1
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Robbins E, Wong B, Pwint MY, Salavatian S, Mahajan A, Cui XT. Improving Sensitivity and Longevity of In Vivo Glutamate Sensors with Electrodeposited NanoPt. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40570-40580. [PMID: 39078097 PMCID: PMC11310907 DOI: 10.1021/acsami.4c06692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
In vivo glutamate sensing has provided valuable insight into the physiology and pathology of the brain. Electrochemical glutamate biosensors, constructed by cross-linking glutamate oxidase onto an electrode and oxidizing H2O2 as a proxy for glutamate, are the gold standard for in vivo glutamate measurements for many applications. While glutamate sensors have been employed ubiquitously for acute measurements, there are almost no reports of long-term, chronic glutamate sensing in vivo, despite demonstrations of glutamate sensors lasting for weeks in vitro. To address this, we utilized a platinum electrode with nanometer-scale roughness (nanoPt) to improve the glutamate sensors' sensitivity and longevity. NanoPt improved the GLU sensitivity by 67.4% and the sensors were stable in vitro for 3 weeks. In vivo, nanoPt glutamate sensors had a measurable signal above a control electrode on the same array for 7 days. We demonstrate the utility of the nanoPt sensors by studying the effect of traumatic brain injury on glutamate in the rat striatum with a flexible electrode array and report measurements of glutamate taken during the injury itself. We also show the flexibility of the nanoPt platform to be applied to other oxidase enzyme-based biosensors by measuring γ-aminobutyric acid in the porcine spinal cord. NanoPt is a simple, effective way to build high sensitivity, robust biosensors harnessing enzymes to detect neurotransmitters in vivo.
Collapse
Affiliation(s)
- Elaine
M. Robbins
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Benjamin Wong
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - May Yoon Pwint
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Center
for Neural Basis of Cognition, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Siamak Salavatian
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Aman Mahajan
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department
of Anesthesiology & Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Xinyan Tracy Cui
- Department
of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Center
for Neural Basis of Cognition, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- McGowan
Institute for Regenerative Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15261, United
States
| |
Collapse
|
3
|
Glória J, Oliveira DS, Gandarilla AD, Barcelay YR, Mariúba LA, Nogueira PA, Brito WR, Moreira FTC. Liquid Redox Probe-Free Plastic Antibody Development for Malaria Biomarker Recognition. ACS OMEGA 2024; 9:33130-33139. [PMID: 39100316 PMCID: PMC11292623 DOI: 10.1021/acsomega.4c04543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024]
Abstract
Malaria is a major public health challenge worldwide and requires accurate and efficient diagnostic methods. Traditional diagnostic approaches based on antigen-antibody interactions are associated with ethical and economic concerns. Molecularly imprinted polymers (MIPs) offer a promising alternative by providing a complementary polymer structure capable of selectively binding target molecules. In this study, we developed a liquid, redox-probe-free, MIP-based electrochemical biosensor to detect the Plasmodium falciparum malaria marker histidine-rich protein (HRP2) at the point-of-care (PoC). The imprinting phase consists of the electropolymerization of the monomer methylene blue (MB) in the presence of the target protein HRP2 at the working electrode (WE) of the modified carbon screen printed electrode (C-SPE). Subsequent removal of the protein with proteinase K and oxalic acid yielded the MIP material. The sensor assembly was monitored by cyclic voltammetry (CV), Raman spectroscopy and scanning electron microscopy (SEM). The analytical performance of the biosensor was evaluated by square-wave voltammetry (SWV) using calibration curves in buffer and serum with a detection limit of 0.43 ± 0.026 pg mL-1. Selectivity studies showed minimal interference, indicating a highly selective assay. Overall, our approach to detect the HRP2 infection marker offers simplicity, cost-effectiveness and reliability. In particular, the absence of a redox solution simplifies detection, as the polymer itself is electroactive and exhibits oxidation and reduction peaks.
Collapse
Affiliation(s)
- Juliane
Corrêa Glória
- Programa
de Pós-graduação em Biotecnologia da Universidade
Federal do Amazonas - UFAM, Manaus, AM 69077-000, Brazil
- Instituto
Leônidas e Maria Deane (ILMD), Fundação
Oswaldo Cruz (FIOCRUZ), Manaus, AM 69057-070, Brazil
- Programa
de Pós-graduação em Biologia da Interação
Patógeno-Hospedeiro do Instituto Leônidas e Maria Deane
(ILMD), Fundação Oswaldo Cruz
(FIOCRUZ), Manaus, AM 69057-070, Brazil
| | - Daniela S. Oliveira
- CIETI-LabRISE, Instituto Superior de Engenharia do Porto (ISEP), Porto 4249-015, Portugal
| | - Ariamna Dip Gandarilla
- Departamento
de Química, Universidade Federal
do Amazonas, Manaus, AM 69077-000, Brasil
- LABEL
− Central Analítica, Universidade
Federal do Amazonas, Manaus, AM 69077-000, Brazil
| | - Yonny Romaguera Barcelay
- Departamento
de Química, Universidade Federal
do Amazonas, Manaus, AM 69077-000, Brasil
- CEMMPRE,
Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima − Pólo II, 3030-790 Coimbra, Portugal
| | - Luis André
Morais Mariúba
- Programa
de Pós-graduação em Biotecnologia da Universidade
Federal do Amazonas - UFAM, Manaus, AM 69077-000, Brazil
- Instituto
Leônidas e Maria Deane (ILMD), Fundação
Oswaldo Cruz (FIOCRUZ), Manaus, AM 69057-070, Brazil
- Programa
de Pós-graduação em Biologia da Interação
Patógeno-Hospedeiro do Instituto Leônidas e Maria Deane
(ILMD), Fundação Oswaldo Cruz
(FIOCRUZ), Manaus, AM 69057-070, Brazil
- Programa
de Pós-graduação em Imunologia Básica
e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM 69067-00, Brazil
| | - Paulo Afonso Nogueira
- Instituto
Leônidas e Maria Deane (ILMD), Fundação
Oswaldo Cruz (FIOCRUZ), Manaus, AM 69057-070, Brazil
- Programa
de Pós-graduação em Biologia da Interação
Patógeno-Hospedeiro do Instituto Leônidas e Maria Deane
(ILMD), Fundação Oswaldo Cruz
(FIOCRUZ), Manaus, AM 69057-070, Brazil
- Programa
de Pós-graduação em Imunologia Básica
e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM 69067-00, Brazil
| | - Walter Ricardo Brito
- Programa
de Pós-graduação em Biotecnologia da Universidade
Federal do Amazonas - UFAM, Manaus, AM 69077-000, Brazil
- Departamento
de Química, Universidade Federal
do Amazonas, Manaus, AM 69077-000, Brasil
- LABEL
− Central Analítica, Universidade
Federal do Amazonas, Manaus, AM 69077-000, Brazil
| | | |
Collapse
|
4
|
Kausaite-Minkstimiene A, Kaminskas A, Gayda G, Ramanaviciene A. Towards a Self-Powered Amperometric Glucose Biosensor Based on a Single-Enzyme Biofuel Cell. BIOSENSORS 2024; 14:138. [PMID: 38534245 DOI: 10.3390/bios14030138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
This paper describes the study of an amperometric glucose biosensor based on an enzymatic biofuel cell consisting of a bioanode and a biocathode modified with the same enzyme-glucose oxidase (GOx). A graphite rod electrode (GRE) was electrochemically modified with a layer of Prussian blue (PB) nanoparticles embedded in a poly(pyrrole-2-carboxylic acid) (PPCA) shell, and an additional layer of PPCA and was used as the cathode. A GRE modified with a nanocomposite composed of poly(1,10-phenanthroline-5,6-dione) (PPD) and gold nanoparticles (AuNPs) entrapped in a PPCA shell was used as an anode. Both electrodes were modified with GOx by covalently bonding the enzyme to the carboxyl groups of PPCA. The developed biosensor exhibited a wide linear range of 0.15-124.00 mM with an R2 of 0.9998 and a sensitivity of 0.16 μA/mM. The limit of detection (LOD) and quantification (LOQ) were found to be 0.07 and 0.23 mM, respectively. The biosensor demonstrated exceptional selectivity to glucose and operational stability throughout 35 days, as well as good reproducibility, repeatability, and anti-interference ability towards common interfering substances. The studies on human serum demonstrate the ability of the newly designed biosensor to determine glucose in complex real samples at clinically relevant concentrations.
Collapse
Affiliation(s)
- Asta Kausaite-Minkstimiene
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| | - Algimantas Kaminskas
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| | - Galina Gayda
- Department of Analytical Biotechnology, Institute of Cell Biology National Academy of Sciences of Ukraine (ICB NASU), Dragomanov St. 14/16, 79005 Lviv, Ukraine
| | - Almira Ramanaviciene
- NanoTechnas-Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
5
|
Sailapu SK, Liébana S, Merino-Jimenez I, Esquivel JP, Sabaté N. Towards a REASSURED reality: A less-is-more electronic design strategy for self-powered glucose test. Biosens Bioelectron 2024; 243:115708. [PMID: 37862757 DOI: 10.1016/j.bios.2023.115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023]
Abstract
Sensing strategies adopting minimal electronic systems help in realizing REASSURED diagnostic tests. However, the challenge in developing such strategies escalates with demand in power and electronics during pursuit of reliable and accurate sensing. Herein, we present an electronic design strategy using a smart strip, operating with power generated from 3.5 μL of serum sample, to reveal glucose concentration through a response preserved in a capacitor. Further, by integrating an NFC tag alongside the strip, we devised a self-powered glucose measuring card, mobile-glucocard (or mGlucocard) for retrieving this stored digital response using smartphone, enabling 'connected mobile-health diagnostics'. The response from our device relates linearly to glucose concentration offering a sensitivity of 11.3 mV/mM and good correlation (R = 0.974) with colorimetric reference method. Interestingly, the design strategy uses only four components - two resistors, diode, and capacitor - of simple architecture likely transferable to printed technologies to deliver advanced self-powered sustainable devices.
Collapse
Affiliation(s)
- Sunil Kumar Sailapu
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain.
| | - Susana Liébana
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Irene Merino-Jimenez
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Juan Pablo Esquivel
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain; BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Neus Sabaté
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ Del Til⋅lers, Campus UAB, Bellaterra, 08193, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), P.L. Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
6
|
Pereira RL, Oliveira D, Pêgo AP, Santos SD, Moreira FTC. Electrochemical miRNA-34a-based biosensor for the diagnosis of Alzheimer's disease. Bioelectrochemistry 2023; 154:108553. [PMID: 37672968 DOI: 10.1016/j.bioelechem.2023.108553] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Alzheimer's disease (AD) is the most common dementia type and a leading cause of death and disability in the elderly. Diagnosis is expensive and invasive, urging the development of new, affordable, and less invasive diagnostic tools. The identification of changes in the expression of non-coding RNAs prompts the development of diagnostic tools to detect disease-specific blood biomarkers. Building on this idea, this work reports a novel electrochemical microRNA (miRNA) biosensor for the diagnosis of AD, based on carbon screen-printed electrodes (C-SPEs) modified with two gold nanostructures and a complementary anti-miR-34a oligonucleotide probe. This biosensor showed good target affinity, reflected on a 100 pM to 1 μM linearity range and a limit of detection (LOD) of 39 pM in buffer and 94 aM in serum. Moreover, the biosensor's response was not affected by serum compounds, indicating selectivity for miR-34a. The biosensor also detected miR-34a in the cell culture medium of a common AD model, stimulated with a neurotoxin to increase miR-34a secretion. Overall, the proposed biosensor makes a solid case for the introduction of a novel, inexpensive, and minimally invasive tool for the early diagnosis of AD, based on the detection of a circulating miRNA overexpressed in this pathology.
Collapse
Affiliation(s)
- Raquel L Pereira
- CIETI-LabRISE, School of Engineering, Polytechnic Institute, 4249-015 Porto, Portugal; CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga/Guimarães, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Daniela Oliveira
- CIETI-LabRISE, School of Engineering, Polytechnic Institute, 4249-015 Porto, Portugal; CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Ana P Pêgo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sofia D Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Felismina T C Moreira
- CIETI-LabRISE, School of Engineering, Polytechnic Institute, 4249-015 Porto, Portugal; CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga/Guimarães, Portugal.
| |
Collapse
|
7
|
Zhang H, Li X, Zhou X, Gong P, Zhao Y. U-fiber-based biosensor for temperature-compensated acetylcholine-specific measurement. OPTICS LETTERS 2023; 48:2138-2141. [PMID: 37058661 DOI: 10.1364/ol.486504] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
This paper presents a U-fiber-based biosensor to achieve temperature-compensated acetylcholine-specific measurement. The surface plasmon resonance (SPR) and multimode interference (MMI) effects are simultaneously realized in a U-shaped fiber structure for the first time, to the best of our knowledge. The experimental results show refractive index (RI) sensitivities of 3042 and 2958 nm/RIU and temperature sensitivities of -0.47 and -0.40 nm/°C for the MMI and SPR, which are greatly improved compared with the traditional structure. Simultaneously, a sensitivity matrix for detecting two parameters is introduced to solve the problem of temperature interference of biosensors based on RI changes. Label-free detection of acetylcholine (ACh) was achieved by immobilizing acetylcholinesterase (AChE) on optical fibers. The experimental results show that the sensor can realize the specific detection of acetylcholine and has good stability and selectivity, and the detection limit of the sensor is 30 nM. The sensor has the advantages of simple structure, high sensitivity, convenient operation, direct insertion into small spaces, temperature compensation, etc., which provide an important supplement to traditional fiber-optic SPR biosensors.
Collapse
|
8
|
Chu SS, Nguyen HA, Lin D, Bhatti M, Jones-Tinsley CE, Do AH, Frostig RD, Nenadic Z, Xu X, Lim MM, Cao H. Development of highly sensitive, flexible dual L-glutamate and GABA microsensors for in vivo brain sensing. Biosens Bioelectron 2023; 222:114941. [PMID: 36455372 DOI: 10.1016/j.bios.2022.114941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Real-time tracking of neurotransmitter levels in vivo has been technically challenging due to the low spatiotemporal resolution of current methods. Since the imbalance of cortical excitation/inhibition (E:I) ratios are associated with a variety of neurological disorders, accurate monitoring of excitatory and inhibitory neurotransmitter levels is crucial for investigating the underlying neural mechanisms of these conditions. Specifically, levels of the excitatory neurotransmitter L-glutamate, and the inhibitory neurotransmitter GABA, are assumed to play critical roles in the E:I balance. Therefore, in this work, a flexible electrochemical microsensor is developed for real-time simultaneous detection of L-glutamate and GABA. The flexible polyimide substrate was used for easier handling during implantation and measurement, along with less brain damage. Further, by electrochemically depositing Pt-black nanostructures on the sensor's surface, the active surface area was enhanced for higher sensitivity. This dual neurotransmitter sensor probe was validated under various settings for its performance, including in vitro, ex vivo tests with glutamatergic neuronal cells and in vivo test with anesthetized rats. Additionally, the sensor's performance has been further investigated in terms of longevity and biocompatibility. Overall, our dual L-glutamate:GABA sensor microprobe has its unique features to enable accurate, real-time, and long-term monitoring of the E:I balance in vivo. Thus, this new tool should aid investigations of neural mechanisms of normal brain function and various neurological disorders.
Collapse
Affiliation(s)
- Sung Sik Chu
- Department of Biomedical Engineering, University of California Irvine, CA, 92697, USA
| | - Hung Anh Nguyen
- Department of Electrical Engineering and Computer Sciences, University of California Irvine, 92697, CA, USA
| | - Derrick Lin
- Department of Neurology, University of California Irvine, CA, 92697, USA
| | - Mehwish Bhatti
- Department of Neurobiology and Behavior, University of California, CA, 92697, USA
| | - Carolyn E Jones-Tinsley
- VA Portland Health Care System, Department of Neurology, Oregon Health and Science University, OR, 97239, USA
| | - An Hong Do
- Department of Neurology, University of California Irvine, CA, 92697, USA
| | - Ron D Frostig
- Department of Biomedical Engineering, University of California Irvine, CA, 92697, USA; Department of Neurobiology and Behavior, University of California, CA, 92697, USA
| | - Zoran Nenadic
- Department of Biomedical Engineering, University of California Irvine, CA, 92697, USA
| | - Xiangmin Xu
- Department of Biomedical Engineering, University of California Irvine, CA, 92697, USA; Department of Anatomy and Neurobiology, University of California Irvine, CA, 92697, USA; Center for Neural Circuit Mapping, University of California Irvine, CA, 92697, USA
| | - Miranda M Lim
- VA Portland Health Care System, Department of Neurology, Oregon Health and Science University, OR, 97239, USA
| | - Hung Cao
- Department of Biomedical Engineering, University of California Irvine, CA, 92697, USA; Department of Electrical Engineering and Computer Sciences, University of California Irvine, 92697, CA, USA; Center for Neural Circuit Mapping, University of California Irvine, CA, 92697, USA; Department of Computer Science, University of California Irvine, CA, 92697, USA.
| |
Collapse
|
9
|
Yang Y, Lv J, Bai H, Ren L, Yang J, Ding Y, Liu C, Chen X. Periodontal Status and Saliva Metabolic Signature in Patients with Alzheimer's Disease. J Alzheimers Dis 2023; 95:603-613. [PMID: 37424468 DOI: 10.3233/jad-230291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND Characterizing the periodontal status of patients with Alzheimer's disease (AD), investigating differences in salivary metabolism between patients with and without AD under the same periodontal conditions, and understanding how it is related to oral flora are critical. OBJECTIVE We aimed to examine the periodontal condition of patients with AD and to screen salivary metabolic biomarkers from the saliva of individuals with and without AD with matched periodontal conditions. Furthermore, we aimed to explore the possible relationship between salivary metabolic changes and oral flora. METHODS In total, 79 individuals were recruited into the experiment for periodontal analysis. Especially, 30 saliva samples from the AD group and 30 from healthy controls (HCs) with matched periodontal conditions were selected for metabolomic analysis. The random-forest algorithm was used to detect candidate biomarkers. Among these, 19 AD saliva and 19 HC samples were selected to investigate the microbiological factors influencing the alterations in saliva metabolism in patients with AD. RESULTS The plaque index and bleeding on probing were considerably higher in the AD group. Further, Cis-3-(1-carboxy-ethyl)-3,5-cyclohexadiene-1,2-diol, dodecanoic acid, genipic acid, and N, N-dimethylthanolamine N-oxide were determined as candidate biomarkers, based on the area under the curve (AUC) value (AUC = 0.95). The results of oral-flora sequencing showed that dysbacteriosis may be a reason for the differences in AD saliva metabolism. CONCLUSION Dysregulation of the proportion of specific bacterial flora in saliva plays a vital role in metabolic changes in AD. These results will contribute to further improving the AD saliva biomarker system.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiaxi Lv
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Huimin Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liang Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Naser A, Aydemir O. Classification of pleasant and unpleasant odor imagery EEG signals. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-08171-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Anyachor CP, Dooka DB, Orish CN, Amadi CN, Bocca B, Ruggieri F, Senofonte M, Frazzoli C, Orisakwe OE. Mechanistic considerations and biomarkers level in nickel-induced neurodegenerative diseases: An updated systematic review. IBRO Neurosci Rep 2022; 13:136-146. [PMID: 35989698 PMCID: PMC9382260 DOI: 10.1016/j.ibneur.2022.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/30/2022] [Indexed: 10/27/2022] Open
Abstract
The environment has been implicated to be a strong determinant of brain health with higher risk of neurodegeneration. The drastic rise in the prevalence of neurodegenerative diseases (NDDs) including Alzheimer's disease (AD), Parkinson's disease (PD), autism spectrum disorder (ASD), multiple sclerosis (MS) etc., supports the idea that environmental factors may play a major role in NDDs aetiology. Nickel is one of the listed environmental metals reported to pose a serious threat to human health. This paper reported available studies on nickel level in NDDs covering both animal and human studies. Different databases were searched for articles reporting the main neurotoxicity mechanisms and the concentration of nickel in fluids and tissues of NDDs patients compared to controls. Data were extracted and synthesized by ensuring the articles were related to nickel and NDDs. Various mechanisms were reported as oxidative stress, disturbances in mitochondrial membrane potential, trace elements homeostasis destabilization, etc. Nickel was found elevated in biological fluids as blood, serum/plasma and CSF and in the brain of NDDs, as a consequence of unintentional exposure thorough nickel-contaminated air, food, water, and skin contact. In addition, after exposure to nickel, the concentration of markers of lipid peroxidation were increased, while some antioxidant defence systems decreased. Thus, the reduction in the exposure to nickel contaminant may hold a promise in reducing the incidence of NDDs.
Collapse
Affiliation(s)
- Chidinma Promise Anyachor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| | - Donatus Baridoo Dooka
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| | - Chinna Nneka Orish
- Department of Anatomy, College of Health Sciences University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| | - Cecilia Nwadiuto Amadi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marta Senofonte
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Frazzoli
- Department for Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Istituto Superiore di Sanità, Rome Viale Regina Elena, 29900161 Roma, Italy
| | - Orish E. Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
- Department of Anatomy, College of Health Sciences University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria
| |
Collapse
|
12
|
Hatamie A, He X, Zhang XW, Oomen PE, Ewing AG. Advances in nano/microscale electrochemical sensors and biosensors for analysis of single vesicles, a key nanoscale organelle in cellular communication. Biosens Bioelectron 2022; 220:114899. [DOI: 10.1016/j.bios.2022.114899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
13
|
Sailapu SK, Menon C. Engineering Self-Powered Electrochemical Sensors Using Analyzed Liquid Sample as the Sole Energy Source. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203690. [PMID: 35981885 PMCID: PMC9561779 DOI: 10.1002/advs.202203690] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Many healthcare and environmental monitoring devices use electrochemical techniques to detect and quantify analytes. With sensors progressively becoming smaller-particularly in point-of-care (POC) devices and wearable platforms-it creates the opportunity to operate them using less energy than their predecessors. In fact, they may require so little power that can be extracted from the analyzed fluids themselves, for example, blood or sweat in case of physiological sensors and sources like river water in the case of environmental monitoring. Self-powered electrochemical sensors (SPES) can generate a response by utilizing the available chemical species in the analyzed liquid sample. Though SPESs generate relatively low power, capable devices can be engineered by combining suitable reactions, miniaturized cell designs, and effective sensing approaches for deciphering analyte information. This review details various such sensing and engineering approaches adopted in different categories of SPES systems that solely use the power available in liquid sample for their operation. Specifically, the categories discussed in this review cover enzyme-based systems, battery-based systems, and ion-selective electrode-based systems. The review details the benefits and drawbacks with these approaches, as well as prospects of and challenges to accomplishing them.
Collapse
Affiliation(s)
- Sunil Kumar Sailapu
- Biomedical and Mobile Health Technology (BMHT) labDepartment of Health Sciences and TechnologyETH ZürichZürich8008Switzerland
| | - Carlo Menon
- Biomedical and Mobile Health Technology (BMHT) labDepartment of Health Sciences and TechnologyETH ZürichZürich8008Switzerland
| |
Collapse
|
14
|
Ferreira NS, Carneiro LP, Viezzer C, Almeida MJ, Marques AC, Pinto AM, Fortunato E, Sales MGF. Passive direct methanol fuel cells acting as fully autonomous electrochemical biosensors: Application to sarcosine detection. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
15
|
A novel electroanalytical biosensor based on ZIF‐8/acetylcholinesterase bio‐nanohybrids for early management of Hirschsprung Disease. ELECTROANAL 2022. [DOI: 10.1002/elan.202200203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Musarraf Hussain M, Asiri AM, Hasnat MA, Ben Aoun S, Rahman MM. Detection of Acetylcholine in an Enzyme‐Free System Based on a GCE/V2O5 NRs/BPM Modified Sensor. ChemistrySelect 2022. [DOI: 10.1002/slct.202200079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mohammad Musarraf Hussain
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR) King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
- Department of Pharmacy, Faculty of Life and Earth Sciences Jagannath University Dhaka 1100 Bangladesh
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR) King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| | - Mohammad A. Hasnat
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences Shahjalal University of Science and Technology Sylhet 3100 Bangladesh
| | - Sami Ben Aoun
- Department of Chemistry, Faculty of Science Taibah University PO Box 30002 Al-Madinah Al-Munawarah Saudi Arabia
| | - Mohammed M. Rahman
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah 21589 P.O. Box 80203 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR) King Abdulaziz University Jeddah 21589, P.O. Box 80203 Saudi Arabia
| |
Collapse
|
17
|
Liu NC, Liang CC, Li YCE, Lee IC. A Real-Time Sensing System for Monitoring Neural Network Degeneration in an Alzheimer’s Disease-on-a-Chip Model. Pharmaceutics 2022; 14:pharmaceutics14051022. [PMID: 35631608 PMCID: PMC9148060 DOI: 10.3390/pharmaceutics14051022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
Stem cell-based in vitro models may provide potential therapeutic strategies and allow drug screening for neurodegenerative diseases, including Alzheimer’s disease (AD). Herein, we develop a neural stem cell (NSC) spheroid-based biochip that is characterized by a brain-like structure, well-defined neural differentiation, and neural network formation, representing a brain-on-a-chip. This system consisted of microelectrode arrays with a multichannel platform and allowed the real-time monitoring of network formation and degeneration by impedance analysis. The parameters of this platform for the real-time tracking of network development and organization were established based on our previous study. Subsequently, β-amyloid (Aβ) was added into the brain-on-a-chip system to generate an AD-on-a-chip model, and toxic effects on neurons and the degeneration of synapses were observed. The AD-on-a-chip model may help us to investigate the neurotoxicity of Aβ on neurons and neural networks in real time. Aβ causes neural damage and accumulates around neurites or inside neurospheroids, as observed by immunostaining and scanning electron microscopy (SEM). After incubation with Aβ, reactive oxygen species (ROS) increased, synapse function decreased, and the neurotransmitter-acetylcholine (ACh) concentration decreased were observed. Most importantly, the real-time analysis system monitored the impedance value variation in the system with Aβ incubation, providing consecutive network disconnection data that are consistent with biological data. This platform provides simple, real-time, and convenient sensing to monitor the network microenvironment. The proposed AD-on-a-chip model enhances the understanding of neurological pathology, and the development of this model provides an alternative for the study of drug discovery and cell–protein interactions in the brain.
Collapse
Affiliation(s)
- Nien-Che Liu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan; (N.-C.L.); (C.-C.L.)
| | - Chu-Chun Liang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan; (N.-C.L.); (C.-C.L.)
| | - Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, Taichung 407102, Taiwan;
| | - I-Chi Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan; (N.-C.L.); (C.-C.L.)
- Correspondence:
| |
Collapse
|
18
|
Potentiometric Biosensor Based on Artificial Antibodies for an Alzheimer Biomarker Detection. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper presents a potentiometric biosensor for the detection of amyloid β-42 (Aβ-42) in point-of-care analysis. This approach is based on the molecular imprint polymer (MIP) technique, which uses covalently immobilised Aβ-42 to create specific detection cavities on the surface of single-walled carbon nanotubes (SWCNTs). The biosensor was prepared by binding Aβ-42 to the SWCNT surface and then imprinting it by adding acrylamide (monomer), N,N’-methylene-bis-acrylamide (crosslinker) and ammonium persulphate (initiator). The target peptide was removed from the polymer matrix by the proteolytic action of an enzyme (proteinase K). The presence of imprinting sites was confirmed by comparing a MIP-modified surface with a negative control (NIP) consisting of a similar material where the target molecule had been removed from the process. The ability of the sensing material to rebind Aβ-42 was demonstrated by incorporating the MIP material as an electroactive compound in a PVC/plasticiser mixture applied to a solid conductive support of graphite. All steps of the synthesis of the imprinted materials were followed by Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR). The analytical performance was evaluated by potentiometric transduction, and the MIP material showed cationic slopes of 75 mV-decade−1 in buffer pH 8.0 and a detection limit of 0.72 μg/mL. Overall, potentiometric transduction confirmed that the sensor can discriminate Aβ-42 in the presence of other biomolecules in the same solution.
Collapse
|
19
|
Fahmy HM, Abu Serea ES, Salah-Eldin RE, Al-Hafiry SA, Ali MK, Shalan AE, Lanceros-Méndez S. Recent Progress in Graphene- and Related Carbon-Nanomaterial-based Electrochemical Biosensors for Early Disease Detection. ACS Biomater Sci Eng 2022; 8:964-1000. [PMID: 35229605 DOI: 10.1021/acsbiomaterials.1c00710] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Graphene- and carbon-based nanomaterials are key materials to develop advanced biosensors for the sensitive detection of many biomarkers owing to their unique properties. Biosensors have attracted increasing interest because they allow efficacious, sensitive, selective, rapid, and low-cost diagnosis. Biosensors are analytical devices based on receptors for the process of detection and transducers for response measuring. Biosensors can be based on electrochemical, piezoelectric, thermal, and optical transduction mechanisms. Early virus identification provides critical information about potentially effective and selective therapies, extends the therapeutic window, and thereby reduces morbidity. The sensitivity and selectivity of graphene can be amended via functionalizing it or conjoining it with further materials. Amendment of the optical and electrical features of the hybrid structure by introducing appropriate functional groups or counterparts is especially appealing for quick and easy-to-use virus detection. Various techniques for the electrochemical detection of viruses depending on antigen-antibody interactions or DNA hybridization are discussed in this work, and the reasons behind using graphene and related carbon nanomaterials for the fabrication are presented and discussed. We review the existing state-of-the-art directions of graphene-based classifications for detecting DNA, protein, and hormone biomarkers and summarize the use of the different biosensors to detect several diseases, like cancer, Alzheimer's disease, and diabetes, to sense numerous viruses, including SARS-CoV-2, human immunodeficiency virus, rotavirus, Zika virus, and hepatitis B virus, and to detect the recent pandemic virus COVID-19. The general concepts, mechanisms of action, benefits, and disadvantages of advanced virus biosensors are discussed to afford beneficial evidence of the creation and manufacture of innovative virus biosensors. We emphasize that graphene-based nanomaterials are ideal candidates for electrochemical biosensor engineering due to their special and tunable physicochemical properties.
Collapse
Affiliation(s)
- Heba Mohamed Fahmy
- Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Esraa Samy Abu Serea
- Chemistry and Biochemistry Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.,BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Reem Essam Salah-Eldin
- Chemistry and Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | | | - Miar Khaled Ali
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Ahmed Esmail Shalan
- BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain.,Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan, 11422 Cairo, Egypt
| | - Senentxu Lanceros-Méndez
- BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
20
|
Younus M, Mohtasheem-ul-Hasan M, Ijaz S, Kamran M, Maqsood A, Saddique B, Nisar U, Ashraf M, Mahmoud EA, El-Sabrout AM, Elansary HO. Investigation of Euphorbia nivulia-HAM for Enzyme Inhibition Potential in Relation to the Phenolic and Flavonoid Contents and Radical Scavenging Activity. Life (Basel) 2022; 12:life12020321. [PMID: 35207608 PMCID: PMC8875530 DOI: 10.3390/life12020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Euphorbia nivulia-Ham (EN) is a neglected medicinal plant traditionally used for a number of pathologies, but it has not been explored scientifically. In the current study, its various fractions were assessed for their phenolic and flavonoid content, radical scavenging, as well as its enzyme inhibitory potential. The hydro-alcoholic crude extract (ENCr) was subjected to a fractionation scheme to obtain different fractions, namely n-hexane (ENHF), chloroform (ENCF), n-butanol (ENBF), and aqueous fraction (ENAF). The obtained results revealed that the highest phenolic and flavonoid content, maximum radical scavenging potential (91 ± 0.55%), urease inhibition (54.36 ± 1.47%), and α-glucosidase inhibition (97.84 ± 1.87%) were exhibited by ENCr, while the ENBF fraction exhibited the highest acetylcholinestrase inhibition (57.32 ± 0.43%). Contrary to these, hydro-alcoholic crude as well as the other fractions showed no significant butyrylcholinestrases (BChE) and carbonic anhydrase inhibition activity. Conclusively, it was found that EN possesses a significant radical scavenging and enzyme inhibitory potential. Thus, the study may be regarded a step forward towards evidence-based phyto-medicine.
Collapse
Affiliation(s)
- Muhammad Younus
- Department of Pharmacognosy, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
- Department of Pharmacognosy, Faculty of Pharmacy, University of Karachi, Sindh 75270, Pakistan;
| | | | - Shakeel Ijaz
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, The University of Dublin, D02 PN40 Dublin, Ireland
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Correspondence: (S.I.); (M.K.); (H.O.E.)
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide 5005, Australia
- Correspondence: (S.I.); (M.K.); (H.O.E.)
| | - Ambreen Maqsood
- Faculty of Agriculture, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (A.M.); (B.S.)
| | - Bushra Saddique
- Faculty of Agriculture, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; (A.M.); (B.S.)
| | - Uzair Nisar
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi 75600, Pakistan;
| | - Muhammad Ashraf
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Eman A. Mahmoud
- Department of Food Industries, Faculty of Agriculture, Damietta University, Damietta 34511, Egypt;
| | - Ahmed M. El-Sabrout
- Department of Applied Entomology and Zoology, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria 21545, Egypt;
| | - Hosam O. Elansary
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: (S.I.); (M.K.); (H.O.E.)
| |
Collapse
|
21
|
Silva PCD, de Oliveira LLV, Teixeira RLP, Brito MLDA, Filippe ARTM. Executive Functions in Alzheimer’s Disease: A Systematic Review. J Alzheimers Dis Rep 2022. [DOI: 10.3233/adr-210059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: In Alzheimer’s disease, in addition to memory, attention has been given to cognitive testing due to its interface and connection with memory. Objective: The aim of this study is to take a global view of executive functions and place the concept within the theoretical framework of Alzheimer’s disease dementia, verifying their role in the cognitive functioning of the human mind, as well as how they are compromised in this pathology. Methods: An initial search was carried out in databases such as PubMed, ScienceDirect, and Web of Science. The guiding question presented at the end of the introduction was elaborated from the PICO/PIO/PEO strategy. The selected articles, therefore, answered the guiding question, were made available in full, and published in the period from 2000 to 2020. Studies without specific methodology and which correlated with other diseases or other types of dementia were excluded. To meet the objective, an integrative literature review was adopted. Results: The results indicate that, although the tests to verify the performance of cognitive functions have their limitations, they bring some evidence that they have been compromised, especially when analyzed periodically during the development of dementia. Conclusion: It is concluded that there is an interference of executive functions in function of Alzheimer’s and that memory and attention are the most evident in this type of dementia.
Collapse
Affiliation(s)
| | | | | | - Max Leandro de Araújo Brito
- Faculdade de Engenharia, Letras e Ciências Sociais do Seridó da Universidade Federal do Rio Grande do Norte, State of Rio Grande do Norte, Brazil
| | | |
Collapse
|
22
|
Carneiro LP, Pinto AM, Mendes A, Goreti F. Sales M. An all-in-one approach for self-powered sensing: A methanol fuel cell modified with a molecularly imprinted polymer for cancer biomarker detection. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Ukhurebor KE, Onyancha RB, Aigbe UO, UK-Eghonghon G, Kerry RG, Kusuma HS, Darmokoesoemo H, Osibote OA, Balogun VA. A Methodical Review on the Applications and Potentialities of Using Nanobiosensors for Disease Diagnosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1682502. [PMID: 35103234 PMCID: PMC8799955 DOI: 10.1155/2022/1682502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/23/2021] [Accepted: 01/08/2022] [Indexed: 12/11/2022]
Abstract
Presently, with the introduction of nanotechnology, the evolutions and applications of biosensors and/or nanobiosensors are becoming prevalent in various scientific domains such as environmental and agricultural sciences as well as biomedical, clinical, and healthcare sciences. Trends in these aspects have led to the discovery of various biosensors/nanobiosensors with their tremendous benefits to mankind. The characteristics of the various biosensors/nanobiosensors are primarily based on the nature of nanomaterials/nanoparticles employed in the sensing mechanisms. In the last few years, the identification, as well as the detection of biological markers linked with any form of diseases (communicable or noncommunicable), has been accomplished by several sensing procedures using nanotechnology vis-à-vis biosensors/nanobiosensors. Hence, this study employs a systematic approach in reviewing some contemporary developed exceedingly sensitive nanobiosensors alongside their biomedical, clinical, or/and healthcare applications as well as their potentialities, specifically for the detection of some deadly diseases drawn from some of the recent publications. Ways forward in the form of future trends that will advance creative innovations of the potentialities of nanobiosensors for biomedical, clinical, or/and healthcare applications particularly for disease diagnosis are also highlighted.
Collapse
Affiliation(s)
- Kingsley Eghonghon Ukhurebor
- Department of Physics, Faculty of Science, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| | - Robert Birundu Onyancha
- Department of Physics and Space Science, School of Physical Sciences and Technology, Technical University of Kenya, P.O. Box 52428, 00200 Nairobi, Kenya
| | - Uyiosa Osagie Aigbe
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Cape Town, South Africa
| | - Gladys UK-Eghonghon
- Nursing Services Department, University of Benin Teaching Hospital, P.M.B. 1111, Benin City, Nigeria
| | - Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran”, Yogyakarta, Indonesia
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia
| | - Otolorin Adelaja Osibote
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Cape Town, South Africa
| | - Vincent Aizebeoje Balogun
- Department of Mechanical Engineering, Faculty of Engineering, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| |
Collapse
|
24
|
Advances in the enzymatic biofuel cell powered sensing systems for tumor diagnosis and regulation. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Moussa S, Rosini E, Chitsaz D, Pollegioni L, Kennedy TE, Mauzeroll J. High-Throughput Strategy for Glycine Oxidase Biosensor Development Reveals Glycine Release from Cultured Cells. Anal Chem 2021; 93:16504-16511. [PMID: 34843206 DOI: 10.1021/acs.analchem.1c03620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycine is an important biomarker in clinical analysis due to its involvement in multiple physiological processes. As such, the need for low-cost analytical tools for glycine detection is growing. As a neurotransmitter, glycine is involved in inhibitory and excitatory neurochemical transmission in the central nervous system. In this work, we present a 10 μM Pt-based electrochemical enzymatic biosensor based on the flavoenzyme glycine oxidase (GO) for localized real-time measurements of glycine. Among GO variants at position 244, the H244K variant with increased glycine turnover was selected to develop a functional biosensor. This biosensor relies on amperometric readouts and does not require additional redox mediators. The biosensor was characterized and applied for glycine detection from cells, mainly HEK 293 cells and primary rat astrocytes. We have identified an enzyme, GO H244K, with increased glycine turnover using mutagenesis but which can be developed into a functional biosensor. Noteworthy, a glycine release of 395.7 ± 123 μM from primary astrocytes was measured, which is ∼fivefold higher than glycine release from HEK 293 cells (75.4 ± 3.91 μM) using the GO H244K biosensor.
Collapse
Affiliation(s)
- Siba Moussa
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Elena Rosini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi deII'Insubria, via J. H. Dunant 3, Varese 21100, Italy
| | - Daryan Chitsaz
- Integrated Program in Neuroscience, McGill University, 1033 Pine Ave. W., Montreal, Quebec H3A 1A1, Canada
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi deII'Insubria, via J. H. Dunant 3, Varese 21100, Italy
| | - Timothy E Kennedy
- McGill Program in Neuroengineering, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
26
|
Valkova P, Pohanka M. Novel Trends in Electrochemical Biosensors for Early Diagnosis of Alzheimer's Disease. Int J Anal Chem 2021; 2021:9984876. [PMID: 34512760 PMCID: PMC8429010 DOI: 10.1155/2021/9984876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a multifactorial progressive and irreversible neurodegenerative disorder affecting mainly the population over 65 years of age. It is becoming a global health and socioeconomic problem, and the current number of patients reaching 30-50 million people will be three times higher over the next thirty years. OBJECTIVE Late diagnosis caused by decades of the asymptomatic phase and invasive and cost-demanding diagnosis are problems that make the whole situation worse. Electrochemical biosensors could be the right tool for less invasive and inexpensive early diagnosis helping to reduce spend sources- both money and time. METHOD This review is a survey of the latest advances in the design of electrochemical biosensors for the early diagnosis of Alzheimer's disease. Biosensors are divided according to target biomarkers. CONCLUSION Standard laboratory methodology could be improved by analyzing a combination of currently estimated markers along with neurotransmitters and genetic markers from blood samples, which make the test for AD diagnosis available to the wide public.
Collapse
Affiliation(s)
- Pavla Valkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Science, University of Defense, Trebesska 1575, 50011 Hradec Kralove, Czech Republic
| | - Miroslav Pohanka
- Department of Molecular Pathology and Biology, Faculty of Military Health Science, University of Defense, Trebesska 1575, 50011 Hradec Kralove, Czech Republic
| |
Collapse
|
27
|
Talebi M, Esmaeeli H, Talebi M, Farkhondeh T, Samarghandian S. A Concise Overview of Biosensing Technologies for the Detection of Alzheimer's Disease Biomarkers. Curr Pharm Biotechnol 2021; 23:634-644. [PMID: 34250871 DOI: 10.2174/2666796702666210709122407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/30/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a brain-linked pathophysiological condition with neuronal degeneration, cognition dysfunctions, and other debilitations. Due to the growing prevalence of AD, there is a highly commended tendency to accelerate and develop analytical technologies for easy, cost-effective, and sensitive detection of AD biomarkers. In the last decade, remarkable advancements have been achieved on the gate to the progression of biosensors, predominantly optical and electrochemical, to detect AD biomarkers. Biosensors are commanding analytical devices that can conduct biological responses on transducers into measurable signals. These analytical devices can assist the case finding and management of AD. This review focuses on up-to-date developments, contests, and tendencies regarding AD biosensing principally, emphasizing the exclusive possessions of nanomaterials.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Hadi Esmaeeli
- Department of Research & Development, Niak Pharmaceutical Co., Gorgan. Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, United States
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand. Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur. Iran
| |
Collapse
|
28
|
Brain neurochemical monitoring. Biosens Bioelectron 2021; 189:113351. [PMID: 34049083 DOI: 10.1016/j.bios.2021.113351] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
Brain neurochemical monitoring aims to provide continuous and accurate measurements of brain biomarkers. It has enabled significant advances in neuroscience for application in clinical diagnostics, treatment, and prevention of brain diseases. Microfabricated electrochemical and optical spectroscopy sensing technologies have been developed for precise monitoring of brain neurochemicals. Here, a comprehensive review on the progress of sensing technologies developed for brain neurochemical monitoring is presented. The review provides a summary of the widely measured clinically relevant neurochemicals and commonly adopted recognition technologies. Recent advances in sampling, electrochemistry, and optical spectroscopy for brain neurochemical monitoring are highlighted and their application are discussed. Existing gaps in current technologies and future directions to design industry standard brain neurochemical sensing devices for clinical applications are addressed.
Collapse
|
29
|
George Kerry R, Ukhurebor KE, Kumari S, Maurya GK, Patra S, Panigrahi B, Majhi S, Rout JR, Rodriguez-Torres MDP, Das G, Shin HS, Patra JK. A comprehensive review on the applications of nano-biosensor-based approaches for non-communicable and communicable disease detection. Biomater Sci 2021; 9:3576-3602. [PMID: 34008586 DOI: 10.1039/d0bm02164d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The outstretched applications of biosensors in diverse domains has become the reason for their attraction for scientific communities. Because they are analytical devices, they can detect both quantitative and qualitative biological components through the generation of detectable signals. In the recent past, biosensors witnessed significant changes and developments in their design as well as features. Nanotechnology has revolutionized sensing phenomena by increasing biodiagnostic capacity in terms of specificity, size, and cost, resulting in exceptional sensitivity and flexibility. The steep increase of non-communicable diseases across the world has emerged as a matter of concern. In parallel, the abrupt outbreak of communicable diseases poses a serious threat to mankind. For decreasing the morbidity and mortality associated with various communicable and non-communicable diseases, early detection and subsequent treatment are indispensable. Detection of different biological markers generates quantifiable signals that can be electrochemical, mass-based, optical, thermal, or piezoelectric. Speculating on the incumbent applicability and versatility of nano-biosensors in large disciplines, this review highlights different types of biosensors along with their components and detection mechanisms. Moreover, it deals with the current advancements made in biosensors and the applications of nano-biosensors in detection of various non-communicable and communicable diseases, as well as future prospects of nano-biosensors for diagnostics.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Kingsley Eghonghon Ukhurebor
- Climatic/Environmental/Telecommunication Unit, Department of Physics, Edo University Iyamho, P.B.M. 04, Auchi, 312101, Edo State, Nigeria
| | - Swati Kumari
- Biopioneer Private limited, Bhubaneswar, Odisha 751024, India
| | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi-221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha 757003, India
| | - Bijayananda Panigrahi
- Biopioneer Private limited, Bhubaneswar, Odisha 751024, India and School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Sanatan Majhi
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | | | - María Del Pilar Rodriguez-Torres
- Departamento de Ingeniería Molecular de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd Juriquilla 3001, 76230, Querétaro, Mexico
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| |
Collapse
|
30
|
Madhurantakam S, Karnam JB, Brabazon D, Takai M, Ahad IU, Balaguru Rayappan JB, Krishnan UM. "Nano": An Emerging Avenue in Electrochemical Detection of Neurotransmitters. ACS Chem Neurosci 2020; 11:4024-4047. [PMID: 33285063 DOI: 10.1021/acschemneuro.0c00355] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The growing importance of nanomaterials toward the detection of neurotransmitter molecules has been chronicled in this review. Neurotransmitters (NTs) are chemicals that serve as messengers in synaptic transmission and are key players in brain functions. Abnormal levels of NTs are associated with numerous psychotic and neurodegenerative diseases. Therefore, their sensitive and robust detection is of great significance in clinical diagnostics. For more than three decades, electrochemical sensors have made a mark toward clinical detection of NTs. The superiority of these electrochemical sensors lies in their ability to enable sensitive, simple, rapid, and selective determination of analyte molecules while remaining relatively inexpensive. Additionally, these sensors are capable of being integrated in robust, portable, and miniaturized devices to establish point-of-care diagnostic platforms. Nanomaterials have emerged as promising materials with significant implications for electrochemical sensing due to their inherent capability to achieve high surface coverage, superior sensitivity, and rapid response in addition to simple device architecture and miniaturization. Considering the enormous significance of the levels of NTs in biological systems and the advances in sensing ushered in with the integration of nanotechnology in electrochemistry, the analysis of NTs by employing nanomaterials as interface materials in various matrices has emerged as an active area of research. This review explores the advancements made in the field of electrochemical sensors for the sensitive and selective determination of NTs which have been described in the past two decades with a distinctive focus on extremely innovative attributes introduced by nanotechnology.
Collapse
Affiliation(s)
- Sasya Madhurantakam
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata 951-8510, Japan
| | - Jayanth Babu Karnam
- School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, India
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, India
| | - Dermot Brabazon
- I-Form, Advanced Manufacturing Research Centre, Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland
| | - Madoka Takai
- Department of Bioengineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Inam Ul Ahad
- I-Form, Advanced Manufacturing Research Centre, Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland
| | | | - Uma Maheswari Krishnan
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, India
- School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613401, India
| |
Collapse
|
31
|
Musarraf Hussain M, Asiri AM, Rahman MM. Non-enzymatic simultaneous detection of acetylcholine and ascorbic acid using ZnO·CuO nanoleaves: Real sample analysis. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105534] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Poolakkandy RR, Menamparambath MM. Transition metal oxide based non‐enzymatic electrochemical sensors: An arising approach for the meticulous detection of neurotransmitter biomarkers. ELECTROCHEMICAL SCIENCE ADVANCES 2020. [DOI: 10.1002/elsa.202000024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
33
|
Sailapu SK, Kraikaew P, Sabaté N, Bakker E. Self-Powered Potentiometric Sensor Transduction to a Capacitive Electronic Component for Later Readout. ACS Sens 2020; 5:2909-2914. [PMID: 32881477 DOI: 10.1021/acssensors.0c01284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Potentiometric sensors operate as galvanic cells where the voltage is spontaneously generated as a function of the sample composition. We show here that energy can be harvested, stored during the sensing process without external power, and physically isolated from the sensor circuit for later readout. This is accomplished by placing an electronic capacitor as a portable transduction component between the indicator and the reference electrode at the point where one would ordinarily connect the high-input-impedance voltmeter. The voltage across this isolated capacitor indicates the originally measured ion activity and can be read out conveniently, for example, using a simple handheld multimeter. The capacitor is shown to maintain the transferred charge for hours after its complete disconnection from the sensor. The concept is demonstrated to detect the physiological concentrations of K+ in artificial sweat samples. The methodology provides a readout principle that could become very useful in portable form factors and opens possibilities for potentiometric detection in point-of-care applications and inexpensive sensing devices where an external power source is not desired.
Collapse
Affiliation(s)
- Sunil Kumar Sailapu
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ del Til·lers, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Pitchnaree Kraikaew
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | - Neus Sabaté
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), C/ del Til·lers, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), P.L. Companys 23, 08010 Barcelona, Spain
| | - Eric Bakker
- Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| |
Collapse
|
34
|
da Silva W, Brett CM. Novel biosensor for acetylcholine based on acetylcholinesterase/poly(neutral red) – Deep eutectic solvent/Fe2O3 nanoparticle modified electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
|
36
|
Jamerlan A, An SSA, Hulme J. Advances in amyloid beta oligomer detection applications in Alzheimer's disease. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Wang XZ, Du J, Xiao NN, Zhang Y, Fei L, LaCoste JD, Huang Z, Wang Q, Wang XR, Ding B. Driving force to detect Alzheimer's disease biomarkers: application of a thioflavine T@Er-MOF ratiometric fluorescent sensor for smart detection of presenilin 1, amyloid β-protein and acetylcholine. Analyst 2020; 145:4646-4663. [PMID: 32458857 DOI: 10.1039/d0an00440e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Currently, the highly sensitive detection of Alzheimer's Disease (AD) biomarkers, namely presenilin 1, amyloid β-protein (Aβ), and acetylcholine (ACh), is vital to helping us prevent and diagnose AD. In this work, a novel metal-organic framework [Er(L)(DMF)1.27]n (Er-MOF) (H3L = terphenyl-3,4'',5-tricarboxylic acid) has been synthesized by solvothermal and ultrasonic methods. Further, through the post-synthesis assembly strategy, the fluorescent dye thioflavine T (ThT) has been introduced into Er-MOF to construct a dual-emission ThT@Er-MOF ratiometric fluorescent sensor. This is the first time that ThT@Er-MOF has been successfully applied in the highly sensitive detection of three main Alzheimer's disease biomarkers in the cerebrospinal fluid through three different low cost and facile detection strategies. Firstly, with the spilted DNA strategy, this is the first time that ThT@Er-MOF can be applied in the label-free detection of SSODN (part of the presenilin 1 gene). Secondly, for the detection of Aβ, because ThT can be specifically combined with Aβ and has an excellent characteristic fluorescence band, the dual-emission ThT@Er-MOF sensor can be selectively applied to detect Aβ over the analog protein, which shows far more sensitivity than other Aβ sensors. Thirdly, through the acetylcholine esterase (AchE) enzymatic cleavage and release strategy, ThT@Er-MOF enhances the detection of acetylcholine (ACh) with a low limit of detection (LOD) value (0.03226 nM). It should be noticed that the three different detection methods are low cost and facile. This study also provides the first example of utilizing laser scanning confocal microscopy (LSCM) to investigate the fluorescence resonance energy transfer (FRET) detection mechanism by ThT@Er-MOF in more detail. The location of FRET occurrence and FRET efficiency can also be investigated by LSCM, which can be helpful to understand the FRET detection process by these unique MOF-based hybrid materials.
Collapse
Affiliation(s)
- Xing Ze Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cunha S, Costa CP, Loureiro JA, Alves J, Peixoto AF, Forbes B, Sousa Lobo JM, Silva AC. Double Optimization of Rivastigmine-Loaded Nanostructured Lipid Carriers (NLC) for Nose-to-Brain Delivery Using the Quality by Design (QbD) Approach: Formulation Variables and Instrumental Parameters. Pharmaceutics 2020; 12:E599. [PMID: 32605177 PMCID: PMC7407548 DOI: 10.3390/pharmaceutics12070599] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 01/02/2023] Open
Abstract
Rivastigmine is a drug commonly used in the management of Alzheimer's disease that shows bioavailability problems. To overcome this, the use of nanosystems, such as nanostructured lipid carriers (NLC), administered through alternative routes seems promising. In this work, we performed a double optimization of a rivastigmine-loaded NLC formulation for direct drug delivery from the nose to the brain using the quality by design (QbD) approach, whereby the quality target product profile (QTPP) was the requisite for nose to brain delivery. The experiments started with the optimization of the formulation variables (or critical material attributes-CMAs) using a central composite design. The rivastigmine-loaded NLC formulations with the best critical quality attributes (CQAs) of particle size, polydispersity index (PDI), zeta potential (ZP), and encapsulation efficiency (EE) were selected for the second optimization, which was related to the production methods (ultrasound technique and high-pressure homogenization). The most suitable instrumental parameters for the production of NLC were analyzed through a Box-Behnken design, with the same CQAs being evaluated for the first optimization. For the second part of the optimization studies, were selected two rivastigmine-loaded NLC formulations: one produced by ultrasound technique and the other by the high-pressure homogenization (HPH) method. Afterwards, the pH and osmolarity of these formulations were adjusted to the physiological nasal mucosa values and in vitro drug release studies were performed. The results of the first part of the optimization showed that the most adequate ratios of lipids and surfactants were 7.49:1.94 and 4.5:0.5 (%, w/w), respectively. From the second part of the optimization, the results for the particle size, PDI, ZP, and EE of the rivastigmine-loaded NLC formulations produced by ultrasound technique and HPH method were, respectively, 114.0 ± 1.9 nm and 109.0 ± 0.9 nm; 0.221 ± 0.003 and 0.196 ± 0.007; -30.6 ± 0.3 mV and -30.5 ± 0.3 mV; 97.0 ± 0.5% and 97.2 ± 0.3%. Herein, the HPH was selected as the most suitable production method, although the ultrasound technique has also shown effectiveness. In addition, no significant changes in CQAs were observed after 90 days of storage of the formulations at different temperatures. In vitro studies showed that the release of rivastigmine followed a non-Fickian mechanism, with an initial fast drug release followed by a prolonged release over 48 h. This study has optimized a rivastigmine-loaded NLC formulation produced by the HPH method for nose-to-brain delivery of rivastigmine. The next step is for in vitro and in vivo experiments to demonstrate preclinical efficacy and safety. QbD was demonstrated to be a useful approach for the optimization of NLC formulations for which specific physicochemical requisites can be identified.
Collapse
Affiliation(s)
- Sara Cunha
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.); (C.P.C.); (J.M.S.L.)
| | - Cláudia Pina Costa
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.); (C.P.C.); (J.M.S.L.)
| | - Joana A. Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal;
| | | | - Andreia F. Peixoto
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Ben Forbes
- Institute of Pharmaceutical Science, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9NH, UK;
| | - José Manuel Sousa Lobo
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.); (C.P.C.); (J.M.S.L.)
| | - Ana Catarina Silva
- UCIBIO/REQUIMTE, MEDTECH Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.C.); (C.P.C.); (J.M.S.L.)
- UFP Energy, Environment and Health Research Unit (FP ENAS), Fernando Pessoa University, 4249-004 Porto, Portugal
| |
Collapse
|
39
|
Brazaca LC, Sampaio I, Zucolotto V, Janegitz BC. Applications of biosensors in Alzheimer's disease diagnosis. Talanta 2020; 210:120644. [DOI: 10.1016/j.talanta.2019.120644] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 01/01/2023]
|
40
|
Tvorynska S, Barek J, Josypčuk B. Acetylcholinesterase-choline oxidase-based mini-reactors coupled with silver solid amalgam electrode for amperometric detection of acetylcholine in flow injection analysis. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Liu Y, Tong S, Ding L, Liu N, Gao D. Serum levels of glial cell line-derived neurotrophic factor and multiple neurotransmitters: In relation to cognitive performance in Parkinson's disease with mild cognitive impairment. Int J Geriatr Psychiatry 2020; 35:153-162. [PMID: 31650626 DOI: 10.1002/gps.5222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/24/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Mild cognitive impairment is a common non-motor feature of Parkinson's disease, termed PD-MCI. But there is a scarcity of data on the role of glial cell line-derived neurotrophic factor (GDNF) and neurotransmitters in pathogenesis of PD-MCI. The aim of this project was to detect the serum levels of GDNF and multiple neurotranmitters and explore their relationships with cognitive performance in PD-MCI patients. METHODS Neuropsychological testing was administered to PD patients and healthy controls to investigate different domains of cognitive function. Serum levels of GDNF and four cognition-related neurotransmitters including Dopamine metabolites Homovanillic acid (HVA), acetylcholine (Ach), γ-aminobutyric acid (GABA) and 5-hydroxytryptamine (5-HT) were detected by enzyme-linked immunosorbent assay and liquid chromatography-electrospray ionization tandem mass spectrometry analysis respectively. RESULTS The more serious cognitive impairment of PD, the lower levels of GDNF, HVA and 5-HT. In PD-MCI patients, the levels of GDNF, HVA, Ach, 5-HT, and GABA had a significant positive correlation with Digit span backward test (DSB-T) scores and negative correlation with the scores of Trail Making Test A (TMT-A) and Trail Making Test B (TMT-B) respectively. Effect size analysis showed that GDNF and GDNF*Ach have a significant effect on DSB-T, TMT-A and TMT-B respectively; GDNF*HVA, GDNF*5-HT and GDNF*GABA play important part in Auditory Verbal Learning Test separately. CONCLUSIONS Serum GDNF may be involved in the impairment of attention, memory and executive function of PD-MCI patients, by acting alone or in conjunction with neurotransmitters (HVA, 5-HT, GABA, and Ach).
Collapse
Affiliation(s)
- Yi Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University. 209 Tongshan Road, Xuzhou, PR China
| | - Shuyan Tong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University. 209 Tongshan Road, Xuzhou, PR China
| | - Li Ding
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University. 209 Tongshan Road, Xuzhou, PR China
| | - Na Liu
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University. 209 Tongshan Road, Xuzhou, PR China
| | - Dianshuai Gao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University. 209 Tongshan Road, Xuzhou, PR China
| |
Collapse
|
42
|
Matys J, Gieroba B, Jóźwiak K. Recent developments of bioanalytical methods in determination of neurotransmitters in vivo. J Pharm Biomed Anal 2020; 180:113079. [DOI: 10.1016/j.jpba.2019.113079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022]
|
43
|
Komkova MA, Karyakin AA, Andreev EA. Power output of Prussian Blue based (bio)sensors as a function of analyte concentration: Towards wake-up signaling systems. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Shin M, Wang Y, Borgus JR, Venton BJ. Electrochemistry at the Synapse. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:297-321. [PMID: 30707593 PMCID: PMC6989097 DOI: 10.1146/annurev-anchem-061318-115434] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Electrochemical measurements of neurotransmitters provide insight into the dynamics of neurotransmission. In this review, we describe the development of electrochemical measurements of neurotransmitters and how they started with extrasynaptic measurements but now are pushing toward synaptic measurements. Traditionally, biosensors or fast-scan cyclic voltammetry have monitored extrasynaptic levels of neurotransmitters, such as dopamine, serotonin, adenosine, glutamate, and acetylcholine. Amperometry and electrochemical cytometry techniques have revealed mechanisms of exocytosis, suggesting partial release. Advances in nanoelectrodes now allow spatially resolved, electrochemical measurements in a synapse, which is only 20-100 nm wide. Synaptic measurements of dopamine and acetylcholine have been made. In this article, electrochemical measurements are also compared to optical imaging and mass spectrometry measurements, and while these other techniques provide enhanced spatial or chemical information, electrochemistry is best at monitoring real-time neurotransmission. Future challenges include combining electrochemistry with these other techniques in order to facilitate multisite and multianalyte monitoring.
Collapse
Affiliation(s)
| | | | - Jason R Borgus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA;
| | - B Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA;
| |
Collapse
|
45
|
Tavakolian-Ardakani Z, Hosu O, Cristea C, Mazloum-Ardakani M, Marrazza G. Latest Trends in Electrochemical Sensors for Neurotransmitters: A Review. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2037. [PMID: 31052309 PMCID: PMC6539656 DOI: 10.3390/s19092037] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/07/2019] [Accepted: 04/25/2019] [Indexed: 01/19/2023]
Abstract
Neurotransmitters are endogenous chemical messengers which play an important role in many of the brain functions, abnormal levels being correlated with physical, psychotic and neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's disease. Therefore, their sensitive and robust detection is of great clinical significance. Electrochemical methods have been intensively used in the last decades for neurotransmitter detection, outclassing more complicated analytical techniques such as conventional spectrophotometry, chromatography, fluorescence, flow injection, and capillary electrophoresis. In this manuscript, the most successful and promising electrochemical enzyme-free and enzymatic sensors for neurotransmitter detection are reviewed. Focusing on the activity of worldwide researchers mainly during the last ten years (2010-2019), without pretending to be exhaustive, we present an overview of the progress made in sensing strategies during this time. Particular emphasis is placed on nanostructured-based sensors, which show a substantial improvement of the analytical performances. This review also examines the progress made in biosensors for neurotransmitter measurements in vitro, in vivo and ex vivo.
Collapse
Affiliation(s)
- Zahra Tavakolian-Ardakani
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
- Department of Chemistry, Faculty of Science, Yazd University, Yazd 89195-741, Iran.
| | - Oana Hosu
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
- Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400349 Pasteur 4 Cluj-Napoca, Romania.
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400349 Pasteur 4 Cluj-Napoca, Romania.
| | | | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Fi), Italy.
- Instituto Nazionale Biostrutture e Biosistemi (INBB), Unit of Florence, Viale delle Medaglie d'Oro 305, 00136 Roma, Italy.
| |
Collapse
|
46
|
Kim MS, Cho S, Joo SH, Lee J, Kwak SK, Kim MI, Lee J. N- and B-Codoped Graphene: A Strong Candidate To Replace Natural Peroxidase in Sensitive and Selective Bioassays. ACS NANO 2019; 13:4312-4321. [PMID: 30908007 DOI: 10.1021/acsnano.8b09519] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The work describes a carbon-based peroxidase mimic, N- and B-codoped reduced graphene oxide (NB-rGO), which shows high peroxidase-like activity without oxidase-like activity and has a catalytic efficiency nearly 1000-fold higher than that of undoped rGO. The high catalytic activity of NB-rGO is explained by density functional theory by calculating Gibbs free energy change during the peroxide decomposition reaction. Acetylcholine and C-reactive protein are successfully quantified with high sensitivity and selectivity, which were comparable to or better than those obtained using natural peroxidase. Furthermore, NB-rGO, which does not have oxidase-like activity, is proven to have higher sensitivity toward acetylcholine than Pt nanoparticles having oxidase-like activity. This work will facilitate studies on development, theoretical analysis for rational design, and bioassay applications of enzyme mimics based on nanomaterials.
Collapse
Affiliation(s)
- Min Su Kim
- Department of Chemical Engineering , Pohang University of Science and Technology (POSTECH) , Pohang , Gyeongbuk 37673 , Republic of Korea
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Seongyeon Cho
- Department of BioNano Technology , Gachon University , Seongnam , Gyeonggi 13120 , Republic of Korea
| | - Se Hun Joo
- Department of Energy Engineering, School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Junsang Lee
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Sang Kyu Kwak
- Department of Energy Engineering, School of Energy and Chemical Engineering , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Moon Il Kim
- Department of BioNano Technology , Gachon University , Seongnam , Gyeonggi 13120 , Republic of Korea
| | - Jinwoo Lee
- Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| |
Collapse
|
47
|
Huang XW, Xu Y, Sui X, Lin H, Xu JM, Han D, Ye DD, Lv GF, Liu YX, Qu XB, Duan MH. Scutellarein suppresses Aβ-induced memory impairment via inhibition of the NF-κB pathway in vivo and in vitro. Oncol Lett 2019; 17:5581-5589. [PMID: 31186780 PMCID: PMC6507344 DOI: 10.3892/ol.2019.10274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 02/22/2019] [Indexed: 12/26/2022] Open
Abstract
The flavonoid compound scutellarin (Scu) is a traditional Chinese medicine used to treat a variety of diseases; however, the use of scutellarein (Scue), the hydrolysate of Scu, and its mechanisms of action in Alzheimer's disease (AD) have not been fully elucidated. In the present study, the effects of Scue on amyloid β (Aβ)-induced AD-like pathology were investigated. An in vitro model of inflammation and an aged rat model were used to confirm the effects of Scue. In vitro MTT assays and flow cytometry were used to assess the effects of Scue on cell viability and apoptosis, respectively. A Morris water maze was used to evaluate spatial learning and memory, and the levels of Aβ deposition, superoxide dismutase, malondialdehyde, apoptosis, neuro-inflammatory factors and nuclear factor-κB (NF-κB) activation in hippocampal tissues in vivo were measured to determine the effect of Scue in AD. Scue may be protective, as it decreased the apoptosis of hippocampal cells in vitro, inhibited Aβ-induced cognitive impairment, suppressed hippocampal neuro-inflammation and suppressed activation of NF-κB in vivo. Therefore, Scue may be a useful agent for the treatment of Aβ-associated pathology in the central nervous system through inhibition of the protein kinase B/NF-κB signaling pathway and thus, future studies are required to investigate the efficacy of Scue in patients with AD.
Collapse
Affiliation(s)
- Xiao-Wei Huang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Yan Xu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Xin Sui
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - He Lin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Jia-Ming Xu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Dong Han
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Dou-Dan Ye
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Guang-Fu Lv
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Yue-Xin Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Xiao-Bo Qu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| | - Ming-Hua Duan
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, Jilin 130107, P.R. China
| |
Collapse
|
48
|
Artigues M, Oh S, Gilabert-Porres J, Abellà J, Borrós S, Colominas S. Novel grafted electrochemical interface for covalent glucose oxidase immobilization using reactive pentafluorophenyl methacrylate. Colloids Surf B Biointerfaces 2019; 175:1-9. [PMID: 30508760 DOI: 10.1016/j.colsurfb.2018.11.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/24/2018] [Accepted: 11/27/2018] [Indexed: 11/19/2022]
Abstract
One of the most important factors for the proper functioning of enzymatic electrochemical biosensors is the enzyme immobilization strategy. In this work, glucose oxidase was covalently immobilized using pentafluorophenyl methacrylate (PFM) by applying two different surface modification techniques (plasma polymerization and plasma-grafting). The grafted surface was specifically designed to covalently anchor enzyme molecules. It was observed using QCM-D measurements the PFM plasma-grafted surfaces were able to retain a higher number of active enzyme molecules than the PFM polymerized surfaces. An amperometric glucose biosensor using titanium dioxide nanotubes array (TiO2NTAs) modified by PFM plasma-grafted surface was prepared. The resulting biosensor exhibited a fast response and short analysis time (approximately eight minutes per sample). Moreover, this biosensor achieved high sensitivity (9.76 μA mM-1) with a linear range from 0.25 to 1.49 mM and a limit of detection (LOD) equal to 0.10 mM of glucose. In addition, the glucose content of 16 different food samples was successfully measured using the developed biosensor. The obtained results were compared with the respective HPLC value and a deviation smaller than 10% was obtained in all the cases. Therefore, the biosensor was able to overcome all possible interferences in the selected samples/matrices.
Collapse
Affiliation(s)
- Margalida Artigues
- Electrochemical Methods Laboratory - Analytical and Applied Chemistry Department at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017, Barcelona, Spain
| | - Sejin Oh
- Grup d'Enginyeria de Materials (GEMAT) at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017, Barcelona, Spain
| | - Joan Gilabert-Porres
- Grup d'Enginyeria de Materials (GEMAT) at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017, Barcelona, Spain
| | - Jordi Abellà
- Electrochemical Methods Laboratory - Analytical and Applied Chemistry Department at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017, Barcelona, Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (GEMAT) at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017, Barcelona, Spain; CIBER-BBN, Networking Center on Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain
| | - Sergi Colominas
- Electrochemical Methods Laboratory - Analytical and Applied Chemistry Department at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017, Barcelona, Spain.
| |
Collapse
|
49
|
Kwon OS, Song HS, Park TH, Jang J. Conducting Nanomaterial Sensor Using Natural Receptors. Chem Rev 2018; 119:36-93. [DOI: 10.1021/acs.chemrev.8b00159] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oh Seok Kwon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Nanobiotechnology and Bioinformatics (Major), University of Science & Technology (UST), Daejon 34141, Republic of Korea
| | - Hyun Seok Song
- Sensor System Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jyongsik Jang
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
50
|
Fu L, Liu J, Hu Z, Zhou M. Recent Advances in the Construction of Biofuel Cells Based Self-powered Electrochemical Biosensors: A Review. ELECTROANAL 2018. [DOI: 10.1002/elan.201800487] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liangying Fu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education; National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University; Changchun, Jilin Province 130024 P.R. China
| | - Jingju Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education; National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University; Changchun, Jilin Province 130024 P.R. China
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine; Beijing 100850 P.R. China
| | - Ming Zhou
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education; National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University; Changchun, Jilin Province 130024 P.R. China
| |
Collapse
|