1
|
Wilson LA, Scarfo J, Jones ME, Rehm IC. The relationship between sensory phenomena and interoception across the obsessive-compulsive spectrum: a systematic review. BMC Psychiatry 2025; 25:162. [PMID: 39994601 DOI: 10.1186/s12888-024-06441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/09/2024] [Accepted: 12/23/2024] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Uncomfortable sensations preceding repetitive behaviours, known as sensory phenomena, have been documented across the obsessive-compulsive spectrum. Indirect evidence suggests altered interoception may play a role in these shared experiences of sensory phenomena; however, research explicitly measuring this relationship is limited. The current systematic review aimed to establish the nature of sensory phenomena and interoception in obsessive-compulsive and related disorders (OCRDs) and tic disorders as potential maintaining factors of these disorders. METHODS PsycINFO, PubMed, and Scopus databases were searched from 2007 to April 2024, yielding 65 studies. RESULTS While the majority of studies presented low risk of bias, significant overlap and ambiguity characterised the measurement and conceptualisation of sensory phenomena and interoception. Overall, higher sensory phenomena was associated with greater symptom severity in several obsessive-compulsive spectrum disorders. Obsessive-compulsive disorder and tic disorder samples were characterised by lower interoceptive accuracy, with mixed findings on interoceptive sensibility. Some limited research emerged suggesting altered interoceptive abilities may be associated with greater sensory phenomena in obsessive-compulsive disorder and tic disorders. CONCLUSIONS Sensory phenomena are experienced across the obsessive-compulsive spectrum. Future research should explore interoceptive abilities across the OCRDs, and build upon evidence supporting a relationship between sensory phenomena and interoception in OCD and tic disorders. TRIAL REGISTRATION CRD42023422817.
Collapse
Affiliation(s)
- Lizzie A Wilson
- Institute for Health and Sport, Victoria University, 70/104 Ballarat Road, Footscray, VIC, 3011, Australia
| | - Jessica Scarfo
- Institute for Health and Sport, Victoria University, 70/104 Ballarat Road, Footscray, VIC, 3011, Australia
| | - Mikayla E Jones
- Institute for Health and Sport, Victoria University, 70/104 Ballarat Road, Footscray, VIC, 3011, Australia
| | - Imogen C Rehm
- Institute for Health and Sport, Victoria University, 70/104 Ballarat Road, Footscray, VIC, 3011, Australia.
| |
Collapse
|
2
|
Green B, Waters A, Jimenez-Shahed J. Pain in Tourette Syndrome: A Comprehensive Review. J Child Adolesc Psychopharmacol 2025; 35:23-36. [PMID: 39558767 DOI: 10.1089/cap.2024.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2024]
Abstract
Objectives: Recent survey data suggest that a high proportion of patients with Tourette syndrome (TS) experience pain, yet pain features in TS have not been previously investigated in a systematic manner. This article reviews the current understanding and impact of pain in TS as well as identifies possible areas for emphasis for future research on pain in TS. Methods: Using a comprehensive search strategy in two relevant research databases (PubMed and Scopus), we searched for relevant peer-reviewed, primary research articles, and review articles. Search terms used were Tourette syndrome, tic disorder, pain, pain management, sensory, and sensory gating. Results: A total of 116 pertinent articles were identified. Pain is reported by 47%-60% of individuals with TS and may relate to different aspects of tic phenomenology or other causes. Pain is more prevalent among TS patients than in the general population and negatively impacts quality of life. To standardize future research efforts, we propose the following classification: tic-related immediate pain, tic-related delayed injury/pain, suppression-related pain, premonitory urge-related pain, and associated primary pain syndromes. Altered sensory gating and interoceptive processing abnormalities are possible mechanisms contributing to pain in TS but warrant further study. Despite pain prevalence, most TS clinical rating scales and outcome measures used in therapeutic studies do not incorporate sufficient information regarding pain. Therapies known to improve pain in non-TS conditions that are also reported to improve tics have not been investigated for their effects on pain among TS patients. Conclusion: TS can be associated with a chronic pain syndrome that negatively affects quality of life. Future research using a systematic framework is needed to better understand pain cause(s) and prevalence, develop appropriate assessment methods, establish outcome measures, and understand mechanisms of pain in TS. Such investigations are likely to lead to therapeutic options for this troublesome symptom.
Collapse
Affiliation(s)
- Bryan Green
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Allison Waters
- Psychiatry and Neuroscience, Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joohi Jimenez-Shahed
- Neurology and Neurosurgery, Medical Director, Movement Disorders Neuromodulation & Brain Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
3
|
Isaacs DA, Xue A, Conley AC, Key AP. Auditory gating and its clinical correlates in adults with chronic tic disorder and neurotypical adults. Clin Neurophysiol 2024; 168:72-82. [PMID: 39476471 DOI: 10.1016/j.clinph.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2024] [Revised: 09/22/2024] [Accepted: 10/11/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Over 80% of adults with chronic tic disorder (CTD) experience sensory over-responsivity (SOR), defined as heightened awareness of and/or behavioral reactivity to commonplace environmental stimuli. One potential mechanism underpinning SOR is sensory gating impairment. Sensory gating is the physiologic process whereby redundant stimuli are filtered out in early perceptual stages. In this study, we compared sensory gating between neurotypical and CTD adults and determined if gating indices associated with SOR. METHODS Neurotypical (n = 31) and CTD adults (n = 26) completed a clinical assessment, including two SOR measures (Sensory Gating Inventory, SGI; Sensory Perception Quotient, SPQ), and an auditory gating paradigm while monitored on EEG. RESULTS CTD adults exhibited greater SOR. Neurotypical and CTD adults did not differ in P50, N100, or P200 gating ratios. In regression analyses, N100 gating ratio was significantly associated with SGI score; the magnitude of this association was greater for neurotypical than CTD adults. No other significant associations emerged between gating ratios and SOR measures. CONCLUSION Findings do not support sensory gating impairment as a mechanism underpinning SOR in CTD. The relationship between N100 gating and SOR warrants further investigation. SIGNIFICANCE This is the first study to examine auditory gating in individuals with CTD.
Collapse
Affiliation(s)
- David A Isaacs
- Department of Neurology, Vanderbilt University Medical Center, 1161 21st Ave S, Nashville, TN 37232, USA.
| | - Andrew Xue
- Department of Neuroscience, Vanderbilt University, 2201 West End Ave, Nashville, TN 37235, USA.
| | - Alexander C Conley
- Center for Cognitive Medicine, Vanderbilt University Medical Center, 1601 23rd Ave S, Nashville, TN 37212, USA.
| | - Alexandra P Key
- Department of Pediatrics, Marcus Autism Center, Emory University School of Medicine, 1920 Briarcliff Rd, NE, Atlanta, GA 30329, USA.
| |
Collapse
|
4
|
Yilmaz AY, Ruzicka E, Jankovic J. Leg stereotypy syndrome: phenomenological and quantitative analysis. J Neurol 2024; 271:5519-5524. [PMID: 38898269 DOI: 10.1007/s00415-024-12501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Leg stereotypy syndrome (LSS) is a very common, yet underrecognized condition. The pathophysiology of the condition is not well understood. OBJECTIVE To evaluate and describe the visual kinematic characteristics of the repetitive leg movements in individuals with LSS. METHODS In this study, we identified and videotaped individuals diagnosed with LSS at the Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, Houston, Texas between 2000 and 2023. Only patients with LSS and without any co-morbidities were included in the study. Their medical records were carefully reviewed, and the demographic and clinical data were entered into a database. Video recordings of the repetitive leg movements were then analyzed using TremAn software. RESULTS We identified 14 individuals with LSS who were videotaped at our center. The videos of the 5 cases were too brief and therefore not suitable for TremAn quantitative analysis. The remaining 9 individuals exhibited regular rhythmic oscillations of the legs. Among these, two individuals displayed rhythmic movements only in video segments where their legs were in crossed positions. The other 7 individuals had regular rhythmic oscillations, always with the toes resting on the floor with the heels raised. Frequency analysis showed values between 4.5 and 6.5 Hz, fairly consistent with a variance below 0.5 Hz in individual cases. The oscillation frequency changed from 5.7 Hz to 2.7 Hz while standing. CONCLUSION In this study, 6 of 9 individuals with LSS showed 4.5-6.5 Hz regular rhythmic leg movements. Studies involving a larger LSS population with additional electrophysiological evaluations are needed to obtain further insights into this common movement disorder.
Collapse
Affiliation(s)
- Abdullah Yasir Yilmaz
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, 77030-4202, USA
| | - Evzen Ruzicka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, 77030-4202, USA.
| |
Collapse
|
5
|
Marshall RD, Menniti FS, Tepper MA. A Novel PDE10A Inhibitor for Tourette Syndrome and Other Movement Disorders. Cells 2024; 13:1230. [PMID: 39056811 PMCID: PMC11274801 DOI: 10.3390/cells13141230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Tourette syndrome is a neurodevelopmental movement disorder involving basal ganglia dysfunction. PDE10A inhibitors modulate signaling in the striatal basal ganglia nuclei and are thus of interest as potential therapeutics in treating Tourette syndrome and other movement disorders. METHODS The preclinical pharmacology and toxicology, human safety and tolerability, and human PET striatal enzyme occupancy data for the PDE10A inhibitor EM-221 are presented. RESULTS EM-221 inhibited PDE10A with an in vitro IC50 of 9 pM and was >100,000 selective vs. other PDEs and other CNS receptors and enzymes. In rats, at doses of 0.05-0.50 mg/kg, EM-221 reduced hyperlocomotion and the disruption of prepulse inhibition induced by MK-801, attenuated conditioned avoidance, and facilitated novel object recognition, consistent with PDE10A's inhibition. EM-221 displayed no genotoxicity and was well tolerated up to 300 mg/kg in rats and 100 mg/kg in dogs. In single- and multiple-day ascending dose studies in healthy human volunteers, EM-221 was well tolerated up to 10 mg, with a maximum tolerated dose of 15 mg. PET imaging indicated that a PDE10A enzyme occupancy of up to 92.8% was achieved with a ~24 h half-life. CONCLUSIONS The preclinical and clinical data presented here support the study of EM-221 in phase 2 trials of Tourette syndrome and other movement disorders.
Collapse
Affiliation(s)
| | - Frank S. Menniti
- MindImmune Therapeutics, Inc., Kingston, RI 02881, USA;
- The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
| | - Mark A. Tepper
- EuMentis Therapeutics Inc., 275 Grove Street, 2-400, Newton, MA 02466, USA;
| |
Collapse
|
6
|
Thielen H, Welkenhuyzen L, Tuts N, Vangkilde S, Lemmens R, Wibail A, Lafosse C, Huenges Wajer IMC, Gillebert CR. Why am I overwhelmed by bright lights? The behavioural mechanisms of post-stroke visual hypersensitivity. Neuropsychologia 2024; 198:108879. [PMID: 38570111 DOI: 10.1016/j.neuropsychologia.2024.108879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/23/2023] [Revised: 02/15/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
After stroke, patients can experience visual hypersensitivity, an increase in their sensitivity for visual stimuli as compared to their state prior to the stroke. Candidate behavioural mechanisms for these subjective symptoms are atypical bottom-up sensory processing and impaired selective attention, but empirical evidence is currently lacking. In the current study, we aimed to investigate the relationship between post-stroke visual hypersensitivity and sensory thresholds, sensory processing speed, and selective attention using computational modelling of behavioural data. During a whole/partial report task, participants (51 stroke patients, 76 orthopedic patients, and 77 neurotypical adults) had to correctly identify a single target letter that was presented alone (for 17-100 ms) or along a distractor (for 83ms). Performance on this task was used to estimate the sensory threshold, sensory processing speed, and selective attention abilities of each participant. In the stroke population, both on a group and individual level, there was evidence for impaired selective attention and -to a lesser extent- lower sensory thresholds in patients with post-stroke visual hypersensitivity as compared to neurotypical adults, orthopedic patients, or stroke patients without post-stroke sensory hypersensitivity. These results provide a significant advancement in our comprehension of post-stroke visual hypersensitivity and can serve as a catalyst for further investigations into the underlying mechanisms of sensory hypersensitivity after other types of acquired brain injury as well as post-injury hypersensitivity for other sensory modalities.
Collapse
Affiliation(s)
- H Thielen
- Department Brain & Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - L Welkenhuyzen
- Department Brain & Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium; Department Psychology, Hospital East-Limbourgh, Genk, Belgium; TRACE, Centre for Translational Psychological Research (TRACE), KU Leuven - Hospital East-Limbourgh, Genk, Belgium
| | - N Tuts
- Department Brain & Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - S Vangkilde
- Department of Psychology, Faculty of Social Sciences, University of Copenhagen, Copenhagen, Denmark; Child and Adolescent Mental Health Center, Copenhagen University Hospital, Copenhagen, Denmark
| | - R Lemmens
- Experimental Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - A Wibail
- Neurology, Hospital East-Limbourgh, Genk, Belgium
| | - C Lafosse
- Paramedical and Scientific Director, RevArte Rehabilitation Hospital, Edegem, Belgium
| | - I M C Huenges Wajer
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, the Netherlands; Experimental Psychology, Utrecht University, the Netherlands
| | - C R Gillebert
- Department Brain & Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium; TRACE, Centre for Translational Psychological Research (TRACE), KU Leuven - Hospital East-Limbourgh, Genk, Belgium.
| |
Collapse
|
7
|
Orth L, Meeh J, Leiding D, Habel U, Neuner I, Sarkheil P. Aberrant Functional Connectivity of the Salience Network in Adult Patients with Tic Disorders: A Resting-State fMRI Study. eNeuro 2024; 11:ENEURO.0223-23.2024. [PMID: 38744491 PMCID: PMC11167695 DOI: 10.1523/eneuro.0223-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2023] [Revised: 12/27/2023] [Accepted: 02/26/2024] [Indexed: 05/16/2024] Open
Abstract
Tic disorders (TD) are characterized by the presence of motor and/or vocal tics. Common neurophysiological frameworks suggest dysregulations of the cortico-striatal-thalamo-cortical (CSTC) brain circuit that controls movement execution. Besides common tics, there are other "non-tic" symptoms that are primarily related to sensory perception, sensorimotor integration, attention, and social cognition. The existence of these symptoms, the sensory tic triggers, and the modifying effect of attention and cognitive control mechanisms on tics may indicate the salience network's (SN) involvement in the neurophysiology of TD. Resting-state functional MRI measurements were performed in 26 participants with TD and 25 healthy controls (HC). The group differences in resting-state functional connectivity patterns were measured based on seed-to-voxel connectivity analyses. Compared to HC, patients with TD exhibited altered connectivity between the core regions of the SN (insula, anterior cingulate cortex, and temporoparietal junction) and sensory, associative, and motor-related cortices. Furthermore, connectivity changes were observed in relation to the severity of tics in the TD group. The SN, particularly the insula, is likely to be an important site of dysregulation in TD. Our results provide evidence for large-scale neural deviations in TD beyond the CSTC pathologies. These findings may be relevant for developing treatment targets.
Collapse
Affiliation(s)
- Linda Orth
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Johanna Meeh
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany
| | - Delia Leiding
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Neuroscience and Medicine 4, INM-4, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Pegah Sarkheil
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52074 Aachen, Germany
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany
| |
Collapse
|
8
|
Ramsey KA, McGuire JF. Advancements in the phenomenology, assessment, and treatment of Tourette syndrome. Curr Opin Psychiatry 2024; 37:57-64. [PMID: 38226540 PMCID: PMC10922452 DOI: 10.1097/yco.0000000000000922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/17/2024]
Abstract
PURPOSE OF REVIEW Tourette syndrome (TS) and chronic tic disorders, collectively referred to as TS, are relatively common childhood onset neuropsychiatric conditions associated with functional impairment and distress. Over the past several years, clinical research has contributed to the advancement of the field's understanding of mechanisms and clinical correlates of TS. This progress has led to the development of key assessment tools and the implementation of novel interventions for individuals with TS. RECENT FINDINGS This article provides a review of innovative TS research focusing on four key themes: investigation of clinical phenomenology of TS; validation of assessment tools for TS; dissemination of current evidence-based treatments for TS; and exploration of new intervention programs. SUMMARY Cumulatively, this growing body of work presents considerable progress and provides a path forward to improve the assessment and treatment of TS.
Collapse
Affiliation(s)
- Kesley A Ramsey
- Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine
| | | |
Collapse
|
9
|
Trau SP, Singer HS. Tourette Syndrome and Tic Disorders. Pediatr Rev 2024; 45:85-95. [PMID: 38296781 DOI: 10.1542/pir.2023-006014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2024]
Affiliation(s)
- Steven P Trau
- Division of Child Neurology, Department of Neurology, University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC
| | - Harvey S Singer
- Department of Neurology, Johns Hopkins Hospital and the Kennedy Krieger Institute, Baltimore, MD
| |
Collapse
|
10
|
Thielen H, Huenges Wajer IMC, Tuts N, Welkenhuyzen L, Lafosse C, Gillebert CR. The Multi-Modal Evaluation of Sensory Sensitivity (MESSY): Assessing a commonly missed symptom of acquired brain injury. Clin Neuropsychol 2024; 38:377-411. [PMID: 37291083 DOI: 10.1080/13854046.2023.2219024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Objective: Sensory hypersensitivity is common after acquired brain injury. Since appropriate diagnostic tools are lacking, these complaints are overlooked by clinicians and available literature is limited to light and noise hypersensitivity after concussion. This study aimed to investigate the prevalence of sensory hypersensitivity in other modalities and after other types of brain injury. Method: We developed the Multi-Modal Evaluation of Sensory Sensitivity (MESSY), a patient-friendly questionnaire that assesses sensory sensitivity across multiple sensory modalities. 818 neurotypical adults (mean age = 49; 244 male) and 341 chronic acquired brain injury patients (including stroke, traumatic brain injury, and brain tumour patients) (mean age = 56; 126 male) completed the MESSY online. Results: The MESSY had a high validity and reliability in neurotypical adults. Post-injury sensory hypersensitivity (examined using open-ended questions) was reported by 76% of the stroke patients, 89% of the traumatic brain injury patients, and 82% of the brain tumour patients. These complaints occurred across all modalities with multisensory, visual, and auditory hypersensitivity being the most prevalent. Patients with post-injury sensory hypersensitivity reported a higher sensory sensitivity severity on the multiple-choice items of the MESSY as compared to neurotypical adults and acquired brain injury patients without post-injury sensory hypersensitivity (across all sensory modalities) (effect sizes (partial eta squared) ranged from .06 to .22). Conclusions: These results show that sensory hypersensitivity is prevalent after different types of acquired brain injury as well as across several sensory modalities. The MESSY can improve recognition of these symptoms and facilitate further research.
Collapse
Affiliation(s)
- Hella Thielen
- Department Brain & Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Irene M C Huenges Wajer
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
- Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| | - Nora Tuts
- Department Brain & Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Lies Welkenhuyzen
- Department Brain & Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department Psychology, Hospital East-Limbourgh, Genk, Belgium
- TRACE, Centre for Translational Psychological Research (TRACE), Genk, Belgium
| | - Cristophe Lafosse
- Paramedical and Scientific Director, RevArte Rehabilitation Hospital, Edegem, Belgium
| | - Celine R Gillebert
- Department Brain & Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- TRACE, Centre for Translational Psychological Research (TRACE), Genk, Belgium
| |
Collapse
|
11
|
Sapozhnikov Y, Vermilion J. Co-Occurring Anxiety in Youth with Tic Disorders: A Review. J Child Adolesc Psychopharmacol 2023; 33:402-408. [PMID: 37870770 DOI: 10.1089/cap.2022.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 10/24/2023]
Abstract
Objective: To review the current state of the literature regarding anxiety symptoms and anxiety disorders in chronic tic disorder (CTD). Results: We conducted a literature search on anxiety and tic disorders. Anxiety symptoms and anxiety disorders are common in youth with CTD, with ∼30%-50% of youth with CTD having at least one co-occurring anxiety disorder. Tics often improve by young adulthood but anxiety symptoms tend to persist, or worsen, over time. Anxiety and tics are closely related, but the exact nature of their relationship is poorly understood. We discuss some potential ways in which anxiety and tics are linked with an emphasis on the underlying brain circuitry involved. The relationship between anxiety and tics may be related to the premonitory urge. In addition, stress hormones may link anxiety and tics. Individuals with CTD have greater activation of their hypothalamic-pituitary-adrenal system in response to acute stress. We also review the impact of anxiety on youth with CTD and approaches to management of anxiety in youth. Conclusions: Anxiety is common in youth with CTD, is associated with more severe CTD, and can adversely affect a child's function. Thus, it is important to identify anxiety disorders in CTD and manage them appropriately.
Collapse
Affiliation(s)
- Yelizaveta Sapozhnikov
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jennifer Vermilion
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
12
|
Falck-Ytter T, Bussu G. The sensory-first account of autism. Neurosci Biobehav Rev 2023; 153:105405. [PMID: 37742990 DOI: 10.1016/j.neubiorev.2023.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Affiliation(s)
- Terje Falck-Ytter
- Development and Neurodiversity Lab, Department of Psychology, Uppsala University, Uppsala, Sweden; Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Giorgia Bussu
- Development and Neurodiversity Lab, Department of Psychology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
13
|
Williams ZJ, Schaaf R, Ausderau KK, Baranek GT, Barrett DJ, Cascio CJ, Dumont RL, Eyoh EE, Failla MD, Feldman JI, Foss-Feig JH, Green HL, Green SA, He JL, Kaplan-Kahn EA, Keçeli-Kaysılı B, MacLennan K, Mailloux Z, Marco EJ, Mash LE, McKernan EP, Molholm S, Mostofsky SH, Puts NAJ, Robertson CE, Russo N, Shea N, Sideris J, Sutcliffe JS, Tavassoli T, Wallace MT, Wodka EL, Woynaroski TG. Examining the latent structure and correlates of sensory reactivity in autism: a multi-site integrative data analysis by the autism sensory research consortium. Mol Autism 2023; 14:31. [PMID: 37635263 PMCID: PMC10464466 DOI: 10.1186/s13229-023-00563-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Differences in responding to sensory stimuli, including sensory hyperreactivity (HYPER), hyporeactivity (HYPO), and sensory seeking (SEEK) have been observed in autistic individuals across sensory modalities, but few studies have examined the structure of these "supra-modal" traits in the autistic population. METHODS Leveraging a combined sample of 3868 autistic youth drawn from 12 distinct data sources (ages 3-18 years and representing the full range of cognitive ability), the current study used modern psychometric and meta-analytic techniques to interrogate the latent structure and correlates of caregiver-reported HYPER, HYPO, and SEEK within and across sensory modalities. Bifactor statistical indices were used to both evaluate the strength of a "general response pattern" factor for each supra-modal construct and determine the added value of "modality-specific response pattern" scores (e.g., Visual HYPER). Bayesian random-effects integrative data analysis models were used to examine the clinical and demographic correlates of all interpretable HYPER, HYPO, and SEEK (sub)constructs. RESULTS All modality-specific HYPER subconstructs could be reliably and validly measured, whereas certain modality-specific HYPO and SEEK subconstructs were psychometrically inadequate when measured using existing items. Bifactor analyses supported the validity of a supra-modal HYPER construct (ωH = .800) but not a supra-modal HYPO construct (ωH = .653), and supra-modal SEEK models suggested a more limited version of the construct that excluded some sensory modalities (ωH = .800; 4/7 modalities). Modality-specific subscales demonstrated significant added value for all response patterns. Meta-analytic correlations varied by construct, although sensory features tended to correlate most with other domains of core autism features and co-occurring psychiatric symptoms (with general HYPER and speech HYPO demonstrating the largest numbers of practically significant correlations). LIMITATIONS Conclusions may not be generalizable beyond the specific pool of items used in the current study, which was limited to caregiver report of observable behaviors and excluded multisensory items that reflect many "real-world" sensory experiences. CONCLUSION Of the three sensory response patterns, only HYPER demonstrated sufficient evidence for valid interpretation at the supra-modal level, whereas supra-modal HYPO/SEEK constructs demonstrated substantial psychometric limitations. For clinicians and researchers seeking to characterize sensory reactivity in autism, modality-specific response pattern scores may represent viable alternatives that overcome many of these limitations.
Collapse
Affiliation(s)
- Zachary J Williams
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Avenue South, Medical Center East, South Tower, Room 8310, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Roseann Schaaf
- Department of Occupational Therapy, College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson Autism Center of Excellence, Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Karla K Ausderau
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Grace T Baranek
- Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
| | - D Jonah Barrett
- Neuroscience Undergraduate Program, Vanderbilt University, Nashville, TN, USA
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Carissa J Cascio
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel L Dumont
- Department of Occupational Therapy, College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ekomobong E Eyoh
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | | | - Jacob I Feldman
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Avenue South, Medical Center East, South Tower, Room 8310, Nashville, TN, 37232, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
| | - Jennifer H Foss-Feig
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heather L Green
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shulamite A Green
- Department of Psychiatry and Biobehavioral Sciences, University of California - Los Angeles, Los Angeles, CA, USA
| | - Jason L He
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Elizabeth A Kaplan-Kahn
- Department of Psychology, Syracuse University, Syracuse, NY, USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Bahar Keçeli-Kaysılı
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Avenue South, Medical Center East, South Tower, Room 8310, Nashville, TN, 37232, USA
| | - Keren MacLennan
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
- Department of Psychology, Durham University, Durham, UK
| | - Zoe Mailloux
- Department of Occupational Therapy, College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elysa J Marco
- Department of Neurodevelopmental Medicine, Cortica Healthcare, San Rafael, CA, USA
| | - Lisa E Mash
- Division of Psychology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Elizabeth P McKernan
- Department of Psychology, Syracuse University, Syracuse, NY, USA
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sophie Molholm
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicolaas A J Puts
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Caroline E Robertson
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Natalie Russo
- Department of Psychology, Syracuse University, Syracuse, NY, USA
| | - Nicole Shea
- Department of Psychology, Syracuse University, Syracuse, NY, USA
- Division of Pulmonology and Sleep Medicine, Department of Pediatrics, Kaleida Health, Buffalo, NY, USA
| | - John Sideris
- Mrs. T.H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
| | - James S Sutcliffe
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Teresa Tavassoli
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK
| | - Mark T Wallace
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Ericka L Wodka
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Tiffany G Woynaroski
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, 1215 21st Avenue South, Medical Center East, South Tower, Room 8310, Nashville, TN, 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Communication Sciences and Disorders, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| |
Collapse
|
14
|
Leung BK, Merlin S, Walker AK, Lawther AJ, Paxinos G, Eapen V, Clarke R, Balleine BW, Furlong TM. Immp2l knockdown in male mice increases stimulus-driven instrumental behaviour but does not alter goal-directed learning or neuron density in cortico-striatal circuits in a model of Tourette syndrome and autism spectrum disorder. Behav Brain Res 2023; 452:114610. [PMID: 37541448 DOI: 10.1016/j.bbr.2023.114610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Cortico-striatal neurocircuits mediate goal-directed and habitual actions which are necessary for adaptive behaviour. It has recently been proposed that some of the core symptoms of autism spectrum disorder (ASD) and Gilles de la Tourette syndrome (GTS), such as tics and other repetitive behaviours, may emerge because of imbalances in these neurocircuits. We have recently developed a model of ASD and GTS by knocking down Immp2l, a mitochondrial gene frequently associated with these disorders. The current study sought to determine whether Immp2l knockdown (KD) in male mice alters flexible, goal- or cue- driven behaviour using procedures specifically designed to examine response-outcome and stimulus-response associations, which underlie goal-directed and habitual behaviour, respectively. Whether Immp2l KD alters neuron density in cortico-striatal neurocircuits known to regulate these behaviours was also examined. Immp2l KD mice and wild type-like mice (WT) were trained on Pavlovian and instrumental learning procedures where auditory cues predicted food delivery and lever-press responses earned a food outcome. It was demonstrated that goal-directed learning was not changed for Immp2l KD mice compared to WT mice, as lever-press responses were sensitive to changes in the value of the food outcome, and to contingency reversal and degradation. There was also no difference in the capacity of KD mice to form habitual behaviours compared to WT mice following extending training of the instrumental action. However, Immp2l KD mice were more responsive to auditory stimuli paired with food as indicated by a non-specific increase in lever response rates during Pavlovian-to-instrumental transfer. Finally, there were no alterations to neuron density in striatum or any prefrontal cortex or limbic brain structures examined. Thus, the current study suggests that Immp2l is not necessary for learned maladaptive goal or stimulus driven behaviours in ASD or GTS, but that it may contribute to increased capacity for external stimuli to drive behaviour. Alterations to stimulus-driven behaviour could potentially influence the expression of tics and repetitive behaviours, suggesting that genetic alterations to Immp2l may contribute to these core symptoms in ASD and GTS. Given that this is the first application of this battery of instrumental learning procedures to a mouse model of ASD or GTS, it is an important initial step in determining the contribution of known risk-genes to goal-directed versus habitual behaviours, which should be more broadly applied to other rodent models of ASD and GTS in the future.
Collapse
Affiliation(s)
- Beatrice K Leung
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Sam Merlin
- School of Science, Western Sydney University, Campbelltown, Sydney, NSW, Australia
| | - Adam K Walker
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, Australia; Discipline of Psychiatry and Mental Health, University of New South Wales, NSW, Australia
| | - Adam J Lawther
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, Australia
| | - George Paxinos
- Neuroscience Research Australia, Randwick, NSW, Australia; School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Valsamma Eapen
- Discipline of Psychiatry and Mental Health, University of New South Wales, NSW, Australia; Mental Health Research Unit, South Western Sydney Local Health District, Liverpool, Australia
| | - Raymond Clarke
- Ingham Institute, Discipline of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Bernard W Balleine
- Decision Neuroscience Laboratory, School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Teri M Furlong
- Neuroscience Research Australia, Randwick, NSW, Australia; School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
15
|
Thielen H, Tuts N, Lafosse C, Gillebert CR. The Neuroanatomy of Poststroke Subjective Sensory Hypersensitivity. Cogn Behav Neurol 2023; 36:68-84. [PMID: 37026772 DOI: 10.1097/wnn.0000000000000341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2022] [Accepted: 11/09/2022] [Indexed: 04/08/2023]
Abstract
BACKGROUND Although subjective sensory hypersensitivity is prevalent after stroke, it is rarely recognized by health care providers, and its neural mechanisms are largely unknown. OBJECTIVE To investigate the neuroanatomy of poststroke subjective sensory hypersensitivity as well as the sensory modalities in which subjective sensory hypersensitivity can occur by conducting both a systematic literature review and a multiple case study of patients with subjective sensory hypersensitivity. METHOD For the systematic review, we searched three databases (Web of Science, PubMed, and Scopus) for empirical articles discussing the neuroanatomy of poststroke subjective sensory hypersensitivity in humans. We assessed the methodological quality of the included studies using the case reports critical appraisal tool and summarized the results using a qualitative synthesis. For the multiple case study, we administered a patient-friendly sensory sensitivity questionnaire to three individuals with a subacute right-hemispheric stroke and a matched control group and delineated brain lesions on a clinical brain scan. RESULTS Our systematic literature search resulted in four studies (describing eight stroke patients), all of which linked poststroke subjective sensory hypersensitivity to insular lesions. The results of our multiple case study indicated that all three stroke patients reported an atypically high sensitivity to different sensory modalities. These patients' lesions overlapped with the right anterior insula, the claustrum, and the Rolandic operculum. CONCLUSION Both our systematic literature review and our multiple case study provide preliminary evidence for a role of the insula in poststroke subjective sensory hypersensitivity and suggest that poststroke subjective sensory hypersensitivity can occur in different sensory modalities.
Collapse
Affiliation(s)
- Hella Thielen
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Nora Tuts
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | - Céline Raymond Gillebert
- Department of Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- TRACE, Centre for Translational Psychological Research, KU Leuven-Hospital East-Limbourgh, Genk, Belgium
| |
Collapse
|
16
|
Williams ZJ, Schaaf R, Ausderau KK, Baranek GT, Barrett DJ, Cascio CJ, Dumont RL, Eyoh EE, Failla MD, Feldman JI, Foss-Feig JH, Green HL, Green SA, He JL, Kaplan-Kahn EA, Keçeli-Kaysılı B, MacLennan K, Mailloux Z, Marco EJ, Mash LE, McKernan EP, Molholm S, Mostofsky SH, Puts NAJ, Robertson CE, Russo N, Shea N, Sideris J, Sutcliffe JS, Tavassoli T, Wallace MT, Wodka EL, Woynaroski TG. Examining the Latent Structure and Correlates of Sensory Reactivity in Autism: A Multi-site Integrative Data Analysis by the Autism Sensory Research Consortium. RESEARCH SQUARE 2023:rs.3.rs-2447849. [PMID: 36712092 PMCID: PMC9882639 DOI: 10.21203/rs.3.rs-2447849/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023]
Abstract
Background Differences in responding to sensory stimuli, including sensory hyperreactivity (HYPER), hyporeactivity (HYPO), and sensory seeking (SEEK) have been observed in autistic individuals across sensory modalities, but few studies have examined the structure of these "supra-modal" traits in the autistic population. Methods Leveraging a combined sample of 3,868 autistic youth drawn from 12 distinct data sources (ages 3-18 years and representing the full range of cognitive ability), the current study used modern psychometric and meta-analytic techniques to interrogate the latent structure and correlates of caregiver-reported HYPER, HYPO, and SEEK within and across sensory modalities. Bifactor statistical indices were used to both evaluate the strength of a "general response pattern" factor for each supra-modal construct and determine the added value of "modality-specific response pattern" scores (e.g., Visual HYPER). Bayesian random-effects integrative data analysis models were used to examine the clinical and demographic correlates of all interpretable HYPER, HYPO and SEEK (sub)constructs. Results All modality-specific HYPER subconstructs could be reliably and validly measured, whereas certain modality-specific HYPO and SEEK subconstructs were psychometrically inadequate when measured using existing items. Bifactor analyses unambiguously supported the validity of a supra-modal HYPER construct (ω H = .800), whereas a coherent supra-modal HYPO construct was not supported (ω H = .611), and supra-modal SEEK models suggested a more limited version of the construct that excluded some sensory modalities (ω H = .799; 4/7 modalities). Within each sensory construct, modality-specific subscales demonstrated substantial added value beyond the supra-modal score. Meta-analytic correlations varied by construct, although sensory features tended to correlate most strongly with other domains of core autism features and co-occurring psychiatric symptoms. Certain subconstructs within the HYPO and SEEK domains were also associated with lower adaptive behavior scores. Limitations: Conclusions may not be generalizable beyond the specific pool of items used in the current study, which was limited to parent-report of observable behaviors and excluded multisensory items that reflect many "real-world" sensory experiences. Conclusion Psychometric issues may limit the degree to which some measures of supra-modal HYPO/SEEK can be interpreted. Depending on the research question at hand, modality-specific response pattern scores may represent a valid alternative method of characterizing sensory reactivity in autism.
Collapse
|
17
|
Tics: neurological disorders determined by a deficit in sensorimotor gating processes. Neurol Sci 2022; 43:5839-5850. [PMID: 35781754 PMCID: PMC9474467 DOI: 10.1007/s10072-022-06235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022]
Abstract
Tic related disorders affect 4–20% of the population, mostly idiopathic, can be grouped in a wide spectrum of severity, where the most severe end is Tourette Syndrome (TS). Tics are arrhythmic hyperkinesias to whom execution the subject is forced by a “premonitory urge” that can be classified as sensory tic, just-right experience or urge without obsession. If an intact volitional inhibition allows patients to temporarily suppress tics, a lack or deficit in automatic inhibition is involved in the genesis of the disorder. Studies have assessed the presence of intrinsic microscopic and macroscopic anomalies in striatal circuits and relative cortical areas in association with a hyperdopaminergic state in the basal forebrain. Prepulse inhibition (PPI) of the startle reflex is a measure of inhibitory functions by which a weak sensory stimulus inhibits the elicitation of a startle response determined by a sudden intense stimulus. It is considered an operation measure of sensorimotor gating, a neural process by which unnecessary stimuli are eliminated from awareness. Evidence points out that the limbic domain of the CSTC loops, dopamine and GABA receptors within the striatum play an important role in PPI modulation. It is conceivable that a sensorimotor gating deficit may be involved in the genesis of premonitory urge and symptoms. Therefore, correcting the sensorimotor gating deficit may be considered a target for tic-related disorders therapies; in such case PPI (as well as other indirect estimators of sensorimotor gating) could represent therapeutic impact predictors.
Collapse
|
18
|
Ahn JS, Jhung K, Oh J, Heo J, Kim JJ, Park JY. Association of resting-state theta–gamma coupling with selective visual attention in children with tic disorders. Front Hum Neurosci 2022; 16:1017703. [PMID: 36248690 PMCID: PMC9558697 DOI: 10.3389/fnhum.2022.1017703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
A tic disorder (TD) is a neurodevelopmental disorder characterized by tics, which are repetitive movements and/or vocalizations that occur due to aberrant sensory gating. Its pathophysiology involves dysfunction in multiple parts of the cortico-striato-thalamo-cortical circuits. Spontaneous brain activity during the resting state can be used to evaluate the baseline brain state, and it is associated with various aspects of behavior and cognitive processes. Theta–gamma coupling (TGC) is an emerging technique for examining how neural networks process information through interactions. However, the resting-state TGC of patients with TD and its correlation with cognitive function have not yet been studied. We investigated the resting-state TGC of 13 patients with TD and compared it with that of 13 age-matched healthy children. The participants underwent resting-state electroencephalography with their eyes closed. At the global level, patients with TD showed a significantly lower resting-state TGC than healthy children. Resting-state TGC with the eyes closed was significantly negatively correlated with the attention quotient calculated for omission errors in a selective visual attention test. These findings indicate that the resting-state brain network, which is important for the attentional processing of visual information, is dysfunctional in patients with TD. Additionally, these findings support the view that TGC reflects information processing and signal interactions at the global level. Patients with TD may have difficulty gating irrelevant sensory information in the resting state while their eyes are closed.
Collapse
Affiliation(s)
- Ji Seon Ahn
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Department of Psychiatry, Yonsei University College of Medicine, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
- Center for Digital Health, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Kyungun Jhung
- Department of Psychiatry, International St. Mary's Hospital, Catholic Kwandong University, Incheon, South Korea
| | - Jooyoung Oh
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Department of Psychiatry, Yonsei University College of Medicine, Gangnam Severance Hospital, Yonsei University Health System, Seoul, South Korea
| | - Jaeseok Heo
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Department of Laboratory Medicine, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Jae-Jin Kim
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Department of Psychiatry, Yonsei University College of Medicine, Gangnam Severance Hospital, Yonsei University Health System, Seoul, South Korea
| | - Jin Young Park
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Department of Psychiatry, Yonsei University College of Medicine, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
- Center for Digital Health, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
- *Correspondence: Jin Young Park
| |
Collapse
|
19
|
Dystonic motor and phonic tics in Tourette syndrome. J Neurol 2022; 269:5312-5318. [PMID: 35567613 DOI: 10.1007/s00415-022-11174-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2022] [Revised: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Dystonic tics differ from clonic tics by their slower and more sustained nature. Dystonic tics are often present in patients with Tourette syndrome (TS) and other tic-disorders. However, their phenomenology and impact on overall impairment have not been extensively studied. MATERIALS AND METHODS We assessed clinical history and tic duration in video-recordings from patients with TS evaluated at our movement disorders clinic. Dystonic tics were defined as those lasting ≥ 1000 ms (ms). RESULTS Of the total of 201 patients with TS, there were 156 with video-recordings suitable for tic duration analysis, of their tics, 57 (36.5%) of whom had dystonic motor tics, including 9 (5.7%) with dystonic phonic tics. Dystonic motor tics had a duration range between 1033 and 15,000 ms and dystonic phonic tics between 1132 and 17,766 ms. Patients with dystonic tics were older 24.4 vs. 16.5 years (P = 0.005) and had an older age at onset 12.9 vs. 7.2 years (P < 0.001), than patients without dystonic tics. The bivariate analysis showed an association between the presence of dystonic tics, greater tic severity and wider body distribution. The multivariate regression analysis showed a statistical association with older age at evaluation (P = 0.001), greater tic severity on video-recordings (P = 0.001) and co-occurrence with complex motor tics (P = 0.020). The presence of dystonic tics increased the risk for being considered for deep brain stimulation therapy, odds ratio: 15.7 (P = 0.002). CONCLUSION Dystonic tics, observed in about a third of patients with TS, are associated with increased severity of TS.
Collapse
|
20
|
Hartmann A, Atkinson-Clement C, Depienne C, Black K. Tourette syndrome research highlights from 2020. F1000Res 2022; 11:45. [PMID: 35464046 PMCID: PMC9021667 DOI: 10.12688/f1000research.75628.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 04/28/2022] [Indexed: 11/20/2022] Open
Abstract
We present here research from 2020 relevant to Tourette syndrome (TS). The authors briefly summarize a few reports they consider most important or interesting.
Collapse
Affiliation(s)
- Andreas Hartmann
- Department of Neurology, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | | | - Christel Depienne
- Institute of Human Genetics,, University Hospital Essen, Essen, 45122, Germany
| | - Kevin Black
- Department of Psychiatry, Neurology, and Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| |
Collapse
|
21
|
Defresne P, Mottron L. Clinical Situations in Which the Diagnosis of Autism is Debatable: An Analysis and Recommendations. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2022; 67:331-335. [PMID: 34482753 PMCID: PMC9065488 DOI: 10.1177/07067437211041469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
The "autism spectrum disorder" (ASD) construct and its current diagnostic criteria have led to the inclusion of increasingly heterogeneous and decreasingly atypical individuals under its definition. This broad category, based on the polymorphic clinical expression of common genetic variants underpinning the risk of autism, is likely beneficial for certain individuals. However, determining the boundaries between ASD and typical individuals, as well as those with other neurodevelopmental conditions, remains an issue of which the importance is growing with the increase in ASD prevalence. We identified four clinical contexts associated with a questionable, poorly justified, or unhelpful ASD diagnosis: (1) those in which diagnostic instruments raise uncertainties, (2) in the context of a subclinical presentation, (3) when early autistic signs tend to fade away during development, and (4) when comorbidities are prominent. We argue that in certain cases, a diagnosis of ASD may not be the most suitable, timely, or helpful medical act and provide recommendations for clinical practice when facing such situations.
Collapse
Affiliation(s)
- Pierre Defresne
- Center for Autism Spectrum Disorders, SUSA Foundation, 54521University of Mons, Belgium
| | - Laurent Mottron
- Faculty of Medicine, Psychiatry and Addictology Department, University of Montreal, Montreal, Quebec, Canada.,439501CIUSSS-Nord-de-l'Ile de Montréal, 12368Hospital Riviere-des-Prairies, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Isaacs D, Key AP, Cascio CJ, Conley AC, Riordan H, Walker HC, Wallace MT, Claassen DO. Cross-disorder comparison of sensory over-responsivity in chronic tic disorders and obsessive-compulsive disorder. Compr Psychiatry 2022; 113:152291. [PMID: 34952304 PMCID: PMC8792289 DOI: 10.1016/j.comppsych.2021.152291] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/19/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Sensory over-responsivity (SOR) refers to excessively intense and/or prolonged behavioral responses to environmental stimuli typically perceived as non-aversive. SOR is prevalent in several neurodevelopmental disorders, including chronic tic disorders (CTDs) and obsessive-compulsive disorder (OCD). Few studies have examined the extent and clinical correlates of SOR across disorders, limiting insights into the phenomenon's transdiagnostic clinical and biological relevance. Such cross-disorder comparisons are of particular interest for CTDs and OCD given their frequent co-occurrence. OBJECTIVE We sought to compare the magnitude of SOR between adults with CTD and adults with OCD and to identify the clinical factors most strongly associated with SOR across these disorders. METHODS We enrolled 207 age- and sex-matched participants across four diagnostic categories: CTD without OCD (designated "CTD/OCD-"; n = 37), CTD with OCD ("CTD/OCD+"; n = 32), OCD without tic disorder ("OCD"; n = 69), and healthy controls (n = 69). Participants completed a self-report battery of rating scales assessing SOR (Sensory Gating Inventory, SGI), obsessive-compulsive symptoms (Dimensional Obsessive-Compulsive Scale, DOCS), inattention and hyperactivity (Adult ADHD Self-Report Screening Scale for DSM-5, ASRS-5), anxiety (Generalized Anxiety Disorder-7), and depression (Patient Health Questionnaire-9). CTD participants were also administered the Yale Global Tic Severity Scale (YGTSS). To examine between-group differences in SOR, we compared SGI score across all groups and between pairs of groups. To examine the relationship of SOR with other clinical factors, we performed multivariable linear regression. RESULTS CTD/OCD-, CTD/OCD+, and OCD participants were 86.7%, 87.6%, and 89.5%, respectively, more likely to have higher SGI total scores than healthy controls. SGI total score did not differ between CTD/OCD-, CTD/OCD+, and OCD groups. In the regression model of log-transformed SGI total score, OCD diagnosis, DOCS score, and ASRS-5 score each contributed significantly to model goodness-of-fit, whereas CTD diagnosis and YGTSS total tic score did not. CONCLUSION SOR is prevalent in adults with CTD and in adults with OCD but does not significantly differ in magnitude between these disorders. Across CTD, OCD, and healthy control adult populations, SOR is independently associated with both obsessive-compulsive and ADHD symptoms, suggesting a transdiagnostic relationship between these sensory and psychiatric manifestations. Future cross-disorder, longitudinal, and translational research is needed to clarify the role and prognostic import of SOR in CTDs, OCD, and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- David Isaacs
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States.
| | - Alexandra P Key
- Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, United States; Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, United States.
| | - Carissa J Cascio
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, United States; Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, United States; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States.
| | - Alexander C Conley
- Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States.
| | - Heather Riordan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States.
| | - Harrison C Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, United States; Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, United States; Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, United States; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Department of Psychology, Vanderbilt University, Nashville, TN, United States.
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
23
|
Narapareddy A, Eckland MR, Riordan HR, Cascio CJ, Isaacs DA. Altered Interoceptive Sensibility in Adults With Chronic Tic Disorder. Front Psychiatry 2022; 13:914897. [PMID: 35800022 PMCID: PMC9253400 DOI: 10.3389/fpsyt.2022.914897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/07/2022] [Accepted: 05/31/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Interoception refers to the sensing, interpretation, integration, and regulation of signals about the body's internal physiological state. Interoceptive sensibility is the subjective evaluation of interoceptive experience, as assessed by self-report measures, and is abnormal in numerous neuropsychiatric disorders. Research examining interoceptive sensibility in individuals with chronic tic disorders (CTDs), however, has yielded conflicting results, likely due to methodologic differences between studies and small sample sizes. OBJECTIVE We sought to compare interoceptive sensibility between adults with CTD and healthy controls, adjusting for co-occurring psychiatric symptoms, and to examine the relationship of interoceptive sensibility with other CTD clinical features, in particular, premonitory urge. METHODS We recruited adults with CTDs and sex- and age-matched healthy controls to complete the Multidimensional Assessment of Interoceptive Awareness, Version 2 (MAIA-2), as well as a battery of measures assessing psychiatric symptoms prevalent in CTD populations. CTD participants additionally completed scales quantifying tic severity, premonitory urge severity, and health-related quality of life. We conducted between-group contrasts (Wilcoxon rank-sum test) for each MAIA-2 subscale, analyzed the effect of psychiatric symptoms on identified between-group differences (multivariable linear regression), and examined within-group relationships between MAIA-2 subscales and other clinical measures (Spearman rank correlations, multivariable linear regression). RESULTS Between adults with CTD (n = 48) and healthy controls (n = 48), MAIA-2 Noticing and Not-Worrying subscale scores significantly differed. After adjusting for covariates, lower MAIA-2 Not-Worrying subscale scores were significantly associated with female sex (β = 0.42, p < 0.05) and greater severity of obsessive-compulsive symptoms (β = -0.028, p < 0.01), but not with CTD diagnosis. After adjusting for severity of tics and obsessive-compulsive symptoms, a composite of MAIA-2 Noticing, Attention Regulation, Emotional Awareness, Self-Regulation, Body Listening, and Trusting subscales (β = 2.52, p < 0.01) was significantly associated with premonitory urge. CONCLUSION Study results revealed three novel findings: adults with CTD experience increased anxiety-associated somatization and increased general body awareness relative to healthy controls; anxiety-associated somatization is more closely associated with sex and obsessive-compulsive symptoms than with CTD diagnosis; and increased general body awareness is associated with greater severity of premonitory urges.
Collapse
Affiliation(s)
| | - Michelle R Eckland
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Heather R Riordan
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN, United States
| | - Carissa J Cascio
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, United States.,Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, United States.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - David A Isaacs
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Pediatrics, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN, United States
| |
Collapse
|
24
|
Lefebvre A, Cohen A, Maruani A, Amsellem F, Beggiato A, Amestoy A, Moal MLL, Umbricht D, Chatham C, Murtagh L, Bouvard M, Leboyer M, Bourgeron T, Delorme R. Discriminant value of repetitive behaviors in families with autism spectrum disorder and obsessional compulsive disorder probands. Autism Res 2021; 14:2373-2382. [PMID: 34278736 DOI: 10.1002/aur.2570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2020] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 11/06/2022]
Abstract
Repetitive behaviors (RB) represent a wide spectrum of symptoms ranging from sensory-motor stereotypies to complex cognitive rituals, frequently dichotomized as low- and high-order sub-groups of symptoms. Even though these subgroups are considered as phenomenologically distinct in autism spectrum disorder (ASD) and obsessive-compulsive disorder (OCD), brain imaging and genetic studies suggest that they have common mechanisms and pathways. This discrepancy may be explained by the frequent intellectual disability reported in ASD, which blurs the RB expressivity. Given the high heritability of RB, that is, the diversity of symptoms expressed in the relatives are dependent on those expressed in their probands, we hypothesize that if RB expressed in ASD or OCD are two distinct entities, then the RB expressed in relatives will also reflect these two dimensions. We thus conduct a linear discriminant analysis on RB in both the relatives of probands with ASD and OCD and subjects from the general population (n = 1023). The discriminant analysis results in a classification of 81.1% of the controls (p < 10-4 ), but poorly differentiated the ASD and OCD relatives (≈46%). The stepwise analysis reveals that five symptoms attributed to high-order RB and two related to low-order RB (including hypersensitivity) are the most discriminant. Our results support the idea that the difference of RB patterns in the relatives is mild compared with the distribution of symptoms in controls. Our findings reinforce the evidence of a common biological pattern of RB both in ASD and OCD but with minor differences, specific to each of these two neuro-developmental disorders. LAY SUMMARY: Repetitive behaviors (RB), a key symptom in the classification of both OCD and ASD, are phenomenologically considered as distinct in the two disorders, which is in contrast with brain imaging studies describing a common neural circuit. Intellectual disability, which is frequently associated with ASD, makes RB in ASD more difficult to understand as it affects the expression of the RB symptoms. To avoid this bias, we propose to consider the familial aggregation in ASD and OCD by exploring RB in the first-degree relatives of ASD and OCD. Our results highlight the existence of RB expressed in relatives compared to the general population, with a common pattern of symptoms in relatives of both ASD and OCD but also minor differences, specific to each of these two neuro-developmental disorders.
Collapse
Affiliation(s)
- Aline Lefebvre
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France.,Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France.,UMR3571 CNRS, Universite de Paris, Paris 7 Denis Diderot University, Paris, France
| | - Alicia Cohen
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France.,Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, EHESS, CNRS), Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Anna Maruani
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France.,Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | - Fréderique Amsellem
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France.,Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | - Anita Beggiato
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France.,Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | - Anouck Amestoy
- Autism Expert Centre, Charles Perrens Hospital, Bordeaux, France.,Medical Sciences Department, University of Bordeaux, Bordeaux, France
| | - Myriam Ly-Le Moal
- Institut Roche, Tour Horizons- Bureau 18M3, Boulogne-Billancourt, France
| | - Daniel Umbricht
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Christopher Chatham
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Lorraine Murtagh
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Manuel Bouvard
- Autism Expert Centre, Charles Perrens Hospital, Bordeaux, France.,Medical Sciences Department, University of Bordeaux, Bordeaux, France
| | - Marion Leboyer
- Fondation FondaMental, French National Science Foundation, Creteil, France.,Université Paris Est Créteil, AP-HP, DMU IMPACT, Psychiatry and Addictology Department, Mondor University Hospital, Créteil, France.,INSERM, U955, IMRB, Laboratoire de NeuroPsychiatrie translationnelle, Créteil, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France.,UMR3571 CNRS, Universite de Paris, Paris 7 Denis Diderot University, Paris, France
| | - Richard Delorme
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France.,Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France.,UMR3571 CNRS, Universite de Paris, Paris 7 Denis Diderot University, Paris, France.,Fondation FondaMental, French National Science Foundation, Creteil, France
| |
Collapse
|
25
|
Bailey AJ, Moussa-Tooks AB, Klein SD, Sponheim SR, Hetrick WP. The Sensory Gating Inventory-Brief. SCHIZOPHRENIA BULLETIN OPEN 2021; 2:sgab019. [PMID: 34414372 PMCID: PMC8369251 DOI: 10.1093/schizbullopen/sgab019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022]
Abstract
The Sensory Gating Inventory (SGI) is a 36-item measure used to assess an individual's subjective ability to modulate, filter, over-include, discriminate, attend to, and tolerate sensory stimuli. Due to its theoretical and empirical link with sensory processing deficits, this measure has been used extensively in studies of psychosis and other psychopathology. The current work fills a need within the field for a briefer measure of sensory gating aberrations that maintains the original measure's utility. For this purpose, large samples (total n = 1552) were recruited from 2 independent sites for item reduction/selection and brief measure validation, respectively. These samples reflected subgroups of individuals with a psychosis-spectrum disorder, at high risk for a psychosis-spectrum disorder, nonpsychiatric controls, and nonpsychosis psychiatric controls. Factor analyses and item-response models were used to create the SGI-Brief (SGI-B; 10 Likert-rated items), a unidimensional self-report measure that retains the original SGI's transdiagnostic (ie, present across disorders) utility and content breadth. Findings show that the SGI-B has excellent psychometric properties (alpha = 0.92) and demonstrates external validity through strong associations with measures of psychotic symptomatology, theoretically linked measures of personality (eg, perceptual dysregulation), and modest associations with laboratory-based sensory processing tasks in the auditory and visual domains on par with the original version. Accordingly, the SGI-B will be a valuable tool for dimensional and transdiagnostic examination of sensory gating abnormalities within clinical science research, while reducing administrator and participant burden.
Collapse
Affiliation(s)
- Allen J Bailey
- Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Alexandra B Moussa-Tooks
- Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Department of Neuroscience, Indiana University, Bloomington, IN, USA
| | - Samuel D Klein
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - William P Hetrick
- Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
- Department of Neuroscience, Indiana University, Bloomington, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- To whom correspondence should be addressed; 1101 E. 10th St., Bloomington, IN 47405, USA; tel: 812-855-2620, fax: 812-855-4691, e-mail:
| |
Collapse
|
26
|
Abstract
Neuropsychological studies indicate the presence of cognitive changes in patients with obsessive-compulsive disorder (OCD). Indeed, OCD may be included among the dysfunctions of the frontal lobes and their connections with the limbic system, associative cortex, and basal ganglia. P300 is a positive component of the human event-related potential (ERP); it is associated with processes of encoding, identification, and categorization constituting, as a whole, the superior cortical function of information processing. Thus, P300 explores several areas that are implicated in OCD pathophysiology. Our aim is to review all relevant studies on the P300 component of the human ERP in order to recognize any significant central nervous system (CNS) correlate of cognitive dysfunction in OCD. A PubMed-based literature search resulted in 35 articles assessing P300 in OCD and reporting neurophysiological correlates of response inhibition, cortical hyperarousal, and over-focused attention. A decreased P300 amplitude was reported in both adult and pediatric patients, with a trend toward normalization after pharmacological treatment. Source localization studies disclosed an association between P300 abnormalities and the functioning of brain regions involved in the pathophysiology of OCD. Moreover, studies converge on the evidence of neurophysiological dysfunction in the frontal areas with impairment of the normal inhibitory processes in OCD. At least some of these electrophysiological correlates might reflect the obsessive thoughts and compulsions that characterize this disorder. These findings may also support cognitive-behavioral therapy (CBT) approaches on over-focused attention and inflexibility of compulsive behaviors, which should be associated to pharmacological treatment in these patients.
Collapse
Affiliation(s)
- Alberto Raggi
- Unit of Neurology, G.B. Morgagni – L. Pierantoni Hospital, Forlì, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute - Istituto di Ricerca e Cura a Cattarere Scientifico (IRCCS), Troina, Italy
- *Correspondence: Giuseppe Lanza
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute - Istituto di Ricerca e Cura a Cattarere Scientifico (IRCCS), Troina, Italy
| |
Collapse
|
27
|
Isaacs D, Key AP, Cascio CJ, Conley AC, Walker HC, Wallace MT, Claassen DO. Sensory Hypersensitivity Severity and Association with Obsessive-Compulsive Symptoms in Adults with Tic Disorder. Neuropsychiatr Dis Treat 2020; 16:2591-2601. [PMID: 33173296 PMCID: PMC7646442 DOI: 10.2147/ndt.s274165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/28/2020] [Accepted: 10/03/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sensory hypersensitivity, defined as heightened awareness of and reactivity to external stimuli, is a bothersome symptom that affects up to 80% of adults with Tourette syndrome (TS). Such widespread prevalence suggests sensory hypersensitivity is a core feature of the disorder, but its severity and association with other clinical features of TS remain largely unexplored. Complicating matters, sensory hypersensitivity has been observed in two neurodevelopmental disorders commonly comorbid with TS: obsessive-compulsive disorder (OCD) and attention deficit hyperactivity disorder (ADHD). OBJECTIVE We sought to measure sensory hypersensitivity in TS patients relative to healthy controls and to investigate the relationship of sensory hypersensitivity with OCD and ADHD symptoms in the context of TS. METHODS We recruited 34 adults with TS or chronic tic disorder to undergo evaluation with the Yale Global Tic Severity Scale (YGTSS) and a battery of validated self-report instruments assessing sensory hypersensitivity (Sensory Gating Inventory, SGI; Sensory Perception Quotient, SPQ), premonitory urge (Premonitory Urge to Tic Scale, PUTS), OCD (Dimensional Obsessive-Compulsive Scale, DOCS), and ADHD (Adult ADHD Self-Report Screening Scale for DSM-5, ASRS-V). Age- and sex-matched healthy controls were recruited to complete SGI and psychiatric measures. RESULTS SGI and SPQ scores strongly correlated (r s = -0.73, p < 0.0001) within patients. SGI total score was significantly higher in patients versus controls (119.0 vs 67.6, U =-5.3, p < 0.0001), indicating greater sensory hypersensitivity in the tic disorder group. SGI score correlated modestly with PUTS, DOCS, and ASRS-V scores but not with YGTSS total tic score. Hierarchical linear regression analysis revealed that, of the tested variables, only DOCS score contributed significantly to mean SGI score, with β ranging from 1.03 (p = 0.044) to 1.41 (p = 0.001). A simple linear regression model with DOCS as the independent variable accounted for 31.9% of SGI score variance. CONCLUSION Sensory hypersensitivity is prominent in adults with tic disorder and is independently associated with obsessive-compulsive symptom severity.
Collapse
Affiliation(s)
- David Isaacs
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandra P Key
- Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
| | - Carissa J Cascio
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA.,Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander C Conley
- Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Harrison C Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA.,Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|