1
|
Dippe M, Herrmann S, Pecher P, Funke E, Pietzsch M, Wessjohann L. Engineered bacterial flavin-dependent monooxygenases for the regiospecific hydroxylation of polycyclic phenols. Chembiochem 2022; 23:e202100480. [PMID: 34979058 PMCID: PMC9303722 DOI: 10.1002/cbic.202100480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/06/2021] [Indexed: 11/06/2022]
Abstract
4-Hydroxyphenylacetate 3-hydroxylase (4HPA3H), a flavin-dependent monooxygenase from E. coli that catalyzes the hydroxylation of monophenols to catechols, was modified by rational re-design to convert also more bulky substrates, especially phenolic natural products like phenylpropanoids, flavones or coumarins. Selected amino acid positions in the binding pocket of 4HPA3H were exchanged by residues from the homologous protein from Pseudomonas aeruginosa, yielding variants with improved conversion of spacious substrates such as the flavonoid naringenin or the alkaloid mimetic 2-hydroxycarbazole. Reactions were followed by an adapted Fe(III)-catechol chromogenic assay selective for the products. Especially substitution of the residue Y301 facilitated modulation of substrate specificity: introduction of non-aromatic but hydrophobic (iso)leucine resulted in the preference of the substrate ferulic acid (having a guaiacyl (guajacyl) moiety, part of the vanilloid motif) over unsubstituted monophenols. The in vivo (whole-cell biocatalysts) and in vitro (three-enzyme cascade) transformations of substrates by 4HPA3H and its optimized variants was strictly regiospecific and proceeded without generation of by-products.
Collapse
Affiliation(s)
- Martin Dippe
- Leibniz-Institut für Pflanzenbiochemie: Leibniz-Institut fur Pflanzenbiochemie, Bioorganic Chemistry, Weinberg 3, D-06120, Halle/Saale, GERMANY
| | - Susann Herrmann
- Leibniz-Institut für Pflanzenbiochemie: Leibniz-Institut fur Pflanzenbiochemie, Bioorganic Chemistry, Weinberg 3, D-06120, Halle, GERMANY
| | - Pascal Pecher
- Leibniz Institute of Plant Biochemistry: Leibniz-Institut fur Pflanzenbiochemie, Bioorganic Chemistry, GERMANY
| | - Evelyn Funke
- Leibniz-Institut fur Pflanzenbiochemie, Bioorganic Chemistry, GERMANY
| | - Markus Pietzsch
- Martin-Luther-Universität Halle-Wittenberg: Martin-Luther-Universitat Halle-Wittenberg, Institute of Pharmacy, Weinbergweg 22, D-06120, Halle, GERMANY
| | - Ludger Wessjohann
- Leibniz-Institute of Plant Biochemistry, Bioorganic Chemistry, Weinberg 3, 06120, Halle Saale, GERMANY
| |
Collapse
|
2
|
|
3
|
De Silva AJ, Sehgal R, Kim J, Bellizzi JJ. Steady-state kinetic analysis of halogenase-supporting flavin reductases BorF and AbeF reveals different kinetic mechanisms. Arch Biochem Biophys 2021; 704:108874. [PMID: 33862020 DOI: 10.1016/j.abb.2021.108874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 11/28/2022]
Abstract
The short-chain flavin reductases BorF and AbeF reduce FAD to FADH2, which is then used by flavin-dependent halogenases (BorH and AbeH respectively) to regioselectively chlorinate tryptophan in the biosynthesis of indolotryptoline natural products. Recombinant AbeF and BorF were overexpressed and purified as homodimers from E. coli, and copurified with substoichiometric amounts of FAD, which could be easily removed. AbeF and BorF can reduce FAD, FMN, and riboflavin in vitro and are selective for NADH over NADPH. Initial velocity studies in the presence and absence of inhibitors showed that BorF proceeds by a sequential ordered kinetic mechanism in which FAD binds first, while AbeF follows a random-ordered sequence of substrate binding. Fluorescence quenching experiments verified that NADH does not bind BorF in the absence of FAD, and that both AbeF and BorF bind FAD with higher affinity than FADH2. pH-rate profiles of BorF and AbeF were bell-shaped with maximum kcat at pH 7.5, and site-directed mutagenesis of BorF implicated His160 and Arg38 as contributing to the catalytic activity and the pH dependence.
Collapse
Affiliation(s)
- Aravinda J De Silva
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo Toledo, OH, 43606, USA
| | - Rippa Sehgal
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo Toledo, OH, 43606, USA
| | - Jennifer Kim
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo Toledo, OH, 43606, USA
| | - John J Bellizzi
- Department of Chemistry and Biochemistry, College of Natural Sciences and Mathematics, The University of Toledo Toledo, OH, 43606, USA.
| |
Collapse
|
4
|
Nóbile ML, Stricker AM, Marchesano L, Iribarren AM, Lewkowicz ES. N-oxygenation of amino compounds: Early stages in its application to the biocatalyzed preparation of bioactive compounds. Biotechnol Adv 2021; 51:107726. [PMID: 33675955 DOI: 10.1016/j.biotechadv.2021.107726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 10/22/2022]
Abstract
Among the compounds that contain unusual functional groups, nitro is perhaps one of the most interesting due to the valuable properties it confers on pharmaceuticals and explosives. Traditional chemistry has for many years used environmentally unfriendly strategies; in contrast, the biocatalyzed production of this type of products offers a promising alternative. The small family of enzymes formed by N-oxygenases allows the conversion of an amino group to a nitro through the sequential addition of oxygen. These enzymes also make it possible to obtain other less oxidized N-O functions, such as hydroxylamine or nitroso, present in intermediate or final products. The current substrates on which these enzymes are reported to work encompass a few aromatic molecules and sugars. The unique characteristics of N-oxygenases and the great economic value of the products that they could generate, place them in a position of very high scientific and industrial interest. The most important and best studied N-oxygenases will be presented here.
Collapse
Affiliation(s)
- Matías L Nóbile
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Biocatalysis and Biotransformation Laboratory, Roque Sáenz Peña 352, Bernal 1876, Buenos Aires, Argentina.
| | - Abigail M Stricker
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Biocatalysis and Biotransformation Laboratory, Roque Sáenz Peña 352, Bernal 1876, Buenos Aires, Argentina
| | - Lucas Marchesano
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Biocatalysis and Biotransformation Laboratory, Roque Sáenz Peña 352, Bernal 1876, Buenos Aires, Argentina
| | - Adolfo M Iribarren
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Biocatalysis and Biotransformation Laboratory, Roque Sáenz Peña 352, Bernal 1876, Buenos Aires, Argentina
| | - Elizabeth S Lewkowicz
- Universidad Nacional de Quilmes, CONICET, Departamento de Ciencia y Tecnología, Biocatalysis and Biotransformation Laboratory, Roque Sáenz Peña 352, Bernal 1876, Buenos Aires, Argentina
| |
Collapse
|
5
|
Heine T, Scholtissek A, Westphal AH, van Berkel WJH, Tischler D. N-terminus determines activity and specificity of styrene monooxygenase reductases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1770-1780. [PMID: 28888693 DOI: 10.1016/j.bbapap.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/10/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
Styrene monooxygenases (SMOs) are two-enzyme systems that catalyze the enantioselective epoxidation of styrene to (S)-styrene oxide. The FADH2 co-substrate of the epoxidase component (StyA) is supplied by an NADH-dependent flavin reductase (StyB). The genome of Rhodococcus opacus 1CP encodes two SMO systems. One system, which we define as E1-type, displays homology to the SMO from Pseudomonas taiwanensis VLB120. The other system, originally reported as a fused system (RoStyA2B), is defined as E2-type. Here we found that E1-type RoStyB is inhibited by FMN, while RoStyA2B is known to be active with FMN. To rationalize the observed specificity of RoStyB for FAD, we generated an artificial reductase, designated as RoStyBart, in which the first 22 amino acid residues of RoStyB were joined to the reductase part of RoStyA2B, while the oxygenase part (A2) was removed. RoStyBart mainly purified as apo-protein and mimicked RoStyB in being inhibited by FMN. Pre-incubation with FAD yielded a turnover number at 30°C of 133.9±3.5s-1, one of the highest rates observed for StyB reductases. RoStyBart holo-enzyme switches to a ping-pong mechanism and fluorescence analysis indicated for unproductive binding of FMN to the second (co-substrate) binding site. In summary, it is shown for the first time that optimization of the N-termini of StyB reductases allows the evolution of their activity and specificity.
Collapse
Affiliation(s)
- Thomas Heine
- Environmental Microbiology, Interdisciplinary Ecological Center, TU Bergakadmie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany; Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Anika Scholtissek
- Environmental Microbiology, Interdisciplinary Ecological Center, TU Bergakadmie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany; Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Willem J H van Berkel
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dirk Tischler
- Environmental Microbiology, Interdisciplinary Ecological Center, TU Bergakadmie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany.
| |
Collapse
|
6
|
A mechanistic study on SMOB-ADP1: an NADH:flavin oxidoreductase of the two-component styrene monooxygenase of Acinetobacter baylyi ADP1. Arch Microbiol 2014; 196:829-45. [PMID: 25116410 DOI: 10.1007/s00203-014-1022-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
Abstract
Two styrene monooxygenase types, StyA/StyB and StyA1/StyA2B, have been described each consisting of an epoxidase and a reductase. A gene fusion which led to the chimeric reductase StyA2B and the occurrence in different phyla are major differences. Identification of SMOA/SMOB-ADP1 of Acinetobacter baylyi ADP1 may enlighten the gene fusion event since phylogenetic analysis indicated both proteins to be more related to StyA2B than to StyA/StyB. SMOB-ADP1 is classified like StyB and StyA2B as HpaC-like reductase. Substrate affinity and turnover number of the homo-dimer SMOB-ADP1 were determined for NADH (24 µM, 64 s(-1)) and FAD (4.4 µM, 56 s(-1)). SMOB-ADP1 catalysis follows a random sequential mechanism, and FAD fluorescence is quenched upon binding to SMOB-ADP1 (K d = 1.8 µM), which clearly distinguishes that reductase from StyB of Pseudomonas. In summary, this study confirmes made assumptions and provides phylogenetic and biochemical data for the differentiation of styrene monooxygenase-related flavin reductases.
Collapse
|
7
|
Tiwari MK, Kalia VC, Kang YC, Lee JK. Role of a remote leucine residue in the catalytic function of polyol dehydrogenase. ACTA ACUST UNITED AC 2014; 10:3255-63. [DOI: 10.1039/c4mb00459k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study examined the role of remote residues on the structure and function of zinc-dependent polyol dehydrogenases.
Collapse
Affiliation(s)
| | - Vipin C. Kalia
- Microbial Biotechnology and Genomics
- CSIR-Institute of Genomics and Integrative Biology
- Delhi-110007, India
| | - Yun Chan Kang
- Department of Materials Science and Engineering
- Korea University
- Seoul 136-713, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering
- Seoul 143–701, Republic of Korea
| |
Collapse
|
8
|
Tiwari MK, Lee KM, Kalyani D, Singh RK, Kim H, Lee JK, Ramachandran P. Role of Glu445 in the substrate binding of β-glucosidase. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|