1
|
Yu S, You J, Shi X, Zou X, Lu Z, Wang Y, Tan J, Sun Z, Li Z, Ji Z, Song C. Rapid Analysis of Estrogens in Meat Samples by High Performance Liquid Chromatography with Fluorescence Detection. J Fluoresc 2024; 34:425-436. [PMID: 37284963 DOI: 10.1007/s10895-023-03248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2023] [Accepted: 04/18/2023] [Indexed: 06/08/2023]
Abstract
A novel reagent named 4-(N-methyl-1,3-dioxo-benzoisoquinolin-6-yl-oxy)benzene sulfonyl chloride (MBIOBS-Cl) for the determination of estrogens in food samples by high-performance liquid chromatography (HPLC) with fluorescence detection has been developed. Estrogens could be easily labeled by MBIOBS-Cl in Na2CO3-NaHCO3 buffer solution at pH 10.0. The complete labeling reaction for estrogens could be accomplished within five minutes, the corresponding derivatives exhibited strong fluorescence with the maximum excitation and emission wavelengths at 249 nm and 443 nm, respectively. The derivatization conditions, such as the molar ratio of reagent to estrogens, derivatization time, pH, temperature, and buffers were optimized. Derivatives were sufficiently stable to be efficiently analyzed by HPLC with a reversed-phase Agilent ZORBAX 300SB-C18 column with a good baseline resolution. Excellent linear correlations were obtained for all estrogen derivatives with correlation coefficients greater than 0.9998. Ultrasonic-Assisted extraction was used to optimize the extraction of estrogens from meat samples with a recovery higher than 82%. The detection limits (LOD, S/N = 3) of the method ranged from 0.95 to 3.3 μg· kg-1. The established method, which is fast, simple, inexpensive, and environment friendly, can be successfully applied for the detection of four steroidal estrogens from meat samples with little matrix interference.
Collapse
Affiliation(s)
- Shuiqiang Yu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Jinmao You
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China.
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| | - Xinxin Shi
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Xiaocong Zou
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Zhihao Lu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Yu Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Jiangkun Tan
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Zhiwei Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Zan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Zhongyin Ji
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Cuihua Song
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, People's Republic of China
| |
Collapse
|
2
|
Tan J, Li F, Liu L, Zhang J, Gui P, He M, Zhou X. Effect-Targeted Mapping of Potential Estrogenic Agonists and Antagonists in Wastewater via a Conformation-Specific Reporter-Mediated Biosensor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15617-15626. [PMID: 37802504 DOI: 10.1021/acs.est.3c03223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/10/2023]
Abstract
Wastewater treatment plants (WWTPs) are regarded as the main sources of estrogens that reach the aquatic environment. Hence, continuous monitoring of potential estrogenic-active compounds by a biosensor is an appealing approach. However, existing biosensors cannot simultaneously distinguish and quantify estrogenic agonists and antagonists. To overcome the challenge, we developed an estrogen receptor-based biosensor that selectively screened estrogenic agonists and antagonists by introducing rationally designed agonist/antagonist conformation-specific reporters. The double functional conformation-specific reporters consist of a Cy5.5-labeled streptavidin moiety and a peptide moiety, serving as signal recognition and signal transduction elements. In addition, the conformation recognition mechanism was further validated at the molecular level through molecular docking. Based on the two-step "turn-off" strategy, the biosensor exhibited remarkable sensitivity, detecting 17β-estradiol-binding activity equivalent (E2-BAE) at 7 ng/L and 4-hydroxytamoxifen-binding activity equivalent (4-OHT-BAE) at 91 ng/L. To validate its practicality, the biosensor was employed in a case study involving wastewater samples from two full-scale WWTPs across different treatment stages to map their estrogenic agonist and antagonist binding activities. Comparison with the yeast two-hybrid bioassay showed a strong liner relationship (r2 = 0.991, p < 0.0001), indicating the excellent accuracy and reliability of this technology in real applications.
Collapse
Affiliation(s)
- Jisui Tan
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Fangxu Li
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lanhua Liu
- School of Ecology and Environmental Science, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Zhang
- Key Laboratory of Water Safety for Beijing-Tianjin-Hebei Region of Ministry of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Ping Gui
- China Academy of Urban Planning & Design, Beijing 100037, China
| | - Miao He
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Tan J, Liu L, Li F, Chen Z, Chen GY, Fang F, Guo J, He M, Zhou X. Screening of Endocrine Disrupting Potential of Surface Waters via an Affinity-Based Biosensor in a Rural Community in the Yellow River Basin, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14350-14360. [PMID: 36129370 DOI: 10.1021/acs.est.2c01323] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/15/2023]
Abstract
Overcoming the limitations of traditional analytical methods and developing technologies to continuously monitor environments and produce a comprehensive picture of potential endocrine-disrupting chemicals (EDCs) has been an ongoing challenge. Herein, we developed a portable nuclear receptor (NR)-based biosensor within 90 min to perform highly sensitive analyses of a broad range of EDCs in environmental water samples. Based on the specific binding of the fluorescence-labeled NRs with their ligands, the receptors were attached to the EDC-functionalized fiber surface by competing with EDCs in the samples. The biosensor emitted fluorescence due to the evanescent wave excitation, thereby resulting in a turn-off sensing mode. The biosensor showed a detection limit of 5 ng/L E2-binding activity equivalent (E2-BAE) and 93 ng/L T3-BAE. As a case study, the biosensor was used to map the estrogenic binding activities of surface waters obtained from a rural community in the Yellow River basin in China. When the results obtained were compared with those from the traditional yeast two-hybrid bioassay, a high correlation was observed. It is anticipated that the good universality and versatility exhibited by this biosensor for various EDCs, which is achieved by using different NRs, will significantly promote the continuous assessment of global EDCs.
Collapse
Affiliation(s)
- Jisui Tan
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lanhua Liu
- School of Ecology and Environmental Science, Zhengzhou University, Zhengzhou 450001, China
| | - Fangxu Li
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhongli Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, China
| | - George Y Chen
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, China
| | - Jinsong Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Environment and Ecology, Chongqing University, Chongqing 400030, China
| | - Miao He
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
- National Engineering Research Center of Advanced Technology and Equipment for Water Environment Pollution Monitoring, Changsha 410205, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
- National Engineering Research Center of Advanced Technology and Equipment for Water Environment Pollution Monitoring, Changsha 410205, China
| |
Collapse
|
4
|
Huang Y, Wang Y, Xu G, Rao X, Zhang J, Wu X, Liao C, Wang Y. Compact Surface Plasmon Resonance IgG Sensor Based on H-Shaped Optical Fiber. BIOSENSORS 2022; 12:bios12030141. [PMID: 35323411 PMCID: PMC8946733 DOI: 10.3390/bios12030141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 05/28/2023]
Abstract
A compact surface plasmon resonance sensor based on an H-shaped optical fiber is proposed and demonstrated. The H-shaped optical fiber was fabricated experimentally by using hydrofluoric acid to controllably corrode the polarization-maintaining fiber. A satisfactory distance between the outer surface of the fiber and the core can be achieved, and then the surface plasmon resonance effect can be excited by coating a metal film of appropriate thickness on the surface of the fiber. This technology can realize the preparation of multiple samples at one time, compared to the traditional side-polishing technique. The H-shaped optical fiber obtained from corrosion exhibits a high surface quality and short lengths, down to only a few hundred microns. The effects of the proposed H-shaped optical fiber on spectral properties are induced by process parameters, including fiber remaining thickness, coating thickness and fiber length, and were investigated in detail. The prepared sensor was used for the specific detection of human IgG, and the minimum human IgG concentration that the sensor can distinguish is 3.4 μg/mL. Such a compact surface plasmon resonance fiber sensor has the advantages of an easy fabrication, good consistency and low cost, and is expected to be applied in the specific detection of biomarkers.
Collapse
Affiliation(s)
- Yijian Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.H.); (X.R.); (J.Z.); (X.W.); (C.L.); (Y.W.)
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China;
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Ying Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.H.); (X.R.); (J.Z.); (X.W.); (C.L.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China;
| | - Xing Rao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.H.); (X.R.); (J.Z.); (X.W.); (C.L.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Jiaxiong Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.H.); (X.R.); (J.Z.); (X.W.); (C.L.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Xun Wu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.H.); (X.R.); (J.Z.); (X.W.); (C.L.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Changrui Liao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.H.); (X.R.); (J.Z.); (X.W.); (C.L.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.H.); (X.R.); (J.Z.); (X.W.); (C.L.); (Y.W.)
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Li N, Zhao Y, Liu Y, Yin Z, Liu R, Zhang L, Ma L, Dai X, Zhou D, Su X. Self-resetting molecular probes for nucleic acids detection enabled by fuel dissipative systems. NANO TODAY 2021; 41:101308. [PMID: 34630625 PMCID: PMC8486598 DOI: 10.1016/j.nantod.2021.101308] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/20/2021] [Revised: 09/04/2021] [Accepted: 09/22/2021] [Indexed: 05/02/2023]
Abstract
A once-in-a-century global public health crisis, the COVID-19 pandemic has damaged human health and world economy greatly. To help combat the virus, we report a self-resetting molecular probe capable of repeatedly detecting SARS-CoV-2 RNA, developed by orchestrating a fuel dissipative system via DNA nanotechnology. A set of simulation toolkits was utilized to design the probe, permitting highly consistent signal amplitudes across cyclic detections. Uniquely, full width at half maximum regulated by dissipative kinetics exhibits a fingerprint signal suitable for high confidential identifications of single-nucleotide variants. Further examination on multiple human-infectious RNA viruses, including ZIKV, MERS-CoV, and SARS-CoV, demonstrates the generic detection capability and superior orthogonality of the probe. It also correctly classified all the clinical samples from 55 COVID-19 patients and 55 controls. Greatly enhancing the screening capability for COVID-19 and other infectious diseases, this probe could help with disease control and build a broader global public health agenda.
Collapse
Affiliation(s)
- Na Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuee Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yu Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Rui Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Linghao Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liang Ma
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaochuan Dai
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Liu L, Zhang X, Zhu Q, Li K, Lu Y, Zhou X, Guo T. Ultrasensitive detection of endocrine disruptors via superfine plasmonic spectral combs. LIGHT, SCIENCE & APPLICATIONS 2021; 10:181. [PMID: 34493704 PMCID: PMC8423748 DOI: 10.1038/s41377-021-00618-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/29/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 05/05/2023]
Abstract
The apparent increase in hormone-induced cancers and disorders of the reproductive tract has led to a growing demand for new technologies capable of detecting endocrine disruptors. However, a long-lasting challenge unaddressed is how to achieve ultrahigh sensitive, continuous, and in situ measurement with a portable device for in-field and remote environmental monitoring. Here we demonstrate a simple-to-implement plasmonic optical fiber biosensing platform to achieve an improved light-matter interaction and advanced surface chemistry for ultrasensitive detection of endocrine disruptors. Our platform is based on a gold-coated highly tilted fiber Bragg grating that excites high-density narrow cladding mode spectral combs that overlap with the broad absorption of the surface plasmon for high accuracy interrogation, hence enabling the ultrasensitive monitoring of refractive index changes at the fiber surface. Through the use of estrogen receptors as the model, we design an estradiol-streptavidin conjugate with the assistance of molecular dynamics, converting the specific recognition of environmental estrogens (EEs) by estrogen receptor into surface-based affinity bioassay for protein. The ultrasensitive platform with conjugate-induced amplification biosensing approach enables the subsequent detection for EEs down to 1.5 × 10-3 ng ml-1 estradiol equivalent concentration level, which is one order lower than the defined maximal E2 level in drinking water set by the Japanese government. The capability to detect EEs down to nanogram per liter level is the lowest limit of detection for any estrogen receptor-based detection reported thus far. Its compact size, flexible shape, and remote operation capability open the way for detecting other endocrine disruptors with ultrahigh sensitivity and in various hard-to-reach spaces, thereby having the potential to revolutionize environment and health monitoring.
Collapse
Affiliation(s)
- Lanhua Liu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xuejun Zhang
- Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| | - Qian Zhu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kaiwei Li
- Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
| | - Yun Lu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Tuan Guo
- Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
7
|
Soares MS, Vidal M, Santos NF, Costa FM, Marques C, Pereira SO, Leitão C. Immunosensing Based on Optical Fiber Technology: Recent Advances. BIOSENSORS-BASEL 2021; 11:bios11090305. [PMID: 34562895 PMCID: PMC8472567 DOI: 10.3390/bios11090305] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/07/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
The evolution of optical fiber technology has revolutionized a variety of fields, from optical transmission to environmental monitoring and biomedicine, given their unique properties and versatility. For biosensing purposes, the light guided in the fiber core is exposed to the surrounding media where the analytes of interest are detected by different techniques, according to the optical fiber configuration and biofunctionalization strategy employed. These configurations differ in manufacturing complexity, cost and overall performance. The biofunctionalization strategies can be carried out directly on bare fibers or on coated fibers. The former relies on interactions between the evanescent wave (EW) of the fiber and the analyte of interest, whereas the latter can comprise plasmonic methods such as surface plasmon resonance (SPR) and localized SPR (LSPR), both originating from the interaction between light and metal surface electrons. This review presents the basics of optical fiber immunosensors for a broad audience as well as the more recent research trends on the topic. Several optical fiber configurations used for biosensing applications are highlighted, namely uncladded, U-shape, D-shape, tapered, end-face reflected, fiber gratings and special optical fibers, alongside practical application examples. Furthermore, EW, SPR, LSPR and biofunctionalization strategies, as well as the most recent advances and applications of immunosensors, are also covered. Finally, the main challenges and an outlook over the future direction of the field is presented.
Collapse
|
8
|
Maddali H, Miles CE, Kohn J, O'Carroll DM. Optical Biosensors for Virus Detection: Prospects for SARS-CoV-2/COVID-19. Chembiochem 2021; 22:1176-1189. [PMID: 33119960 PMCID: PMC8048644 DOI: 10.1002/cbic.202000744] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2020] [Indexed: 12/29/2022]
Abstract
The recent pandemic of the novel coronavirus disease 2019 (COVID-19) has caused huge worldwide disruption due to the lack of available testing locations and equipment. The use of optical techniques for viral detection has flourished in the past 15 years, providing more reliable, inexpensive, and accurate detection methods. In the current minireview, optical phenomena including fluorescence, surface plasmons, surface-enhanced Raman scattering (SERS), and colorimetry are discussed in the context of detecting virus pathogens. The sensitivity of a viral detection method can be dramatically improved by using materials that exhibit surface plasmons or SERS, but often this requires advanced instrumentation for detection. Although fluorescence and colorimetry lack high sensitivity, they show promise as point-of-care diagnostics because of their relatively less complicated instrumentation, ease of use, lower costs, and the fact that they do not require nucleic acid amplification. The advantages and disadvantages of each optical detection method are presented, and prospects for applying optical biosensors in COVID-19 detection are discussed.
Collapse
Affiliation(s)
- Hemanth Maddali
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Catherine E Miles
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Joachim Kohn
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Deirdre M O'Carroll
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
- Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
9
|
Shi Y, Li Z, Liu PY, Nguyen BTT, Wu W, Zhao Q, Chin LK, Wei M, Yap PH, Zhou X, Zhao H, Yu D, Tsai DP, Liu AQ. On-Chip Optical Detection of Viruses: A Review. ADVANCED PHOTONICS RESEARCH 2021; 2:2000150. [PMID: 33786535 PMCID: PMC7994989 DOI: 10.1002/adpr.202000150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/18/2020] [Revised: 12/31/2020] [Indexed: 05/17/2023]
Abstract
The current outbreak of the coronavirus disease-19 (COVID-19) pandemic worldwide has caused millions of fatalities and imposed a severe impact on our daily lives. Thus, the global healthcare system urgently calls for rapid, affordable, and reliable detection toolkits. Although the gold-standard nucleic acid amplification tests have been widely accepted and utilized, they are time-consuming and labor-intensive, which exceedingly hinder the mass detection in low-income populations, especially in developing countries. Recently, due to the blooming development of photonics, various optical chips have been developed to detect single viruses with the advantages of fast, label-free, affordable, and point of care deployment. Herein, optical approaches especially in three perspectives, e.g., flow-free optical methods, optofluidics, and surface-modification-assisted approaches, are summarized. The future development of on-chip optical-detection methods in the wave of emerging new ideas in nanophotonics is also briefly discussed.
Collapse
Affiliation(s)
- Yuzhi Shi
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Zhenyu Li
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
- National Key Laboratory of Science and Technology on Micro/Nano FabricationInstitute of MicroelectronicsPeking UniversityBeijing100871China
| | - Patricia Yang Liu
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Binh Thi Thanh Nguyen
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Wenshuai Wu
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Qianbin Zhao
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Lip Ket Chin
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
- Center for Systems BiologyMassachusetts General HospitalBostonMA02141USA
| | - Minggui Wei
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Peng Huat Yap
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore308232Singapore
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPCSchool of EnvironmentTsinghua UniversityBeijing100084China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resource Utilization of South China SeaHainan UniversityHaikou570228China
| | - Dan Yu
- Beijing Pediatric Research InstituteBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijing100045China
| | - Din Ping Tsai
- Department of Electronic and Information EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
| | - Ai Qun Liu
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| |
Collapse
|
10
|
Li L, Xing Z, Tang Q, Yang L, Dai L, Wang H, Yan T, Xu W, Ma H, Wei Q. Enzyme-Free Colorimetric Immunoassay for Protein Biomarker Enabled by Loading and Disassembly Behaviors of Polydopamine Nanoparticles. ACS APPLIED BIO MATERIALS 2020; 3:8841-8848. [DOI: 10.1021/acsabm.0c01167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Zhenyuan Xing
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qiaorong Tang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Lei Yang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Li Dai
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Tao Yan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Weiying Xu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
11
|
Panahi Z, Merrill MA, Halpern JM. Reusable Cyclodextrin-Based Electrochemical Platform for Detection of trans-Resveratrol. ACS APPLIED POLYMER MATERIALS 2020; 2:5086-5093. [PMID: 34651131 PMCID: PMC8513772 DOI: 10.1021/acsapm.0c00866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/11/2023]
Abstract
A reusable sensor architecture, through the combination of self-assembled monolayers and cyclodextrin supramolecular interactions, is demonstrated for class recognition of hydrophobic analytes demonstrated with trans-resveratrol. The reloadable sensor is based on reversible immobilization of α-cyclodextrin on polyethylene glycol surface. α-cyclodextrins complexes with polyethylene glycols and causes the polymer chains to change their surface configuration. The reproducibility and stability of the sur-face, in the detection of nanomolar concentrations of trans-resveratrol, can be demonstrated by electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and Attenuated total reflectance-Fourier transform infrared spectroscopy. We propose that during sensor operation, α-cyclodextrin decouples from the poly-ethylene glycol surface to complex with trans-resveratrol in solution, and after use, the surface regeneration is conducted with a simple α-cyclodextrin soak. To test the nonspecific response, the sensor was also tested with trans-resveratrol spiked human urine.
Collapse
|
12
|
Xiao P, Sun Z, Huang Y, Lin W, Ge Y, Xiao R, Li K, Li Z, Lu H, Yang M, Liang L, Sun LP, Ran Y, Li J, Guan BO. Development of an optical microfiber immunosensor for prostate specific antigen analysis using a high-order-diffraction long period grating. OPTICS EXPRESS 2020; 28:15783-15793. [PMID: 32549415 DOI: 10.1364/oe.391889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/05/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Fiber-optic biosensors are of great interest to many bio/chemical sensing applications. In this study, we demonstrate a high-order-diffraction long period grating (HOD-LPG) for the detection of prostate specific antigen (PSA). A HOD-LPG with a period number of less than ten and an elongated grating pitch could realize a temperature-insensitive and bending-independent biosensor. The bio-functionalized HOD-LPG was capable of detecting PSA in phosphate buffered saline with concentrations ranging from 5 to 500 ng/ml and exhibited excellent specificity. A limit of detection of 9.9 ng/ml was achieved, which is promising for analysis of the prostate specific antigen.
Collapse
|
13
|
Pirzada M, Altintas Z. Recent Progress in Optical Sensors for Biomedical Diagnostics. MICROMACHINES 2020; 11:E356. [PMID: 32235546 PMCID: PMC7231100 DOI: 10.3390/mi11040356] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/01/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/12/2022]
Abstract
In recent years, several types of optical sensors have been probed for their aptitude in healthcare biosensing, making their applications in biomedical diagnostics a rapidly evolving subject. Optical sensors show versatility amongst different receptor types and even permit the integration of different detection mechanisms. Such conjugated sensing platforms facilitate the exploitation of their neoteric synergistic characteristics for sensor fabrication. This paper covers nearly 250 research articles since 2016 representing the emerging interest in rapid, reproducible and ultrasensitive assays in clinical analysis. Therefore, we present an elaborate review of biomedical diagnostics with the help of optical sensors working on varied principles such as surface plasmon resonance, localised surface plasmon resonance, evanescent wave fluorescence, bioluminescence and several others. These sensors are capable of investigating toxins, proteins, pathogens, disease biomarkers and whole cells in varied sensing media ranging from water to buffer to more complex environments such as serum, blood or urine. Hence, the recent trends discussed in this review hold enormous potential for the widespread use of optical sensors in early-stage disease prediction and point-of-care testing devices.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
14
|
Zhu Q, Liu L, Zhou X, Ma M. In silico study of molecular mechanisms of action: Estrogenic disruptors among phthalate esters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113193. [PMID: 31521998 DOI: 10.1016/j.envpol.2019.113193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/26/2019] [Revised: 06/29/2019] [Accepted: 09/06/2019] [Indexed: 05/22/2023]
Abstract
Phthalate esters (PAEs), as widely used plasticizers, have been concerned for their possible disruption of estrogen functions via binding to and activating the transcription of estrogen receptors (ERs). Nevertheless, the computational interpretation of the mechanism of ERs activities modulated by PAEs at the molecular level is still insufficient, which hinders the reliable screening of the ERs-active PAEs with high speed and high throughput. To bridge the gap, the in silico simulations considering the effects of coactivators were accomplished to explore the molecular mechanism of action for the purpose of predicting the estrogenic potencies of PAEs. The transcriptional activation functions of human ERα (hERα) modulated by PAEs is predicted via the simulations including binding interaction of PAEs and hERα, conformational changes of PAEs-hERα complexes and recruitment of coactivators. Molecular insight into the diverse estrogen mechanism of action among PAEs with regard to hERα agonists and selective estrogen receptor modulators (SERMs) is provided. Agonist-modulated conformational change of hERα leads to the optimal exposure of its Activation Function 2 (AF-2) surface which, in turn, facilitates the recruitment of coactivators, therefore promoting the transcriptional activation functions of hERα. Conversely, binding interaction of hERα with SERMs among PAEs leads to the conformational change with blocked AF-2 surface, thus preventing the recruitment of coactivators and consequently inhibiting the AF-2 activity. The two-hybrid recombinant yeast is experimentally used for verification. The established in silico evaluation methodology exhibits great promise to speed up the prediction of chemicals which work as hERα agonist or SERMs.
Collapse
Affiliation(s)
- Qian Zhu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Lanhua Liu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Liu L, Zhou X, Lu Y, Shi H, Ma M, Yu T. Triple functional small-molecule-protein conjugate mediated optical biosensor for quantification of estrogenic activities in water samples. ENVIRONMENT INTERNATIONAL 2019; 132:105091. [PMID: 31421388 DOI: 10.1016/j.envint.2019.105091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/07/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 05/22/2023]
Abstract
Establishing biosensors to map a comprehensive picture of potential estrogen-active chemicals remains challenging and must be addressed. Herein, we describe an estrogen receptor (ER)-based evanescent wave fluorescent biosensor by using a triple functional small-molecule-protein conjugate as a signal probe for the determination of estrogenic activities in water samples. The signal probe, consisting of a Cy5.5-labelled streptavidin (STV) moiety and a 17β-estradiol (E2) moiety, acts simultaneously as signal conversion, signal recognition and signal report elements. When xenoestrogens compete with the E2 moiety of conjugate in binding to the ER, the unbound conjugates are released, and their STV moiety binds with desthiobiotin (DTB) modified on the optical fiber via the STV-DTB affinity interactions. Signal probe detection is accomplished by fluorescence emission induced by an evanescent field, which positively relates with the estrogenic activities in samples. Quantification of estrogenic activity expressed as E2 equivalent concentration (EEQ) can be achieved with a detection limit of 1.05 μg/L EEQ by using three times standard deviation of the mean blank values and a linear calibration range from 20.8 to 476.7 μg/L EEQ. The optical fiber system is robust enough for hundreds of sensing cycles. The biosensor-based determination of estrogenic activities in wastewater samples obtained from a full-scale wastewater treatment plant is consistent with that measured by the two-hybrid recombinant yeast bioassay.
Collapse
Affiliation(s)
- Lanhua Liu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yun Lu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hanchang Shi
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Yu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2W2, Canada
| |
Collapse
|
16
|
Fang X, Zheng Y, Duan Y, Liu Y, Zhong W. Recent Advances in Design of Fluorescence-Based Assays for High-Throughput Screening. Anal Chem 2019; 91:482-504. [PMID: 30481456 PMCID: PMC7262998 DOI: 10.1021/acs.analchem.8b05303] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaoni Fang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yongzan Zheng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yaokai Duan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yang Liu
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Wenwan Zhong
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| |
Collapse
|
17
|
Khoshbin Z, Housaindokht MR, Verdian A, Bozorgmehr MR. Simultaneous detection and determination of mercury (II) and lead (II) ions through the achievement of novel functional nucleic acid-based biosensors. Biosens Bioelectron 2018; 116:130-147. [PMID: 29879539 DOI: 10.1016/j.bios.2018.05.051] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023]
Abstract
The serious threats of mercury (Hg2+) and lead (Pb2+) ions for the public health makes it important to achieve the detection methods of the ions with high affinity and specificity. Metal ions usually coexist in some environment and foodstuff or clinical samples. Therefore, it is very necessary to develop a fast and simple method for simultaneous monitoring the amount of metal ions, especially when Hg2+ and Pb2+ coexist. DNAzyme-based biosensors and aptasensors have been highly regarded for this purpose as two main groups of the functional nucleic acid (FNA)-based biosensors. In this review, we summarize the recent achievements of functional nucleic acid-based biosensors for the simultaneous detection of Hg2+ and Pb2+ ions in two main optical and electrochemical groups. The tremendous interest in utilizing the various nanomaterials is also highlighted in the fabrication of the FNA-based biosensors. Finally, some results are presented based on the advantages and disadvantages of the studied FNA-based biosensors to compare their validation.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Asma Verdian
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | | |
Collapse
|
18
|
TriPleX™ waveguide-based fluorescence biosensor for multichannel environmental contaminants detection. Biosens Bioelectron 2018; 106:117-121. [PMID: 29414077 DOI: 10.1016/j.bios.2018.01.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 12/17/2022]
Abstract
In order to realize the multi-analyte assays for environmental contaminants, an optical biosensor utilizing laser-induced fluorescence-based detection via the binding of biomolecules to the surface of an integrated TriPleX™ waveguide chip on a glass substrate (fused silica, FS) is described. As far as we know, this is the first demonstration of using the TriPleX™ technology to fabricate the waveguide chip on a FS substrate. The sensor consists of 32 individually addressable sensor patches, which were formed on the chip surface by exploiting 3 Y-junction splitters, creating four equal rows of eight evanescently excited windows in parallel. The basic low-loss SiO2/Si3N4 TriPleX™ waveguide configuration in combination with on-chip spotsize convertors allows for both high fiber-to-chip coupling efficiency and enables at the same time individually optimized high chip surface intensity and low patch-to-patch deviation. Moreover, the complementary metal-oxide-semiconductor compatible fabrication of waveguide chip allows for its mass production at low cost. By taking MC-LR, 2,4-D, atrazine and BPA as the model analytes, the as-proposed waveguide based biosensor was proven sensitive with the detection limits of 0.22 μg/L for MC-LR, 1.18 μg/L for 2, 4-D, 0.2 μg/L for atrazine and 0.06 μg/L for BPA. Recoveries of the biosensor towards simultaneous detection of MC-LR, 2, 4-D, atrazine and BPA in spiked real water samples varied from 84% to 120%, indicating the satisfactory accuracy of the established technology.
Collapse
|
19
|
A label-free cardiac biomarker immunosensor based on phase-shifted microfiber Bragg grating. Biosens Bioelectron 2018; 100:155-160. [DOI: 10.1016/j.bios.2017.08.061] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/15/2017] [Revised: 08/18/2017] [Accepted: 08/30/2017] [Indexed: 11/20/2022]
|
20
|
Xu B, Li K, Qiao J, Liungai Z, Chen C, Lu Y. UV photoconversion of environmental oestrogen diethylstilbestrol and its persistence in surface water under sunlight. WATER RESEARCH 2017; 127:77-85. [PMID: 29035768 DOI: 10.1016/j.watres.2017.09.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/25/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
As one of the most oestrogenic synthetic compounds in water environment, diethylstilbestrol (DES) has been studied for decades. Some studies showed that DES can be removed by ultraviolet (UV) irradiation. However, no one has paid attention to the formation of oestrogenic disinfection by-products (DBPs) and the persistence of DES in surface water remains a mystery. In this study, UV was found to be very effective in removing oestrogenic activity regardless of water quality. Three oestrogenic DBPs were specifically isolated by oestrogen receptor-based affinity chromatography and identified as 9,10-diethylphenanthrene-3,6-diol, cis-DES and Z,Z-dienestrol. Among them, 9,10-diethylphenanthrene-3,6-diol was proved to have stronger oestrogenic activity than E2, but it can be further photodegraded. In addition, DES was also demonstrated to be a photochromic compound, whose UV-induced intermediates can be transformed back to DES under sunlight, which significantly slows down the photodegradation of DES. This study solves the question as to why UV-degradable DES is still detectable in the ambient water and provides a deep understanding of DES removal during UV disinfection.
Collapse
Affiliation(s)
- Bi Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Kuixiao Li
- Research and Development Centre, Beijing Drainage Group Company Limited, Beijing 100024, People's Republic of China
| | - Juan Qiao
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhiqi Liungai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Chao Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China.
| | - Yun Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China.
| |
Collapse
|
21
|
Guo T, González-Vila Á, Loyez M, Caucheteur C. Plasmonic Optical Fiber-Grating Immunosensing: A Review. SENSORS 2017; 17:s17122732. [PMID: 29186871 PMCID: PMC5751598 DOI: 10.3390/s17122732] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/04/2017] [Revised: 11/13/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022]
Abstract
Plasmonic immunosensors are usually made of a noble metal (in the form of a film or nanoparticles) on which bioreceptors are grafted to sense analytes based on the antibody/antigen or other affinity mechanism. Optical fiber configurations are a miniaturized counterpart to the bulky Kretschmann prism and allow easy light injection and remote operation. To excite a surface plasmon (SP), the core-guided light is locally outcoupled. Unclad optical fibers were the first configurations reported to this end. Among the different architectures able to bring light in contact with the surrounding medium, a great quantity of research is today being conducted on metal-coated fiber gratings photo-imprinted in the fiber core, as they provide modal features that enable SP generation at any wavelength, especially in the telecommunication window. They are perfectly suited for use with cost-effective high-resolution interrogators, allowing both a high sensitivity and a low limit of detection to be reached in immunosensing. This paper will review recent progress made in this field with different kinds of gratings: uniform, tilted and eccentric short-period gratings as well as long-period fiber gratings. Practical cases will be reported, showing that such sensors can be used in very small volumes of analytes and even possibly applied to in vivo diagnosis.
Collapse
Affiliation(s)
- Tuan Guo
- Institute of Photonics Technology, Jinan University, Guangzhou 510632, China.
| | - Álvaro González-Vila
- Electromagnetism and Telecommunication Department, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium.
| | - Médéric Loyez
- Electromagnetism and Telecommunication Department, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium.
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium.
| |
Collapse
|
22
|
A novel bioluminescent NanoLuc yeast-estrogen screen biosensor (nanoYES) with a compact wireless camera for effect-based detection of endocrine-disrupting chemicals. Anal Bioanal Chem 2017; 410:1237-1246. [DOI: 10.1007/s00216-017-0661-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2017] [Revised: 09/08/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022]
|
23
|
Hunt JP, Schinn SM, Jones MD, Bundy BC. Rapid, portable detection of endocrine disrupting chemicals through ligand-nuclear hormone receptor interactions. Analyst 2017; 142:4595-4600. [DOI: 10.1039/c7an01540b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
Abstract
Recent advances in biosensing technology are enabling rapid and portable detection of nuclear hormone receptor ligand endocrine disrupting chemicals.
Collapse
Affiliation(s)
- J. Porter Hunt
- Department of Chemical Engineering
- Brigham Young University
- Provo
- USA
| | - Song-Min Schinn
- Department of Chemical Engineering
- Brigham Young University
- Provo
- USA
| | - Matthew D. Jones
- Department of Chemical Engineering
- Brigham Young University
- Provo
- USA
| | - Bradley C. Bundy
- Department of Chemical Engineering
- Brigham Young University
- Provo
- USA
| |
Collapse
|