.ch10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 09/01/2023]
|
13
|
Scapini T, Dos Santos MSN, Bonatto C, Wancura JHC, Mulinari J, Camargo AF, Klanovicz N, Zabot GL, Tres MV, Fongaro G, Treichel H. Hydrothermal pretreatment of lignocellulosic biomass for hemicellulose recovery. BIORESOURCE TECHNOLOGY 2021; 342:126033. [PMID: 34592451 DOI: 10.1016/j.biortech.2021.126033] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/22/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The hemicellulosic fraction recovery is of interest for integrated processes in biorefineries, considering the possibility of high economic value products produced from their structural compounds of this polysaccharide. However, to perform an efficient recovery, it is necessary to use biomass fractionation techniques, and hydrothermal pretreatment is highlighted as a valuable technique in the hemicellulose recovery by applying high temperatures and pressure, causing dissolution of the structure. Considering the possibility of this pretreatment technique for current approaches to hemicellulose recovery, this article aimed to explore the relevance of hydrothermal pretreatment techniques (sub and supercritical water) as a strategy for recovering the hemicellulosic fraction from lignocellulosic biomass. Discussions about potential products to be generated, current market profile, and perspectives and challenges of applying the technique are also addressed.
Collapse
Affiliation(s)
- Thamarys Scapini
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil; Department of Biological Science, Graduate Program in Biotechnology and Bioscience, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Maicon S N Dos Santos
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, Cachoeira do Sul, RS, Brazil
| | - Charline Bonatto
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil
| | | | - Jéssica Mulinari
- Laboratory of Membrane Processes, Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Aline F Camargo
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil; Department of Biological Science, Graduate Program in Biotechnology and Bioscience, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Natalia Klanovicz
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil; Research Group in Advanced Oxidation Processes (AdOx), Department of Chemical Engineering, Escola Politécnica, University of São Paulo, São Paulo, SP, Brazil
| | - Giovani L Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, Cachoeira do Sul, RS, Brazil
| | - Marcus V Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, Cachoeira do Sul, RS, Brazil
| | - Gislaine Fongaro
- Department of Biological Science, Graduate Program in Biotechnology and Bioscience, Federal University of Santa Catarina, Florianópolis, SC, Brazil; Laboratory of Applied Virology, Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocess (LAMIBI), Federal University of Fronteira Sul, Erechim, RS, Brazil; Department of Biological Science, Graduate Program in Biotechnology and Bioscience, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
14
|
Abdou Alio M, Marcati A, Pons A, Vial C. Modeling and simulation of a sawdust mixture-based integrated biorefinery plant producing bioethanol. BIORESOURCE TECHNOLOGY 2021; 325:124650. [PMID: 33453659 DOI: 10.1016/j.biortech.2020.124650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/11/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The design, modeling and simulation of an integrated biorefinery plant assumed to convert different forestry assortments such as sawdust or shavings (sawmill waste) into bioethanol from cellulose and hemicellulose as the main product, and lignin as the most valuable co-product, was carried out. The proposed lignocellulosic ethanol biorefinery plant was simulated with ProSimPlus. The model was based on experimental results and includes an Organosolv pretreatment, enzymatic hydrolysis, fermentation and distillation to obtain bioethanol. The investigated plant size processed 70,088 tons of biomass/year, with a production capacity of 11,650 tons ethanol/year. Ethanol productivity reached 351 L/ton of dry feedstock. Considering water consumption, approximately 4.8 L of water were needed to produce a liter of ethanol. Finally, the energy targeting through conventional pinch analysis lead to 16.4 MW and 16.07 MW of hot and cold utility energy demand for the entire process respectively with the cogeneration of electricity.
Collapse
Affiliation(s)
- Maarouf Abdou Alio
- Université Clermont Auvergne, CNRS, Sigma Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Alain Marcati
- Université Clermont Auvergne, CNRS, Sigma Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Agnès Pons
- Université Clermont Auvergne, CNRS, Sigma Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Christophe Vial
- Université Clermont Auvergne, CNRS, Sigma Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
15
|
Yousef S, Kuliešienė N, Sakalauskaitė S, Nenartavičius T, Daugelavičius R. Sustainable green strategy for recovery of glucose from end-of-life euro banknotes. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 123:23-32. [PMID: 33549877 DOI: 10.1016/j.wasman.2021.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/01/2020] [Revised: 06/18/2020] [Accepted: 01/07/2021] [Indexed: 05/22/2023]
Abstract
Usually, Euro banknotes are made from cotton substrates and their waste is disposed of in landfill or is incinerated. In order to valorize the end-of-life euro banknotes (ELEBs), the substrates were used in this research for cellulase production via submerged fungal fermentation (SFF), and the resultant fungal cellulase w s used in ELEBs hydrolysis process for extraction of glucose. The experiments were started by exposing the ELEBs to different types of pretreatments, including milling process, alkali (NaOH/urea solution), and acid leaching to remove any contamination (e.g. dyes) and to decrease the crystallinity of cellulose (the main element in cotton substrate) thus increasing the degradation rate during the fermentation process. The effect of pretreatments on the morphology and chemical composition of ELEBs was observed using Scanning Electron Microscope and Energy Dispersive Spectrometry. Afterwards, Trichoderma reesei-DSM76 was used for cellulase production from the treated ELEBs with high cellulase activity (12.97 FPU/g). The resultant cellulase was upscaled in a bioreactor and used in ELEBs hydrolysis. Finally, the results showed that the optimized pretreatment methods (milling followed by leaching process) significantly improved the cellulase activity and glucose recovery, which was estimated by 96%. According to the obtained results, the developed strategy has a great potential for conversion of ELEBs into a glucose product that could be used in biofuels and bioplastics applications.
Collapse
Affiliation(s)
- Samy Yousef
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, LT-51424 Kaunas, Lithuania; Department of Materials Science, South Ural State University, Lenin Prospect 76, 454080 Chelyabinsk, Russia.
| | - Neringa Kuliešienė
- Department of Biochemistry, Vytautas Magnus University, Kaunas, Lithuania
| | | | | | | |
Collapse
|
16
|
Keller R, Weyand J, Vennekoetter JB, Kamp J, Wessling M. An electro-Fenton process coupled with nanofiltration for enhanced conversion of cellobiose to glucose. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
|
17
|
Hydrothermal Carbonization as a Valuable Tool for Energy and Environmental Applications: A Review. ENERGIES 2020. [DOI: 10.3390/en13164098] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
Hydrothermal carbonization (HTC) represents an efficient and valuable pre-treatment technology to convert waste biomass into highly dense carbonaceous materials that could be used in a wide range of applications between energy, environment, soil improvement and nutrients recovery fields. HTC converts residual organic materials into a solid high energy dense material (hydrochar) and a liquid residue where the most volatile and oxygenated compounds (mainly furans and organic acids) concentrate during reaction. Pristine hydrochar is mainly used for direct combustion, to generate heat or electricity, but highly porous carbonaceous media for energy storage or for adsorption of pollutants applications can be also obtained through a further activation stage. HTC process can be used to enhance recovery of nutrients as nitrogen and phosphorous in particular and can be used as soil conditioner, to favor plant growth and mitigate desertification of soils. The present review proposes an outlook of the several possible applications of hydrochar produced from any sort of waste biomass sources. For each of the applications proposed, the main operative parameters that mostly affect the hydrochar properties and characteristics are highlighted, in order to match the needs for the specific application.
Collapse
|
18
|
Yang J, Xu H, Jiang J, Zhang N, Xie J, Zhao J, Bu Q, Wei M. Itaconic acid production from undetoxified enzymatic hydrolysate of bamboo residues using Aspergillus terreus. BIORESOURCE TECHNOLOGY 2020; 307:123208. [PMID: 32208342 DOI: 10.1016/j.biortech.2020.123208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/08/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 05/12/2023]
Abstract
Itaconic acid (IA) production by fermentation of undetoxified hydrolysate of bamboo residues by Aspergillus terreus was demonstrated. Monosaccharides were obtained by pretreatment and enzymatic hydrolysis of bamboo residues. A. terreus could not grow and synthesize IA in the hydrolysate. The buffer was confirmed to be an inhibitor, and was successfully replaced by deionized water as the suspension, to release equivalent sugar and eliminate the inhibition. Corn steep liquor significantly improved the adaptability of A. terreus to the hydrolysate at 2.0 g/L. The IA titer obtained (19.35 g/L IA) was the highest to be reported for IA production from lignocellulose without detoxification. Simultaneous saccharification and fermentation and fed-batch fermentation increased the titer to 22.43 g/L and 41.54 g/L, respectively. Meanwhile, economic assessment proved that bamboo residues were potential substrates for IA production with economic effectiveness.
Collapse
Affiliation(s)
- Jing Yang
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Hao Xu
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Ning Zhang
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jingcong Xie
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jian Zhao
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Quan Bu
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Min Wei
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| |
Collapse
|
19
|
Berchem T, Schmetz Q, Lepage T, Richel A. Single and Mixed Feedstocks Biorefining: Comparison of Primary Metabolites Recovery and Lignin Recombination During an Alkaline Process. Front Chem 2020; 8:479. [PMID: 32582644 PMCID: PMC7292014 DOI: 10.3389/fchem.2020.00479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/04/2019] [Accepted: 05/08/2020] [Indexed: 11/13/2022] Open
Abstract
Cannabis sp. and Euphorbia sp. are potential candidates as indoor culture for the extraction of their high value-added metabolites for pharmaceutical applications. Both residual lignocellulosic materials recovered after extraction are studied in the present article as single or mixed feedstocks for a closed-loop bioprocesses cascade. An alkaline process (NaOH 3%, 30 min 160°C) is performed to separate the studied biomasses into their main components: lignin and cellulose. Results highlight the advantages of the multi-feedstocks approach over the single biomass in term of lignin yield and purity. Since the structural characteristics of lignin affect the potential applications, a particular attention is drawn on the comprehension of lignin structure alteration and the possible interaction between them during single or mixed feedstocks treatment. FTIR and 2D-NMR spectra revealed similar profiles in term of chemical functions and structure rather than novel chemical bonds formation inexistent in the original biomasses. In addition, thermal properties and molecular mass distribution are conserved whether hemp or euphorbia are single treated or in combination. A second treatment was applied to investigate the effect of prolonged treatment on extracted lignins and the possible interactions. Aggregation, resulting in higher molecular mass, is observed whatever the feedstocks combination. However, mixing biomass does not affect chemical structures of the end product. Therefore, our paper suggests the possibility of gathering lignocellulosic residues during alkali process for lignin extraction and valorization, allowing to forecast lignin structure and make assumptions regarding potential valorization pathway.
Collapse
|
20
|
Techno-Economic Assessment of Whey Protein-Based Plastic Production from a Co-Polymerization Process. Polymers (Basel) 2020; 12:polym12040847. [PMID: 32272627 PMCID: PMC7240497 DOI: 10.3390/polym12040847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022] Open
Abstract
Bio-based plastics, produced from natural and renewable sources, have been found to be good replacers to petroleum-based plastics. However, economic analyses have not been carried out for most of them, specifically those from whey. In this study, a techno-economic assessment of the industrial-scale production of plastics from whey protein is carried out considering two different scenarios: (1) low-cost dairy waste whey (DWP) and (2) purchased whey protein concentrate (WPC), as feedstocks, using SuperPro Designer software. Key economic indicators such as operating cost, capital investment, annual revenue, payback time, and return-on-investment (ROI), were analyzed. Sensitivity analyses of different parameters were performed to account for market fluctuations and other uncertainties, using Scenario 2 as the base case. Results showed that both scenarios have the capacity of producing over 3200 metric tons/year (t/yr) (or 5.5 t/batch) of plastic. With the unit selling price of plastic set at $7,000/t, both the scenarios showed profitable outcomes with the plant's payback time of 3.7 and 2.4 years, and ROI of 27.1% and 42.2%, for Scenario 1 and Scenario 2, respectively. Sensitivity analyses showed that the unit plastic selling price was the most sensitive parameter, followed by the amount of feedstock WPC, and the number of batches.
Collapse
|
21
|
Ruiz HA, Conrad M, Sun SN, Sanchez A, Rocha GJM, Romaní A, Castro E, Torres A, Rodríguez-Jasso RM, Andrade LP, Smirnova I, Sun RC, Meyer AS. Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. BIORESOURCE TECHNOLOGY 2020; 299:122685. [PMID: 31918970 DOI: 10.1016/j.biortech.2019.122685] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/01/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Different pretreatments strategies have been developed over the years mainly to enhance enzymatic cellulose degradation. In the new biorefinery era, a more holistic view on pretreatment is required to secure optimal use of the whole biomass. Hydrothermal pretreatment technology is regarded as very promising for lignocellulose biomass fractionation biorefinery and to be implemented at the industrial scale for biorefineries of second generation and circular bioeconomy, since it does not require no chemical inputs other than liquid water or steam and heat. This review focuses on the fundamentals of hydrothermal pretreatment, structure changes of biomass during this pretreatment, multiproduct strategies in terms of biorefinery, reactor technology and engineering aspects from batch to continuous operation. The treatise includes a case study of hydrothermal biomass pretreatment at pilot plant scale and integrated process design.
Collapse
Affiliation(s)
- Héctor A Ruiz
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico.
| | - Marc Conrad
- Hamburg University of Technology (TUHH), Institute of Thermal Separation Processes, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Arturo Sanchez
- Laboratorio de Futuros en Bioenergía, Unidad Guadalajara de Ingeniería Avanzada, Centro de Investigación y Estudios Avanzados (CINVESTAV), Zapopan, Jalisco, Mexico
| | - George J M Rocha
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-100, Brazil
| | - Aloia Romaní
- CEB-Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Center for Advanced Studies in Energy and Environment (CEAEMA), University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Ana Torres
- Instituto de Ingeniería Química, Facultad de Ingeniería, Universidad de la República, Montevideo 11300, Uruguay
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Liliane P Andrade
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center of Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-100, Brazil; Postgraduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo 13084-970, Brazil
| | - Irina Smirnova
- Hamburg University of Technology (TUHH), Institute of Thermal Separation Processes, Eißendorfer Straße 38, 21073 Hamburg, Germany
| | - Run-Cang Sun
- Center for Lignocellulose Science and Engineering, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology, DTU Bioengineering, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
22
|
Cheng YS, Wu ZY, Sriariyanun M. Evaluation of Macaranga tanarius as a biomass feedstock for fermentable sugars production. BIORESOURCE TECHNOLOGY 2019; 294:122195. [PMID: 31610492 DOI: 10.1016/j.biortech.2019.122195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/09/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Macaranga tanarius is a fast-growing tree species that could be potentially utilized as a biomass feedstock for biorefinery. The average productivity of M. tanarius biomass was estimated to be ~19.2 ton/ha if the above-ground biomass is harvested bi-annually. Different pretreatment approaches were investigated to increase the enzymatic digestibility of foliage and woody biomass. The results indicated that no pretreatment was required for the foliage biomass while sequential acid/alkali pretreatment was necessary for the woody biomass before enzymatic hydrolysis. For the woody biomass, the delignification was 34.5% after sequential dilute acid/alkali pretreatment. The reducing sugar yields from enzymatic hydrolysis of foliage and pretreated woody biomass were 0.31 and 0.42 g/g dry biomass, respectively. The results also showed that both hydrolysates were fermentable by lactic acid bacteria. Overall, the results suggested that M. tanarius could be a potential feedstock for biorefinery based on the findings and processes derived from this study.
Collapse
Affiliation(s)
- Yu-Shen Cheng
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan.
| | - Zer-Yu Wu
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan
| | - Malinee Sriariyanun
- The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut's University of Technology North Bangkok, Bangsue, Bangkok 10800, Thailand
| |
Collapse
|
23
|
Zhan X, Cai C, Pang Y, Qin F, Lou H, Huang J, Qiu X. Effect of the isoelectric point of pH-responsive lignin-based amphoteric surfactant on the enzymatic hydrolysis of lignocellulose. BIORESOURCE TECHNOLOGY 2019; 283:112-119. [PMID: 30901583 DOI: 10.1016/j.biortech.2019.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/03/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 05/09/2023]
Abstract
The isoelectric point (pI) of lignin-based surfactant is an important factor in the enhancement on the enzymatic hydrolysis of lignocellulose. In this work, lignin carboxylate (LC) and quaternary ammonium lignin carboxylates (LCQ-x, x%: the mass ratio of quaternizing agent to enzymatic hydrolysis lignin) with different isoelectric points were synthesized. LC or LCQ-x with pI significantly lower or higher than 4.8 reduced the non-productive adsorption of cellulase on lignin, but for the significant inhibitory effect on cellulase activity, their enhancements on the enzymatic hydrolysis of lignocellulose were not remarkable. However, LCQ-x with pI around 4.8 preserved the cellulase activity, and significantly reduced the non-productive adsorption of cellulase, therefore remarkably enhanced the enzymatic hydrolysis. 2 g/L LC, LCQ-40 (pI = 5.0) and LCQ-100 (pI = 9.2) increased the enzymatic digestibility of pretreated eucalyptus from 35.2% to 53.4%, 95.3% and 60.4% respectively. In addition, for the excellent pH-response performance, LCQ could be efficiently recovered after enzymatic saccharification.
Collapse
Affiliation(s)
- Xuejuan Zhan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, China
| | - Cheng Cai
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, China
| | - Yuxia Pang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, China
| | - Feiyang Qin
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, China
| | - Hongming Lou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China.
| | - Jinhao Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, China
| | - Xueqing Qiu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering Research Center for Green Fine Chemicals, South China University of Technology, Guangzhou, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
24
|
Penín L, Santos V, Del Río JC, Parajó JC. Assesment on the chemical fractionation of Eucalyptus nitens wood: Characterization of the products derived from the structural components. BIORESOURCE TECHNOLOGY 2019; 281:269-276. [PMID: 30825830 DOI: 10.1016/j.biortech.2019.02.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/25/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Following an integrated approach, Eucalyptus nitens wood samples were subjected to consecutive stages of aqueous fractionation and organosolv delignification, in order to separate hemicelluloses (mainly converted into soluble products from the aqueous stage) from lignin (largely converted into soluble fragments in the organosolv stage) and from cellulose (accumulated in the solid phase from pulping). The compositions of selected reaction media were studied by selected spectrophotometric, spectrometric, chromatographic, and nuclear magnetic resonance methods; and the solid phases from treatments were studied by diffractometry and scanning electron microscopy. The experimental information from the above tasks provides a deep insight on the yields, properties and potential applications of the target fractions in the scope of biorefineries.
Collapse
Affiliation(s)
- Lucía Penín
- Chemical Engineering Department, University of Vigo (Campus Ourense), Polytechnical Building, As Lagoas, 32004 Ourense, Spain
| | - Valentín Santos
- Chemical Engineering Department, University of Vigo (Campus Ourense), Polytechnical Building, As Lagoas, 32004 Ourense, Spain
| | - José Carlos Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, PO Box 1052, E-41080 Seville, Spain
| | - Juan Carlos Parajó
- Chemical Engineering Department, University of Vigo (Campus Ourense), Polytechnical Building, As Lagoas, 32004 Ourense, Spain.
| |
Collapse
|
25
|
A Total Site Synthesis approach for the selection, integration and planning of multiple-feedstock biorefineries. Comput Chem Eng 2019. [DOI: 10.1016/j.compchemeng.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023]
|