1
|
Debnath R, Elyamany O, Iffland JR, Rauh J, Siebert M, Andraes E, Leicht G, Mulert C. Theta transcranial alternating current stimulation over the prefrontal cortex enhances theta power and working memory performance. Front Psychiatry 2025; 15:1493675. [PMID: 39876999 PMCID: PMC11772280 DOI: 10.3389/fpsyt.2024.1493675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/09/2024] [Accepted: 12/11/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Transcranial alternating current stimulation (tACS) is a promising tool for modulating brain oscillations. This study investigated whether 5 Hz tACS could modulate neural oscillations in the prefrontal cortex and how this modulation impacts performance in working memory (WM) tasks. Method In two sessions, 28 healthy participants received 5 Hz tACS or sham stimulation over the left dorsolateral prefrontal cortex (DLPFC) while performing tasks with high and low WM loads. Resting-state EEG was recorded before and after stimulations for 5 minutes. EEG power was measured at electrodes surrounding the stimulation site. Results The results showed that tACS significantly improved reaction time (RT) compared to sham stimulation. This effect was task-specific, as tACS improved RT for hit responses only in high WM load trials, with no impact on low-load trials. Moreover, tACS significantly increased EEG power at 5 Hz and in the theta band compared to pre-stimulation levels. Discussion These findings demonstrate that tACS applied over left DLPFC modulates post-stimulation brain oscillations at the stimulation sites - known as tACS after-effects. Furthermore, the results suggest that 5 Hz tACS enhances response speed by elevating task-related activity in the prefrontal cortex to an optimal level for task performance. Conclusion In summary, the findings highlight the potential of tACS as a technique for modulating specific brain oscillations, with implications for research and therapeutic interventions.
Collapse
Affiliation(s)
- Ranjan Debnath
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Osama Elyamany
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
- Centre for Mind, Brain and Behaviour (CMBB), University of Marburg and Justus-Liebig University Giessen, Marburg, Germany
| | - Jona Ruben Iffland
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Jonas Rauh
- Department of Psychiatry and Psychotherapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Siebert
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Elisa Andraes
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
| | - Gregor Leicht
- Department of Psychiatry and Psychotherapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mulert
- Centre for Psychiatry and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany
- Centre for Mind, Brain and Behaviour (CMBB), University of Marburg and Justus-Liebig University Giessen, Marburg, Germany
| |
Collapse
|
2
|
Paßmann S, Baselgia S, Kasten FH, Herrmann CS, Rasch B. Differential online and offline effects of theta-tACS on memory encoding and retrieval. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:894-911. [PMID: 39085585 PMCID: PMC11390785 DOI: 10.3758/s13415-024-01204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Theta oscillations support memory formation, but their exact contribution to the communication between prefrontal cortex (PFC) and the hippocampus is unknown. We tested the functional relevance of theta oscillations as a communication link between both areas for memory formation using transcranial alternating current stimulation (tACS). Healthy, young participants learned two lists of Dutch-German word pairs and retrieved them immediately and with a 30-min delay. In the encoding group (N = 30), tACS was applied during the encoding of list 1. List 2 was used to test stimulation aftereffects. In the retrieval group (N = 23), we stimulated during the delayed recall. In both groups, we applied tACS bilaterally at prefrontal and tempo-parietal sites, using either individualized theta frequency or 15 Hz (as control), according to a within-subject design. Stimulation with theta-tACS did not alter overall learning performance. An exploratory analysis revealed that immediate recall improved when word-pairs were learned after theta-tACS (list 2). Applying theta-tACS during retrieval had detrimental effects on memory. No changes in the power of the respective frequency bands were observed. Our results do not support the notion that impacting the communication between PFC and the hippocampus during a task by bilateral tACS improves memory. However, we do find evidence that direct stimulation had a trend for negatively interfering effects during immediate and delayed recall. Hints for beneficial effects on memory only occurred with aftereffects of the stimulation. Future studies need to further examine the effects during and after stimulation on memory formation.
Collapse
Affiliation(s)
- Sven Paßmann
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland.
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany.
| | - Sandrine Baselgia
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland
| | - Florian H Kasten
- Centre de Recherche Cerveau & Cognition, CNRS, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl Von Ossietzky Universität, Oldenburg, Germany
| | - Björn Rasch
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland
| |
Collapse
|
3
|
Vassiliadis P, Beanato E, Popa T, Windel F, Morishita T, Neufeld E, Duque J, Derosiere G, Wessel MJ, Hummel FC. Non-invasive stimulation of the human striatum disrupts reinforcement learning of motor skills. Nat Hum Behav 2024; 8:1581-1598. [PMID: 38811696 PMCID: PMC11343719 DOI: 10.1038/s41562-024-01901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2022] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Reinforcement feedback can improve motor learning, but the underlying brain mechanisms remain underexplored. In particular, the causal contribution of specific patterns of oscillatory activity within the human striatum is unknown. To address this question, we exploited a recently developed non-invasive deep brain stimulation technique called transcranial temporal interference stimulation (tTIS) during reinforcement motor learning with concurrent neuroimaging, in a randomized, sham-controlled, double-blind study. Striatal tTIS applied at 80 Hz, but not at 20 Hz, abolished the benefits of reinforcement on motor learning. This effect was related to a selective modulation of neural activity within the striatum. Moreover, 80 Hz, but not 20 Hz, tTIS increased the neuromodulatory influence of the striatum on frontal areas involved in reinforcement motor learning. These results show that tTIS can non-invasively and selectively modulate a striatal mechanism involved in reinforcement learning, expanding our tools for the study of causal relationships between deep brain structures and human behaviour.
Collapse
Affiliation(s)
- Pierre Vassiliadis
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Fabienne Windel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Takuya Morishita
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Julie Duque
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Gerard Derosiere
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
- Lyon Neuroscience Research Center, Impact Team, Inserm U1028, CNRS UMR5292, Lyon 1 University, Bron, France
| | - Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute, EPFL Valais, Clinique Romande de Réadaptation, Sion, Switzerland.
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
4
|
Zhao Z, Shirinpour S, Tran H, Wischnewski M, Opitz A. intensity- and frequency-specific effects of transcranial alternating current stimulation are explained by network dynamics. J Neural Eng 2024; 21:026024. [PMID: 38530297 DOI: 10.1088/1741-2552/ad37d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2023] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Objective. Transcranial alternating current stimulation (tACS) can be used to non-invasively entrain neural activity and thereby cause changes in local neural oscillatory power. Despite its increased use in cognitive and clinical neuroscience, the fundamental mechanisms of tACS are still not fully understood.Approach. We developed a computational neuronal network model of two-compartment pyramidal neurons (PY) and inhibitory interneurons, which mimic the local cortical circuits. We modeled tACS with electric field strengths that are achievable in human applications. We then simulated intrinsic network activity and measured neural entrainment to investigate how tACS modulates ongoing endogenous oscillations.Main results. The intensity-specific effects of tACS are non-linear. At low intensities (<0.3 mV mm-1), tACS desynchronizes neural firing relative to the endogenous oscillations. At higher intensities (>0.3 mV mm-1), neurons are entrained to the exogenous electric field. We then further explore the stimulation parameter space and find that the entrainment of ongoing cortical oscillations also depends on stimulation frequency by following an Arnold tongue. Moreover, neuronal networks can amplify the tACS-induced entrainment via synaptic coupling and network effects. Our model shows that PY are directly entrained by the exogenous electric field and drive the inhibitory neurons.Significance. The results presented in this study provide a mechanistic framework for understanding the intensity- and frequency-specific effects of oscillating electric fields on neuronal networks. This is crucial for rational parameter selection for tACS in cognitive studies and clinical applications.
Collapse
Affiliation(s)
- Zhihe Zhao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Harry Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
5
|
Huang X, Wei X, Wang J, Yi G. Frequency-dependent membrane polarization across neocortical cell types and subcellular elements by transcranial alternating current stimulation. J Neural Eng 2024; 21:016034. [PMID: 38382101 DOI: 10.1088/1741-2552/ad2b8a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2023] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
Objective.Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation technique that directly interacts with ongoing brain oscillations in a frequency-dependent manner. However, it remains largely unclear how the cellular effects of tACS vary between cell types and subcellular elements.Approach.In this study, we use a set of morphologically realistic models of neocortical neurons to simulate the cellular response to uniform oscillating electric fields (EFs). We systematically characterize the membrane polarization in the soma, axons, and dendrites with varying field directions, intensities, and frequencies.Main results.Pyramidal cells are more sensitive to axial EF that is roughly parallel to the cortical column, while interneurons are sensitive to axial EF and transverse EF that is tangent to the cortical surface. Membrane polarization in each subcellular element increases linearly with EF intensity, and its slope, i.e. polarization length, highly depends on the stimulation frequency. At each frequency, pyramidal cells are more polarized than interneurons. Axons usually experience the highest polarization, followed by the dendrites and soma. Moreover, a visible frequency resonance presents in the apical dendrites of pyramidal cells, while the other subcellular elements primarily exhibit low-pass filtering properties. In contrast, each subcellular element of interneurons exhibits complex frequency-dependent polarization. Polarization phase in each subcellular element of cortical neurons lags that of field and exhibits high-pass filtering properties. These results demonstrate that the membrane polarization is not only frequency-dependent, but also cell type- and subcellular element-specific. Through relating effective length and ion mechanism with polarization, we emphasize the crucial role of cell morphology and biophysics in determining the frequency-dependent membrane polarization.Significance.Our findings highlight the diverse polarization patterns across cell types as well as subcellular elements, which provide some insights into the tACS cellular effects and should be considered when understanding the neural spiking activity by tACS.
Collapse
Affiliation(s)
- Xuelin Huang
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xile Wei
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Guosheng Yi
- School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
6
|
Wischnewski M, Tran H, Zhao Z, Shirinpour S, Haigh ZJ, Rotteveel J, Perera ND, Alekseichuk I, Zimmermann J, Opitz A. Induced neural phase precession through exogenous electric fields. Nat Commun 2024; 15:1687. [PMID: 38402188 PMCID: PMC10894208 DOI: 10.1038/s41467-024-45898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
The gradual shifting of preferred neural spiking relative to local field potentials (LFPs), known as phase precession, plays a prominent role in neural coding. Correlations between the phase precession and behavior have been observed throughout various brain regions. As such, phase precession is suggested to be a global neural mechanism that promotes local neuroplasticity. However, causal evidence and neuroplastic mechanisms of phase precession are lacking so far. Here we show a causal link between LFP dynamics and phase precession. In three experiments, we modulated LFPs in humans, a non-human primate, and computational models using alternating current stimulation. We show that continuous stimulation of motor cortex oscillations in humans lead to a gradual phase shift of maximal corticospinal excitability by ~90°. Further, exogenous alternating current stimulation induced phase precession in a subset of entrained neurons (~30%) in the non-human primate. Multiscale modeling of realistic neural circuits suggests that alternating current stimulation-induced phase precession is driven by NMDA-mediated synaptic plasticity. Altogether, the three experiments provide mechanistic and causal evidence for phase precession as a global neocortical process. Alternating current-induced phase precession and consequently synaptic plasticity is crucial for the development of novel therapeutic neuromodulation methods.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Harry Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Zhihe Zhao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Zachary J Haigh
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jonna Rotteveel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Nipun D Perera
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jan Zimmermann
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Fusco G, Scandola M, Lin H, Inzlicht M, Aglioti SM. Modulating preferences during intertemporal choices through exogenous midfrontal transcranial alternating current stimulation: A registered report. Cortex 2024; 171:435-464. [PMID: 38113613 DOI: 10.1016/j.cortex.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2023] [Revised: 08/24/2023] [Accepted: 09/21/2023] [Indexed: 12/21/2023]
Abstract
Decision conflicts may arise when the costs and benefits of choices are evaluated as a function of outcomes predicted along a temporal dimension. Electrophysiology studies suggest that during performance monitoring a typical oscillatory activity in the theta rhythm, named midfrontal theta, may index conflict processing and resolution. In the present within-subject, sham controlled, cross-over preregistered study, we delivered online midfrontal transcranial Alternating Current Stimulation (tACS) to modulate electrocortical activity during intertemporal decisions. Participants were invited to select choice preference between economic offers at three different intermixed levels of conflict (i.e., low, medium, high) while receiving either theta -, gamma-, or sham tACS in separate blocks and sessions. At the end of each stimulation block, a Letter-Flanker task was also administered to measure behavioural aftereffects. We hypothesized that theta-tACS would have acted on the performance monitoring system inducing behavioural changes (i.e., faster decisions and more impulsive choices) in high conflicting trials, rather than gamma- and sham-tACS. Results very partially confirmed our predictions. Unexpectedly, both theta- and gamma-driven neuromodulation speeded-up decisions compared to sham. However, exploratory analyses revealed that such an effect was stronger in the high-conflict decisions during theta-tACS. These findings were independent from the influence of the sensations induced by the electrical stimulation. Moreover, further analyses highlighted a significant association during theta-tACS between the selection of immediate offers in high-conflict trials and attentional impulsiveness, suggesting that individual factors may account for the tACS effects during intertemporal decisions. Finally, we did not capture long-lasting behavioural changes following tACS in the Flanker task. Our findings may inform scholars to improve experimental designs and boost the knowledge toward a more effective application of tACS.
Collapse
Affiliation(s)
- Gabriele Fusco
- Sapienza University of Rome and CLNS@SAPIENZA, Istituto Italiano di Tecnologia, Italy; IRCCS Santa Lucia Foundation, Rome, Italy.
| | - Michele Scandola
- NPSY Lab-Vr, Department of Human Sciences, University of Verona, Verona, Italy
| | - Hause Lin
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Inzlicht
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Salvatore Maria Aglioti
- Sapienza University of Rome and CLNS@SAPIENZA, Istituto Italiano di Tecnologia, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
8
|
Mattioli F, Maglianella V, D'Antonio S, Trimarco E, Caligiore D. Non-invasive brain stimulation for patients and healthy subjects: Current challenges and future perspectives. J Neurol Sci 2024; 456:122825. [PMID: 38103417 DOI: 10.1016/j.jns.2023.122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
Non-invasive brain stimulation (NIBS) techniques have a rich historical background, yet their utilization has witnessed significant growth only recently. These techniques encompass transcranial electrical stimulation and transcranial magnetic stimulation, which were initially employed in neuroscience to explore the intricate relationship between the brain and behaviour. However, they are increasingly finding application in research contexts as a means to address various neurological, psychiatric, and neurodegenerative disorders. This article aims to fulfill two primary objectives. Firstly, it seeks to showcase the current state of the art in the clinical application of NIBS, highlighting how it can improve and complement existing treatments. Secondly, it provides a comprehensive overview of the utilization of NIBS in augmenting the brain function of healthy individuals, thereby enhancing their performance. Furthermore, the article delves into the points of convergence and divergence between these two techniques. It also addresses the existing challenges and future prospects associated with NIBS from ethical and research standpoints.
Collapse
Affiliation(s)
- Francesco Mattioli
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199 Rome, Italy; School of Computing, Electronics and Mathematics, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Valerio Maglianella
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Sara D'Antonio
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Emiliano Trimarco
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Daniele Caligiore
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199 Rome, Italy; Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185 Rome, Italy.
| |
Collapse
|
9
|
Dantas AM, Sack AT, Bruggen E, Jiao P, Schuhmann T. Modulating risk-taking behavior with theta-band tACS. Neuroimage 2023; 283:120422. [PMID: 37884165 DOI: 10.1016/j.neuroimage.2023.120422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2023] [Revised: 08/31/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
Although risk is prevalent in decision-making, the specific neural processes underlying risk-taking behavior remain unclear. Previous studies have suggested that frontal theta-band activity plays a crucial role in modulating risk-taking behavior. The functional relevance of theta in risk-taking behavior is yet to be clearly established and studies using noninvasive brain stimulation have yielded inconsistent findings. We aimed to investigate this relevance using transcranial alternating current stimulation (tACS) over right or left dorsolateral prefrontal cortex (DLPFC). We also studied the influence of stimulation intensity on risk-taking behavior and electrophysiological effects. We applied theta-band (6.5 Hz) tACS over the left (F3) and right (F4) DLPFC with lower (1.5 mA) and higher (3 mA) tACS intensities. We employed a single-blinded, sham-controlled, within-subject design and combined tACS with electroencephalography (EEG) measurements and the Maastricht Gambling Task (MGT) to elicit and evaluate risk-taking behavior. Our results show an increase in risk-taking behavior after left DLPFC stimulation at both intensities and a reduction of risk-taking behavior after 3 mA (and not 1.5 mA) right DLPFC stimulation compared to sham. Further analyses showed a negative correlation between resting-state frontal theta-power and risk-taking behavior. Overall, frontal theta-power was increased after left, but not right, theta-band tACS independent of stimulation intensity. Our findings confirm the functional relevance of frontal theta-band activity in decision-making under risk and the differential role of left and right DLPFC. We also were able to show that stimulation intensity did have an effect on behavioral responses, namely risk-taking behavior. Significant right hemisphere stimulation effects were observed only after high-intensity stimulation. Nevertheless, electrophysiological effects were only significant after left DLPFC stimulation, regardless of tACS intensity. Furthermore, the results indicate the role of the baseline frontal theta-power in the direction of behavioral effects after theta-band tACS.
Collapse
Affiliation(s)
- Aline M Dantas
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands; Maastricht Brain Imaging Center, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Brain+Nerve Center, Maastricht University Medical Center+ (MUMC+). P. Debyelaan 25, 6229 HX, Maastricht, the Netherlands.
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands; Maastricht Brain Imaging Center, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Brain+Nerve Center, Maastricht University Medical Center+ (MUMC+). P. Debyelaan 25, 6229 HX, Maastricht, the Netherlands
| | - Elisabeth Bruggen
- Department of Marketing and Supply Chain Management, School of Business and Economics, Maastricht University. P.O. Box 616, 6200 MD, Maastricht, the Netherlands; BISS - Brightlands Institute for Smart Society, Maastricht University, Heerlen, the Netherlands; Netspar - Network for Studies on Pension, Aging and Retirement
| | - Peiran Jiao
- Department of Finance, School of Business and Economics, Maastricht University. P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - Teresa Schuhmann
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands; Maastricht Brain Imaging Center, Maastricht University. Oxfordlaan 55, 6229 EV, Maastricht, the Netherlands
| |
Collapse
|
10
|
Xiao Y, Zhou J, Zhou R, Liu Y, Lü J, Huang L. Fronto-parietal theta high-definition transcranial alternating current stimulation may modulate working memory under postural control conditions in young healthy adults. Front Hum Neurosci 2023; 17:1265600. [PMID: 38021229 PMCID: PMC10666918 DOI: 10.3389/fnhum.2023.1265600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Objects This study aimed to investigate the immediate effects of fronto-parietal θ HD-tACS on a dual task of working memory-postural control. Methods In this within-subject cross-over pilot study, we assessed the effects of 20 min of 6 Hz-tACS targeting both the left dorsolateral prefrontal cortex (lDLPFC) and posterior parietal cortex (PPC) in 20 healthy adults (age: 21.6 ± 1.3 years). During each session, single- and dual-task behavioral tests (working memory single-task, static tandem standing, and a dual-task of working memory-postural control) and closed-eye resting-state EEG were assessed before and immediately after stimulation. Results Within the tACS group, we found a 5.3% significant decrease in working memory response time under the dual-task following tACS (t = -3.157, p = 0.005, Cohen's d = 0.742); phase synchronization analysis revealed a significant increase in the phase locking value (PLV) of θ band between F3 and P3 after tACS (p = 0.010, Cohen's d = 0.637). Correlation analyses revealed a significant correlation between increased rs-EEG θ power in the F3 and P3 channels and faster reaction time (r = -0.515, p = 0.02; r = -0.483, p = 0.031, respectively) in the dual-task working memory task after tACS. However, no differences were observed on either upright postural control performance or rs-EEG results (p-values <0.05). Conclusion Fronto-parietal θ HD-tACS has the potential of being a neuromodulatory tool for improving working memory performance in dual-task situations, but its effect on the modulation of concurrently performed postural control tasks requires further investigation.
Collapse
Affiliation(s)
- Yanwen Xiao
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shenshan Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, China
| | - Junhong Zhou
- Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, United States
| | - Rong Zhou
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Jiaojiao Lü
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Lingyan Huang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
11
|
Wischnewski M, Tran H, Zhao Z, Shirinpour S, Haigh Z, Rotteveel J, Perera N, Alekseichuk I, Zimmermann J, Opitz A. Induced neural phase precession through exogeneous electric fields. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535073. [PMID: 37034780 PMCID: PMC10081336 DOI: 10.1101/2023.03.31.535073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 04/20/2023]
Abstract
The gradual shifting of preferred neural spiking relative to local field potentials (LFPs), known as phase precession, plays a prominent role in neural coding. Correlations between the phase precession and behavior have been observed throughout various brain regions. As such, phase precession is suggested to be a global neural mechanism that promotes local neuroplasticity. However, causal evidence and neuroplastic mechanisms of phase precession are lacking so far. Here we show a causal link between LFP dynamics and phase precession. In three experiments, we modulated LFPs in humans, a non-human primate, and computational models using alternating current stimulation. We show that continuous stimulation of motor cortex oscillations in humans lead to a gradual phase shift of maximal corticospinal excitability by ~90°. Further, exogenous alternating current stimulation induced phase precession in a subset of entrained neurons (~30%) in the non-human primate. Multiscale modeling of realistic neural circuits suggests that alternating current stimulation-induced phase precession is driven by NMDA-mediated synaptic plasticity. Altogether, the three experiments provide mechanistic and causal evidence for phase precession as a global neocortical process. Alternating current-induced phase precession and consequently synaptic plasticity is crucial for the development of novel therapeutic neuromodulation methods.
Collapse
Affiliation(s)
- M. Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - H. Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Z. Zhao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - S. Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Z.J. Haigh
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - J. Rotteveel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - N.D. Perera
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - I. Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - J. Zimmermann
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - A. Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
12
|
Wang M, Lou K, Liu Z, Wei P, Liu Q. Multi-objective optimization via evolutionary algorithm (MOVEA) for high-definition transcranial electrical stimulation of the human brain. Neuroimage 2023; 280:120331. [PMID: 37604295 DOI: 10.1016/j.neuroimage.2023.120331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2023] [Revised: 07/01/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
Designing a transcranial electrical stimulation (tES) strategy requires considering multiple objectives, such as intensity in the target area, focality, stimulation depth, and avoidance zone. These objectives are often mutually exclusive. In this paper, we propose a general framework, called multi-objective optimization via evolutionary algorithm (MOVEA), which solves the non-convex optimization problem in designing tES strategies without a predefined direction. MOVEA enables simultaneous optimization of multiple targets through Pareto optimization, generating a Pareto front after a single run without manual weight adjustment and allowing easy expansion to more targets. This Pareto front consists of optimal solutions that meet various requirements while respecting trade-off relationships between conflicting objectives such as intensity and focality. MOVEA is versatile and suitable for both transcranial alternating current stimulation (tACS) and transcranial temporal interference stimulation (tTIS) based on high definition (HD) and two-pair systems. We comprehensively compared tACS and tTIS in terms of intensity, focality, and steerability for targets at different depths. Our findings reveal that tTIS enhances focality by reducing activated volume outside the target by 60%. HD-tTIS and HD-tDCS can achieve equivalent maximum intensities, surpassing those of two-pair tTIS, such as 0.51 V/m under HD-tACS/HD-tTIS and 0.42 V/m under two-pair tTIS for the motor area as a target. Analysis of variance in eight subjects highlights individual differences in both optimal stimulation policies and outcomes for tACS and tTIS, emphasizing the need for personalized stimulation protocols. These findings provide guidance for designing appropriate stimulation strategies for tACS and tTIS. MOVEA facilitates the optimization of tES based on specific objectives and constraints, advancing tTIS and tACS-based neuromodulation in understanding the causal relationship between brain regions and cognitive functions and treating diseases. The code for MOVEA is available at https://github.com/ncclabsustech/MOVEA.
Collapse
Affiliation(s)
- Mo Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, China.
| | - Kexin Lou
- Department of Biomedical Engineering, Southern University of Science and Technology, China; School of Electrical Engineering and Computer Science, University of Queensland, Australia.
| | - Zeming Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, China.
| | - Pengfei Wei
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China.
| | - Quanying Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, China.
| |
Collapse
|
13
|
Uehara K, Yasuhara M, Koguchi J, Oku T, Shiotani S, Morise M, Furuya S. Brain network flexibility as a predictor of skilled musical performance. Cereb Cortex 2023; 33:10492-10503. [PMID: 37566918 DOI: 10.1093/cercor/bhad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Interactions between the body and the environment are dynamically modulated by upcoming sensory information and motor execution. To adapt to this behavioral state-shift, brain activity must also be flexible and possess a large repertoire of brain networks so as to switch them flexibly. Recently, flexible internal brain communications, i.e. brain network flexibility, have come to be recognized as playing a vital role in integrating various sensorimotor information. Therefore, brain network flexibility is one of the key factors that define sensorimotor skill. However, little is known about how flexible communications within the brain characterize the interindividual variation of sensorimotor skill and trial-by-trial variability within individuals. To address this, we recruited skilled musical performers and used a novel approach that combined multichannel-scalp electroencephalography, behavioral measurements of musical performance, and mathematical approaches to extract brain network flexibility. We found that brain network flexibility immediately before initiating the musical performance predicted interindividual differences in the precision of tone timbre when required for feedback control, but not for feedforward control. Furthermore, brain network flexibility in broad cortical regions predicted skilled musical performance. Our results provide novel evidence that brain network flexibility plays an important role in building skilled sensorimotor performance.
Collapse
Affiliation(s)
- Kazumasa Uehara
- Neural Information Dynamics Laboratory, Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Japan
- Sony Computer Science Laboratories Inc, Tokyo 1410022, Japan
| | - Masaki Yasuhara
- Sony Computer Science Laboratories Inc, Tokyo 1410022, Japan
- Neural Engineering Laboratory, Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
| | - Junya Koguchi
- Sony Computer Science Laboratories Inc, Tokyo 1410022, Japan
- Graduate School of Advanced Mathematical Sciences, Meiji University, Tokyo, Japan
| | | | | | - Masanori Morise
- Sony Computer Science Laboratories Inc, Tokyo 1410022, Japan
- School of Interdisciplinary Mathematical Sciences, Meiji University, Tokyo, Japan
| | - Shinichi Furuya
- Sony Computer Science Laboratories Inc, Tokyo 1410022, Japan
- NeuroPiano Institute, Kyoto 6008086, Japan
| |
Collapse
|
14
|
Stanković M, Bjekić J, Filipović SR. Effects of Transcranial Electrical Stimulation on Gambling and Gaming: A Systematic Review of Studies on Healthy Controls, Participants with Gambling/Gaming Disorder, and Substance Use Disorder. J Clin Med 2023; 12:jcm12103407. [PMID: 37240512 DOI: 10.3390/jcm12103407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Gambling disorder (GD) and internet gaming disorder (IGD) are formally recognized behavioral addictions with a rapidly growing prevalence and limited treatment options. Recently, transcranial electrical stimulation (tES) techniques have emerged as potentially promising interventions for improving treatment outcomes by ameliorating cognitive functions implicated in addictive behaviors. To systematize the current state of evidence and better understand whether and how tES can influence gambling and gaming-related cognitive processes, we conducted a PRISMA-guided systematic review of the literature, focusing on tES effects on gaming and gambling in a diverse range of population samples, including healthy participants, participants with GD and IGD, as well as participants with substance abuse addictions. Following the literature search in three bibliographic databases (PubMed, Web of Science, and Scopus), 40 publications were included in this review, with 26 conducted on healthy participants, 6 focusing on GD and IGD patients, and 8 including participants with other addictions. Most of the studies targeted the dorsolateral prefrontal cortex, using transcranial direct current stimulation (tDCS), and assessed the effects on cognition, using gaming and gambling computerized cognitive tasks measuring risk taking and decision making, e.g., balloon analogue risk task, Iowa gambling task, Cambridge gambling task, etc. The results indicated that tES could change gambling and gaming task performances and positively influence GD and IGD symptoms, with 70% of studies showing neuromodulatory effects. However, the results varied considerably depending on the stimulation parameters, sample characteristics, as well as outcome measures used. We discuss the sources of this variability and provide further directions for the use of tES in the context of GD and IGD treatment.
Collapse
Affiliation(s)
- Marija Stanković
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
| | - Jovana Bjekić
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
| | - Saša R Filipović
- Human Neuroscience Group, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
15
|
Wischnewski M, Alekseichuk I, Opitz A. Neurocognitive, physiological, and biophysical effects of transcranial alternating current stimulation. Trends Cogn Sci 2023; 27:189-205. [PMID: 36543610 PMCID: PMC9852081 DOI: 10.1016/j.tics.2022.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Transcranial alternating current stimulation (tACS) can modulate human neural activity and behavior. Accordingly, tACS has vast potential for cognitive research and brain disorder therapies. The stimulation generates oscillating electric fields in the brain that can bias neural spike timing, causing changes in local neural oscillatory power and cross-frequency and cross-area coherence. tACS affects cognitive performance by modulating underlying single or nested brain rhythms, local or distal synchronization, and metabolic activity. Clinically, stimulation tailored to abnormal neural oscillations shows promising results in alleviating psychiatric and neurological symptoms. We summarize the findings of tACS mechanisms, its use for cognitive applications, and novel developments for personalized stimulation.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
16
|
Lee TL, Lee H, Kang N. A meta-analysis showing improved cognitive performance in healthy young adults with transcranial alternating current stimulation. NPJ SCIENCE OF LEARNING 2023; 8:1. [PMID: 36593247 PMCID: PMC9807644 DOI: 10.1038/s41539-022-00152-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation used for improving cognitive functions via delivering weak electrical stimulation with a certain frequency. This systematic review and meta-analysis investigated the effects of tACS protocols on cognitive functions in healthy young adults. We identified 56 qualified studies that compared cognitive functions between tACS and sham control groups, as indicated by cognitive performances and cognition-related reaction time. Moderator variable analyses specified effect size according to (a) timing of tACS, (b) frequency band of simulation, (c) targeted brain region, and (b) cognitive domain, respectively. Random-effects model meta-analysis revealed small positive effects of tACS protocols on cognitive performances. The moderator variable analyses found significant effects for online-tACS with theta frequency band, online-tACS with gamma frequency band, and offline-tACS with theta frequency band. Moreover, cognitive performances were improved in online- and offline-tACS with theta frequency band on either prefrontal and posterior parietal cortical regions, and further both online- and offline-tACS with theta frequency band enhanced executive function. Online-tACS with gamma frequency band on posterior parietal cortex was effective for improving cognitive performances, and the cognitive improvements appeared in executive function and perceptual-motor function. These findings suggested that tACS protocols with specific timing and frequency band may effectively improve cognitive performances.
Collapse
Affiliation(s)
- Tae Lee Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Hanall Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea.
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.
- Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea.
| |
Collapse
|
17
|
Liu M, Dong W, Wu Y, Verbeke P, Verguts T, Chen Q. Modulating hierarchical learning by high-definition transcranial alternating current stimulation at theta frequency. Cereb Cortex 2022; 33:4421-4431. [PMID: 36089836 DOI: 10.1093/cercor/bhac352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/12/2022] Open
Abstract
Considerable evidence highlights the dorsolateral prefrontal cortex (DLPFC) as a key region for hierarchical (i.e. multilevel) learning. In a previous electroencephalography (EEG) study, we found that the low-level prediction errors were encoded by frontal theta oscillations (4-7 Hz), centered on right DLPFC (rDLPFC). However, the causal relationship between frontal theta oscillations and hierarchical learning remains poorly understood. To investigate this question, in the current study, participants received theta (6 Hz) and sham high-definition transcranial alternating current stimulation (HD-tACS) over the rDLPFC while performing the probabilistic reversal learning task. Behaviorally, theta tACS induced a significant reduction in accuracy for the stable environment, but not for the volatile environment, relative to the sham condition. Computationally, we implemented a combination of a hierarchical Bayesian learning and a decision model. Theta tACS induced a significant increase in low-level (i.e. probability-level) learning rate and uncertainty of low-level estimation relative to sham condition. Instead, the temperature parameter of the decision model, which represents (inverse) decision noise, was not significantly altered due to theta stimulation. These results indicate that theta frequency may modulate the (low-level) learning rate. Furthermore, environmental features (e.g. its stability) may determine whether learning is optimized as a result.
Collapse
Affiliation(s)
- Meng Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou 510631, China.,School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Wenshan Dong
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou 510631, China.,School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Yiling Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou 510631, China.,School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Pieter Verbeke
- Department of Experimental Psychology, Ghent University, B-9000 Ghent, Belgium
| | - Tom Verguts
- Department of Experimental Psychology, Ghent University, B-9000 Ghent, Belgium
| | - Qi Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou 510631, China.,School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
18
|
Smits FM, Geuze E, de Kort GJ, Kouwer K, Geerlings L, van Honk J, Schutter DJ. Effects of Multisession Transcranial Direct Current Stimulation on Stress Regulation and Emotional Working Memory: A Randomized Controlled Trial in Healthy Military Personnel. Neuromodulation 2022:S1094-7159(22)00721-8. [DOI: 10.1016/j.neurom.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 10/16/2022]
|
19
|
Dennison JB, Sazhin D, Smith DV. Decision neuroscience and neuroeconomics: Recent progress and ongoing challenges. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2022; 13:e1589. [PMID: 35137549 PMCID: PMC9124684 DOI: 10.1002/wcs.1589] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/05/2020] [Revised: 11/28/2021] [Accepted: 12/21/2021] [Indexed: 01/10/2023]
Abstract
In the past decade, decision neuroscience and neuroeconomics have developed many new insights in the study of decision making. This review provides an overarching update on how the field has advanced in this time period. Although our initial review a decade ago outlined several theoretical, conceptual, methodological, empirical, and practical challenges, there has only been limited progress in resolving these challenges. We summarize significant trends in decision neuroscience through the lens of the challenges outlined for the field and review examples where the field has had significant, direct, and applicable impacts across economics and psychology. First, we review progress on topics including reward learning, explore-exploit decisions, risk and ambiguity, intertemporal choice, and valuation. Next, we assess the impacts of emotion, social rewards, and social context on decision making. Then, we follow up with how individual differences impact choices and new exciting developments in the prediction and neuroforecasting of future decisions. Finally, we consider how trends in decision-neuroscience research reflect progress toward resolving past challenges, discuss new and exciting applications of recent research, and identify new challenges for the field. This article is categorized under: Psychology > Reasoning and Decision Making Psychology > Emotion and Motivation.
Collapse
Affiliation(s)
- Jeffrey B Dennison
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Daniel Sazhin
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - David V Smith
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Wischnewski M, Compen B. Effects of theta transcranial alternating current stimulation (tACS) on exploration and exploitation during uncertain decision-making. Behav Brain Res 2022; 426:113840. [PMID: 35325684 DOI: 10.1016/j.bbr.2022.113840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/15/2023]
Abstract
Exploring ones surroundings may yield unexpected rewards, but is associated with uncertainty and risk. Alternatively, exploitation of certain outcomes is related to low risk, yet potentially better outcomes remain unexamined. As such, risk-taking behavior depends on perceived uncertainty and a trade-off between exploration-exploitation. Previously, it has been suggested that risk-taking may relate to theta activity in the prefrontal cortex. Furthermore, previous studies hinted at a relationship between a right-hemispheric bias in frontal theta asymmetry and risky behavior. In the present double-blind sham-controlled within-subject study, we applied bifrontal transcranial alternating current stimulation (tACS) at the theta frequency (5 Hz) on eighteen healthy volunteers during a gambling task. Two tACS montages with either left-right or posterior-anterior current flow were employed at an intensity of 1 mA. Results showed that, compared to sham, theta tACS increased perceived uncertainty irrespective of current flow direction. Despite this observation, no direct effect of tACS on exploration behavior and general risk-taking was observed. Furthermore, frontal theta asymmetry was more right-hemispherically biased after posterior-anterior tACS, compared to sham. Finally, we used electric field simulation to identify which regions were targeted by the tACS montages as an overlap in regions may explain why the two montages resulted in comparable outcomes. Our findings provide a first step towards understanding the relationship between frontal theta oscillations and different features of risk-taking.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States.
| | - Boukje Compen
- School of Health Professions Education, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
21
|
Behavioral and electrocortical effects of transcranial alternating current stimulation during advice-guided decision-making. NEUROIMAGE: REPORTS 2021. [DOI: 10.1016/j.ynirp.2021.100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
|
22
|
van Son D, van der Does W, Band GPH, Putman P. EEG Theta/Beta Ratio Neurofeedback Training in Healthy Females. Appl Psychophysiol Biofeedback 2021; 45:195-210. [PMID: 32458282 PMCID: PMC7391399 DOI: 10.1007/s10484-020-09472-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/13/2023]
Abstract
A growing number of studies suggest that EEG theta/beta ratio (TBR) is inversely related to executive cognitive control. Neurofeedback training aimed at reducing TBR (TBR NFT) might provide a tool to study causality in this relation and might enhance human performance. To investigate whether TBR NFT reduces TBR in healthy participants. Twelve healthy female participants were assigned (single blind) to one of three groups. Groups differed on baseline durations and one group received only sham NFT. TBR NFT consisted of eight or fourteen 25-min sessions. No evidence was found that TBR NFT had any effect on TBR. The current TBR NFT protocol is possibly ineffective. This is in line with a previous study with a different protocol.
Collapse
Affiliation(s)
- Dana van Son
- Institute of Psychology, Leiden University, Leiden, The Netherlands. .,Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Willem van der Does
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Guido P H Band
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Peter Putman
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
23
|
Klírová M, Voráčková V, Horáček J, Mohr P, Jonáš J, Dudysová DU, Kostýlková L, Fayette D, Krejčová L, Baumann S, Laskov O, Novák T. Modulating Inhibitory Control Processes Using Individualized High Definition Theta Transcranial Alternating Current Stimulation (HD θ-tACS) of the Anterior Cingulate and Medial Prefrontal Cortex. Front Syst Neurosci 2021; 15:611507. [PMID: 33859554 PMCID: PMC8042221 DOI: 10.3389/fnsys.2021.611507] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/29/2020] [Accepted: 03/04/2021] [Indexed: 02/02/2023] Open
Abstract
Increased frontal midline theta activity generated by the anterior cingulate cortex (ACC) is induced by conflict processing in the medial frontal cortex (MFC). There is evidence that theta band transcranial alternating current stimulation (θ-tACS) modulates ACC function and alters inhibitory control performance during neuromodulation. Multi-electric (256 electrodes) high definition θ-tACS (HD θ-tACS) using computational modeling based on individual MRI allows precise neuromodulation targeting of the ACC via the medial prefrontal cortex (mPFC), and optimizes the required current density with a minimum impact on the rest of the brain. We therefore tested whether the individualized electrode montage of HD θ-tACS with the current flow targeted to the mPFC-ACC compared with a fixed montage (non-individualized) induces a higher post-modulatory effect on inhibitory control. Twenty healthy subjects were randomly assigned to a sequence of three HD θ-tACS conditions (individualized mPFC-ACC targeting; non-individualized MFC targeting; and a sham) in a double-blind cross-over study. Changes in the Visual Simon Task, Stop Signal Task, CPT III, and Stroop test were assessed before and after each session. Compared with non-individualized θ-tACS, the individualized HD θ-tACS significantly increased the number of interference words and the interference score in the Stroop test. The changes in the non-verbal cognitive tests did not induce a parallel effect. This is the first study to examine the influence of individualized HD θ-tACS targeted to the ACC on inhibitory control performance. The proposed algorithm represents a well-tolerated method that helps to improve the specificity of neuromodulation targeting of the ACC.
Collapse
Affiliation(s)
- Monika Klírová
- National Institute of Mental Health, Prague, Czechia
- Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Veronika Voráčková
- National Institute of Mental Health, Prague, Czechia
- Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jiří Horáček
- National Institute of Mental Health, Prague, Czechia
- Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Pavel Mohr
- National Institute of Mental Health, Prague, Czechia
- Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Juraj Jonáš
- National Institute of Mental Health, Prague, Czechia
| | - Daniela Urbaczka Dudysová
- National Institute of Mental Health, Prague, Czechia
- Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Lenka Kostýlková
- National Institute of Mental Health, Prague, Czechia
- Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Dan Fayette
- National Institute of Mental Health, Prague, Czechia
- Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | | | | | - Olga Laskov
- National Institute of Mental Health, Prague, Czechia
- Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Tomáš Novák
- National Institute of Mental Health, Prague, Czechia
- Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
24
|
Ghiani A, Maniglia M, Battaglini L, Melcher D, Ronconi L. Binding Mechanisms in Visual Perception and Their Link With Neural Oscillations: A Review of Evidence From tACS. Front Psychol 2021; 12:643677. [PMID: 33828509 PMCID: PMC8019716 DOI: 10.3389/fpsyg.2021.643677] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/18/2020] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Neurophysiological studies in humans employing magneto- (MEG) and electro- (EEG) encephalography increasingly suggest that oscillatory rhythmic activity of the brain may be a core mechanism for binding sensory information across space, time, and object features to generate a unified perceptual representation. To distinguish whether oscillatory activity is causally related to binding processes or whether, on the contrary, it is a mere epiphenomenon, one possibility is to employ neuromodulatory techniques such as transcranial alternating current stimulation (tACS). tACS has seen a rising interest due to its ability to modulate brain oscillations in a frequency-dependent manner. In the present review, we critically summarize current tACS evidence for a causal role of oscillatory activity in spatial, temporal, and feature binding in the context of visual perception. For temporal binding, the emerging picture supports a causal link with the power and the frequency of occipital alpha rhythms (8-12 Hz); however, there is no consistent evidence on the causal role of the phase of occipital tACS. For feature binding, the only study available showed a modulation by occipital alpha tACS. The majority of studies that successfully modulated oscillatory activity and behavioral performance in spatial binding targeted parietal areas, with the main rhythms causally linked being the theta (~7 Hz) and beta (~18 Hz) frequency bands. On the other hand, spatio-temporal binding has been directly modulated by parieto-occipital gamma (~40-60 Hz) and alpha (10 Hz) tACS, suggesting a potential role of cross-frequency coupling when binding across space and time. Nonetheless, negative or partial results have also been observed, suggesting methodological limitations that should be addressed in future research. Overall, the emerging picture seems to support a causal role of brain oscillations in binding processes and, consequently, a certain degree of plasticity for shaping binding mechanisms in visual perception, which, if proved to have long lasting effects, can find applications in different clinical populations.
Collapse
Affiliation(s)
- Andrea Ghiani
- Department of General Psychology, University of Padua, Padua, Italy
| | - Marcello Maniglia
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Luca Battaglini
- Department of General Psychology, University of Padua, Padua, Italy
- Neuro Vis.U.S. Laboratory, University of Padua, Padua, Italy
- Department of Physics and Astronomy “Galileo Galilei”, University of Padua, Padua, Italy
| | - David Melcher
- Center for Mind/Brain Sciences and Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Hospital, Milan, Italy
| |
Collapse
|
25
|
McKim TH, Dove SJ, Robinson DL, Fröhlich F, Boettiger CA. Addiction history moderates the effect of prefrontal 10-Hz transcranial alternating current stimulation on habitual action selection. J Neurophysiol 2021; 125:768-780. [PMID: 33356905 PMCID: PMC7988748 DOI: 10.1152/jn.00180.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2020] [Revised: 11/29/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
Individuals with substance use disorders (SUDs) transition more quickly from goal-directed to habitual action-selection, but the neural mechanisms underlying this phenomenon remain unclear. Data from animal models suggest that drugs of abuse can modify the neurocircuits that regulate action-selection, enhancing circuits that drive inflexible, habit-based stimulus-response (S-R) action-selection and weakening circuits that drive flexible, goal-directed actions. Here, we tested the effect of bilateral 10-Hz transcranial alternating current stimulation (10Ηz-tACs) of the dorsolateral prefrontal cortex on action-selection in men and women with a SUD history and an age- and sex-matched control group. We tested the hypothesis that true 10Ηz-tACS versus active sham stimulation would reduce perseverative errors after changed response contingencies for well-learned S-R associations, reflecting reduced habit-based action-selection, specifically in the SUD group. We found that 10 Hz-tACS increased perseverative errors in the control group, but in the SUD group, 10 Hz-tACS effects on perseverative errors depended on substance abuse duration: a longer addiction history was associated with a greater reduction of perseverative errors. These results suggest that 10Ηz-tACs altered circuit level dynamics regulating behavioral flexibility, and provide a foundation for future studies to test stimulation site, frequency, and timing specificity. Moreover, these data suggest that chronic substance abuse is associated with altered circuit dynamics that are ameliorated by 10Ηz-tACs. Determining the generalizability of these effects and their duration merits investigation as a direction for novel therapeutic interventions. These findings are timely based on growing interest in transcranial stimulation methods for treating SUDs.NEW & NOTEWORTHY Treating the executive dysfunction associated with addiction is hampered by redundancies in pharmacological regulation of different behavioral control circuits. Thus, nonpharmacological interventions hold promise for addiction treatment. Here, we show that, among people with an addiction history, 10-Hz transcranial alternating current stimulation (10Hz-tACS) of the dorsolateral prefrontal cortex can reduce habitual actions. The fact that 10Hz-tACS can regulate behavioral flexibility suggests its possible utility in reducing harmful habitual actions.
Collapse
Affiliation(s)
- Theresa H McKim
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina
| | - Samantha J Dove
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina
| | - Donita L Robinson
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, North Carolina
| | - Flavio Fröhlich
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, North Carolina
- Joint UNC-NCSU Department of Biomedical Engineering, Department of Cell Biology and Physiology, Neuroscience Center, and Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
| | - Charlotte A Boettiger
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, North Carolina
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, North Carolina
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
26
|
Pan Y, Novembre G, Song B, Zhu Y, Hu Y. Dual brain stimulation enhances interpersonal learning through spontaneous movement synchrony. Soc Cogn Affect Neurosci 2021; 16:210-221. [PMID: 32591830 PMCID: PMC7812617 DOI: 10.1093/scan/nsaa080] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/02/2020] [Revised: 04/15/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022] Open
Abstract
Social interactive learning denotes the ability to acquire new information from a conspecific-a prerequisite for cultural evolution and survival. As inspired by recent neurophysiological research, here we tested whether social interactive learning can be augmented by exogenously synchronizing oscillatory brain activity across an instructor and a learner engaged in a naturalistic song-learning task. We used a dual brain stimulation protocol entailing the trans-cranial delivery of synchronized electric currents in two individuals simultaneously. When we stimulated inferior frontal brain regions, with 6 Hz alternating currents being in-phase between the instructor and the learner, the dyad exhibited spontaneous and synchronized body movement. Remarkably, this stimulation also led to enhanced learning performance. These effects were both phase- and frequency-specific: 6 Hz anti-phase stimulation or 10 Hz in-phase stimulation, did not yield comparable results. Furthermore, a mediation analysis disclosed that interpersonal movement synchrony acted as a partial mediator of the effect of dual brain stimulation on learning performance, i.e. possibly facilitating the effect of dual brain stimulation on learning. Our results provide a causal demonstration that inter-brain synchronization is a sufficient condition to improve real-time information transfer between pairs of individuals.
Collapse
Affiliation(s)
- Yafeng Pan
- School of Psychology and Cognitive Science, Institute of Brain and Education Innovation, East China Normal University, 200062 Shanghai, China
- Neuropsychology and Functional Neuroimaging Research Unit (UR2NF), Université Libre de Bruxelles, B-1050 Bruxelles, Belgium
- Department of Clinical Neuroscience, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Giacomo Novembre
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Department of Neuroscience, Physiology and Parmacology, University College London, WC1E 6BT London, UK
| | - Bei Song
- School of Psychology and Cognitive Science, Institute of Brain and Education Innovation, East China Normal University, 200062 Shanghai, China
- Department of Musicology, Harbin Conservatory of Music, 150070 Heilongjiang, China
| | - Yi Zhu
- School of Psychology and Cognitive Science, Institute of Brain and Education Innovation, East China Normal University, 200062 Shanghai, China
| | - Yi Hu
- School of Psychology and Cognitive Science, Institute of Brain and Education Innovation, East China Normal University, 200062 Shanghai, China
| |
Collapse
|
27
|
Fusco G, Fusaro M, Aglioti SM. Midfrontal-occipital Ɵ-tACS modulates cognitive conflicts related to bodily stimuli. Soc Cogn Affect Neurosci 2020; 17:91-100. [PMID: 33448297 PMCID: PMC8824600 DOI: 10.1093/scan/nsaa125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/28/2020] [Revised: 07/21/2020] [Accepted: 09/08/2020] [Indexed: 02/02/2023] Open
Abstract
Neurophysiological studies show that during tasks tapping cognitive control (like the flanker task), midfrontal theta (MFθ) oscillations are associated with conflict and error processing and neural top-down modulation of perceptual processing. What remains unknown is whether perceptual encoding of category-specific stimuli (e.g. body vs letters) used in flanker-like tasks is modulated by theta oscillations. To explore this issue, we delivered transcranial Alternating Current Stimulation (tACS) in the theta frequency band (6 Hz) over the medial frontal cortex (MFC) and the extra-striate body area (EBA), whereas healthy participants performed two variants of the classical flanker task, one with stimuli representing human hands (i.e. hand-flanker) and the other with stimuli representing coloured letters (i.e. letter-flanker). More specifically, we aimed at investigating whether θ-tACS involving a body-related area may modulate the long-range communication between neuronal populations underlying conflict monitoring and visuo-perceptual encoding of hand stimuli without affecting the conflict driven by letter stimuli. Results showed faster correct response times during θ-tACS in the hand-flanker compared with γ-tACS (40 Hz) and sham. Importantly, such an effect did not emerge in the letter-flanker. Our findings show that theta oscillations over midfrontal-occipital areas modulate bodily specific, stimulus content-driven aspects of cognitive control.
Collapse
Affiliation(s)
- Gabriele Fusco
- Correspondence should be addressed to Dr Gabriele Fusco, Department of Psychology, via dei Marsi 78, 00185, Roma, Italy. E-mail:
| | - Martina Fusaro
- Department of Psychology, Sapienza University of Rome and CLNS@SAPIENZA, Istituto Italiano di Tecnologia, Rome, Italy
- Social Neuroscience Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Salvatore Maria Aglioti
- Department of Psychology, Sapienza University of Rome and CLNS@SAPIENZA, Istituto Italiano di Tecnologia, Rome, Italy
- Social Neuroscience Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
28
|
Zavecz Z, Horváth K, Solymosi P, Janacsek K, Nemeth D. Frontal-midline theta frequency and probabilistic learning: A transcranial alternating current stimulation study. Behav Brain Res 2020; 393:112733. [PMID: 32505660 DOI: 10.1016/j.bbr.2020.112733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/15/2022]
Abstract
Probabilistic learning is a fundamental cognitive ability that extracts and represents regularities of our environment enabling predictive processing during perception and acquisition of perceptual, motor, cognitive, and social skills. Previous studies show competition between neural networks related to executive function/working memory vs. probabilistic learning. Theta synchronization has been associated with the former while desynchronization with the latter in correlational studies. In the present paper our aim was to test causal relationship between fronto-parietal midline theta synchronization and probabilistic learning with non-invasive transcranial alternating current (tACS) stimulation. We hypothesize that theta synchronization disrupts probabilistic learning performance by modulating the competitive relationship. Twenty-six young adults performed the Alternating Serial Reaction Time (ASRT) task to assess probabilistic learning in two sessions that took place one week apart. Stimulation was applied in a double-blind cross-over within-subject design with an active theta tACS and a sham stimulation in a counter-balanced order between participants. Sinusoidal current was administered with 1 mA peak-to-peak intensity throughout the task (approximately 20 min) for the active stimulation and 30 s for the sham. We did not find an effect of fronto-parietal midline theta tACS on probabilistic learning comparing performance during active and sham stimulation. To influence probabilistic learning, we suggest applying higher current intensity and stimulation parameters more precisely aligned to endogenous brain activity for future studies.
Collapse
Affiliation(s)
- Zsófia Zavecz
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Horváth
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Solymosi
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, University of Greenwich, London, United Kingdom
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Lyon Neuroscience Research Center (CRNL), INSERM, CNRS, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
29
|
Soutschek A, Kozak R, de Martinis N, Howe W, Burke CJ, Fehr E, Jetter A, Tobler PN. Activation of D1 receptors affects human reactivity and flexibility to valued cues. Neuropsychopharmacology 2020; 45:780-785. [PMID: 31962344 PMCID: PMC7075935 DOI: 10.1038/s41386-020-0617-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/13/2019] [Revised: 12/02/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022]
Abstract
Reward-predicting cues motivate goal-directed behavior, but in unstable environments humans must also be able to flexibly update cue-reward associations. While the capacity of reward cues to trigger motivation ('reactivity') as well as flexibility in cue-reward associations have been linked to the neurotransmitter dopamine in humans, the specific contribution of the dopamine D1 receptor family to these behaviors remained elusive. To fill this gap, we conducted a randomized, placebo-controlled, double-blind pharmacological study testing the impact of three different doses of a novel D1 agonist (relative to placebo) on reactivity to reward-predicting cues (Pavlovian-to-instrumental transfer) and flexibility of cue-outcome associations (reversal learning). We observed that the impact of the D1 agonist crucially depended on baseline working memory functioning, which has been identified as a proxy for baseline dopamine synthesis capacity. Specifically, increasing D1 receptor stimulation strengthened Pavlovian-to-instrumental transfer in individuals with high baseline working memory capacity. In contrast, higher doses of the D1 agonist improved reversal learning only in individuals with low baseline working memory functioning. Our findings suggest a crucial and baseline-dependent role of D1 receptor activation in controlling both cue reactivity and the flexibility of cue-reward associations.
Collapse
Affiliation(s)
- Alexander Soutschek
- Department of Psychology, Ludwig Maximilian University Munich, Munich, Germany. .,Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland.
| | - Rouba Kozak
- 0000 0004 0447 7762grid.419849.9Takeda Pharmaceuticals International, Cambridge, MA USA
| | | | - William Howe
- 0000 0001 0694 4940grid.438526.eSchool of Neuroscience, Virginia Tech, Blacksburg, VA USA
| | - Christopher J. Burke
- 0000 0004 1937 0650grid.7400.3Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Ernst Fehr
- 0000 0004 1937 0650grid.7400.3Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland ,Neuroscience Center Zurich, University of Zurich, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Alexander Jetter
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Philippe N. Tobler
- 0000 0004 1937 0650grid.7400.3Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland ,Neuroscience Center Zurich, University of Zurich, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Wischnewski M, Joergensen ML, Compen B, Schutter DJLG. Frontal Beta Transcranial Alternating Current Stimulation Improves Reversal Learning. Cereb Cortex 2020; 30:3286-3295. [PMID: 31898728 PMCID: PMC7197207 DOI: 10.1093/cercor/bhz309] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022] Open
Abstract
Electroencephalogram (EEG) studies suggest an association between beta (13-30 Hz) power and reversal learning performance. In search for direct evidence concerning the involvement of beta oscillations in reversal learning, transcranial alternating current stimulation (tACS) was applied in a double-blind, sham-controlled and between-subjects design. Exogenous oscillatory currents were administered bilaterally to the frontal cortex at 20 Hz with an intensity of 1 mA peak-to-peak and the effects on reward-punishment based reversal learning were evaluated in hundred-and-eight healthy volunteers. Pre- and post-tACS resting state EEG recordings were analyzed. Results showed that beta-tACS improved rule implementation during reversal learning and decreases left and right resting-state frontal theta/beta EEG ratios following tACS. Our findings provide the first behavioral and electrophysiological evidence for exogenous 20 Hz oscillatory electric field potentials administered over to the frontal cortex to improve reversal learning.
Collapse
Affiliation(s)
- Miles Wischnewski
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6537 RD, The Netherlands
| | - Mie L Joergensen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6537 RD, The Netherlands
| | - Boukje Compen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6537 RD, The Netherlands
| | - Dennis J L G Schutter
- Helmholtz Institute, Experimental Psychology, Utrecht University, Utrecht, 3584 CS, The Netherlands
| |
Collapse
|
31
|
van Son D, de Rover M, De Blasio FM, van der Does W, Barry RJ, Putman P. Electroencephalography theta/beta ratio covaries with mind wandering and functional connectivity in the executive control network. Ann N Y Acad Sci 2019; 1452:52-64. [PMID: 31310007 PMCID: PMC6852238 DOI: 10.1111/nyas.14180] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2019] [Revised: 05/17/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022]
Abstract
The ratio between frontal resting‐state electroencephalography (EEG) theta and beta frequency power (theta/beta ratio, TBR) is negatively related to cognitive control. It is unknown which psychological processes during resting state account for this. Increased theta and reduced beta power are observed during mind wandering (MW), and MW is related to decreased connectivity in the executive control network (ECN) and increased connectivity in the default mode network (DMN). The goal of this study was to test if MW‐related fluctuations in TBR covary with such functional variation in ECN and DMN connectivity and if this functional variation is related to resting‐state TBR. Data were analyzed for 26 participants who performed a 40‐min breath‐counting task and reported the occurrence of MW episodes while EEG was measured and again during magnetic resonance imaging. Frontal TBR was higher during MW than controlled thought and this was marginally related to resting‐state TBR. DMN connectivity was higher and ECN connectivity was lower during MW. Greater ECN connectivity during focus than MW was correlated to lower TBR during focus than MW. These results provide the first evidence of the neural correlates of TBR and its functional dynamics and further establish TBR's usefulness for the study of executive control, in normal and potentially abnormal psychology.
Collapse
Affiliation(s)
- Dana van Son
- Institute of Psychology, Leiden University, Leiden, the Netherlands.,Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Mischa de Rover
- Institute of Psychology, Leiden University, Leiden, the Netherlands.,Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Frances M De Blasio
- Brain and Behaviour Research Institute and School of Psychology, University of Wollongong, Wollongong, Australia
| | - Willem van der Does
- Institute of Psychology, Leiden University, Leiden, the Netherlands.,Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Robert J Barry
- Brain and Behaviour Research Institute and School of Psychology, University of Wollongong, Wollongong, Australia
| | - Peter Putman
- Institute of Psychology, Leiden University, Leiden, the Netherlands.,Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
32
|
Affiliation(s)
- Yi-Cong Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University; Beijing Key Laboratory of Neuromodulation, Beijing 100053, China
| | - Yu-Ping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University; Beijing Key Laboratory of Neuromodulation, Beijing 100053; Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
33
|
Frontal cortex electrophysiology in reward- and punishment-related feedback processing during advice-guided decision making: An interleaved EEG-DC stimulation study. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 18:249-262. [PMID: 29380293 PMCID: PMC5889418 DOI: 10.3758/s13415-018-0566-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 12/26/2022]
Abstract
During decision making, individuals are prone to rely on external cues such as expert advice when the outcome is not known. However, the electrophysiological correlates associated with outcome uncertainty and the use of expert advice are not completely understood. The feedback-related negativity (FRN), P3a, and P3b are event-related brain potentials (ERPs) linked to dissociable stages of feedback and attentional processing during decision making. Even though these ERPs are influenced by both reward- and punishment-related feedback, it remains unclear how extrinsic information during uncertainty modulates these brain potentials. In this study, the effects of advice cues on decision making were investigated in two separate experiments. In the first experiment, electroencephalography (EEG) was recorded in healthy volunteers during a decision-making task in which the participants received reward or punishment feedback preceded by novice, amateur, or expert advice. The results showed that the P3a component was significantly influenced by the subjective predictive value of an advice cue, whereas the FRN and P3b were unaffected by the advice cues. In the second, sham-controlled experiment, cathodal transcranial direct current stimulation (ctDCS) was administered in conjunction with EEG in order to explore the direct contributions of the frontal cortex to these brain potentials. Results showed no significant change in either advice-following behavior or decision times. However, ctDCS did decrease FRN amplitudes as compared to sham, with no effect on the P3a or P3b. Together, these findings suggest that advice information may act primarily on attention allocation during feedback processing, whereas the electrophysiological correlates of the detection and updating of internal prediction models are not affected.
Collapse
|
34
|
Frontal EEG theta/beta ratio during mind wandering episodes. Biol Psychol 2019; 140:19-27. [DOI: 10.1016/j.biopsycho.2018.11.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2018] [Revised: 10/10/2018] [Accepted: 11/14/2018] [Indexed: 12/29/2022]
|
35
|
Fusco G, Scandola M, Feurra M, Pavone EF, Rossi S, Aglioti SM. Midfrontal theta transcranial alternating current stimulation modulates behavioural adjustment after error execution. Eur J Neurosci 2018; 48:3159-3170. [DOI: 10.1111/ejn.14174] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2018] [Revised: 09/14/2018] [Accepted: 09/21/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriele Fusco
- Department of PsychologyUniversity of Rome “Sapienza” Rome Italy
- IRCCS Fondazione Santa LuciaIRCCS Rome Italy
| | - Michele Scandola
- NPSY.Lab‐VrDepartment of Human SciencesUniversity of Verona Verona Italy
| | - Matteo Feurra
- School of PsychologyCentre for Cognition and Decision MakingNational Research University Higher School of Economics Moscow Russia
| | - Enea F. Pavone
- Department of PsychologyUniversity of Rome “Sapienza” Rome Italy
- IRCCS Fondazione Santa LuciaIRCCS Rome Italy
- Braintrends ltd, Applied Neuroscience Rome Italy
| | - Simone Rossi
- Unit of Neurology and Clinical Neurophysiology, Brain Investigation & Neuromodulation LabDepartment of Medicine, Surgery and Neuroscience, and Human Physiology SectionSiena University Siena Italy
| | | |
Collapse
|
36
|
Girotti M, Adler SM, Bulin SE, Fucich EA, Paredes D, Morilak DA. Prefrontal cortex executive processes affected by stress in health and disease. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:161-179. [PMID: 28690203 PMCID: PMC5756532 DOI: 10.1016/j.pnpbp.2017.07.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/08/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 11/23/2022]
Abstract
Prefrontal cortical executive functions comprise a number of cognitive capabilities necessary for goal directed behavior and adaptation to a changing environment. Executive dysfunction that leads to maladaptive behavior and is a symptom of psychiatric pathology can be instigated or exacerbated by stress. In this review we survey research addressing the impact of stress on executive function, with specific focus on working memory, attention, response inhibition, and cognitive flexibility. We then consider the neurochemical pathways underlying these cognitive capabilities and, where known, how stress alters them. Finally, we review work exploring potential pharmacological and non-pharmacological approaches that can ameliorate deficits in executive function. Both preclinical and clinical literature indicates that chronic stress negatively affects executive function. Although some of the circuitry and neurochemical processes underlying executive function have been characterized, a great deal is still unknown regarding how stress affects these processes. Additional work focusing on this question is needed in order to make progress on developing interventions that ameliorate executive dysfunction.
Collapse
Affiliation(s)
- Milena Girotti
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA.
| | - Samantha M Adler
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Sarah E Bulin
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Elizabeth A Fucich
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Denisse Paredes
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - David A Morilak
- Department of Pharmacology, Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| |
Collapse
|
37
|
Resting-state theta/beta EEG ratio is associated with reward- and punishment-related reversal learning. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 17:754-763. [PMID: 28585018 PMCID: PMC5548847 DOI: 10.3758/s13415-017-0510-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
Prior research has shown that the ratio between resting-state theta (4–7 Hz)-beta (13–30 Hz) oscillations in the electroencephalogram (EEG) is associated with reward- and punishment-related feedback learning and risky decision making. However, it remains unclear whether the theta/beta EEG ratio is also an electrophysiological index for poorer behavioral adaptation when reward and punishment contingencies change over time. The aim of the present study was to investigate whether resting-state theta (4–7 Hz)-beta (13–30 Hz) EEG ratio correlated with reversal learning. A 4-min resting-state EEG was recorded and a gambling task with changing reward-punishment contingencies was administered in 128 healthy volunteers. Results showed an inverse relationship between theta/beta EEG ratio and reversal learning. Our findings replicate and extend previous findings by showing that higher midfrontal theta/beta EEG ratios are associated with poorer reversal learning and behavioral adaptive responses under changing environmental demands.
Collapse
|
38
|
Angelidis A, Hagenaars M, van Son D, van der Does W, Putman P. Do not look away! Spontaneous frontal EEG theta/beta ratio as a marker for cognitive control over attention to mild and high threat. Biol Psychol 2018. [PMID: 29518523 DOI: 10.1016/j.biopsycho.2018.03.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Low spontaneous EEG theta/beta ratio (TBR) is associated with greater executive control. Their role in regulation of attentional bias for stimuli of different threat-levels is unknown. OBJECTIVES To provide the first relations between frontal TBR, trait anxiety and attentional bias to mildly and highly threatening stimuli at different processing-stages. METHODS Seventy-four healthy volunteers completed spontaneous EEG measurement, a self-report trait anxiety questionnaire and a dot-probe task with stimuli of different threat-level and 200 and 500 ms cue-target delays. RESULTS Participants with high TBR directed attention towards mildly threatening and avoided highly threatening pictures. Moreover, the most resilient participants, (low TBR and low trait anxiety) showed attention towards highly threatening stimuli. There were no effects of delay. CONCLUSIONS These data confirm that executive control is crucial for the study of threat-related attentional bias and further support the notion that TBR is a marker of cognitive control over emotional information.
Collapse
Affiliation(s)
- Angelos Angelidis
- Institute of Psychology, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Muriel Hagenaars
- Department of Clinical Psychology, Utrecht University, Utrecht, The Netherlands
| | - Dana van Son
- Institute of Psychology, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Willem van der Does
- Institute of Psychology, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Peter Putman
- Institute of Psychology, Leiden University, Leiden, The Netherlands; Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| |
Collapse
|
39
|
Carvalho S, Leite J, Fregni F. Transcranial Alternating Current Stimulation and Transcranial Random Noise Stimulation. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/17/2022]
|
40
|
Wischnewski M, Schutter DJ. After-effects of transcranial alternating current stimulation on evoked delta and theta power. Clin Neurophysiol 2017; 128:2227-2232. [DOI: 10.1016/j.clinph.2017.08.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/18/2017] [Revised: 07/06/2017] [Accepted: 08/24/2017] [Indexed: 11/28/2022]
|
41
|
Tavakoli AV, Yun K. Transcranial Alternating Current Stimulation (tACS) Mechanisms and Protocols. Front Cell Neurosci 2017; 11:214. [PMID: 28928634 PMCID: PMC5591642 DOI: 10.3389/fncel.2017.00214] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/15/2017] [Accepted: 07/04/2017] [Indexed: 12/20/2022] Open
Abstract
Perception, cognition and consciousness can be modulated as a function of oscillating neural activity, while ongoing neuronal dynamics are influenced by synaptic activity and membrane potential. Consequently, transcranial alternating current stimulation (tACS) may be used for neurological intervention. The advantageous features of tACS include the biphasic and sinusoidal tACS currents, the ability to entrain large neuronal populations, and subtle control over somatic effects. Through neuromodulation of phasic, neural activity, tACS is a powerful tool to investigate the neural correlates of cognition. The rapid development in this area requires clarity about best practices. Here we briefly introduce tACS and review the most compelling findings in the literature to provide a starting point for using tACS. We suggest that tACS protocols be based on functional brain mechanisms and appropriate control experiments, including active sham and condition blinding.
Collapse
Affiliation(s)
- Amir V Tavakoli
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadena, CA, United States.,Department of Psychology, University of California, Los AngelesLos Angeles, CA, United States
| | - Kyongsik Yun
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadena, CA, United States.,Computation and Neural Systems, California Institute of TechnologyPasadena, CA, United States.,Bio-Inspired Technologies and Systems, Jet Propulsion Laboratory, California Institute of TechnologyPasadena, CA, United States
| |
Collapse
|
42
|
Kleinert ML, Szymanski C, Müller V. Frequency-Unspecific Effects of θ-tACS Related to a Visuospatial Working Memory Task. Front Hum Neurosci 2017; 11:367. [PMID: 28747881 PMCID: PMC5506205 DOI: 10.3389/fnhum.2017.00367] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2017] [Accepted: 06/28/2017] [Indexed: 02/02/2023] Open
Abstract
Working memory (WM) is crucial for intelligent cognitive functioning, and synchronization phenomena in the fronto-parietal network have been suggested as an underlying neural mechanism. In an attempt to provide causal evidence for this assumption, we applied transcranial alternating current stimulation (tACS) at theta frequency over fronto-parietal sites during a visuospatial match-to-sample (MtS) task. Depending on the stimulation protocol, i.e., in-phase, anti-phase or sham, we anticipated a differential impact of tACS on behavioral WM performance as well as on the EEG (electroencephalography) during resting state before and after stimulation. We hypothesized that in-phase tACS of the fronto-parietal theta network (stimulation frequency: 5 Hz; intensity: 1 mA peak-to-peak) would result in performance enhancement, whereas anti-phase tACS would cause performance impairment. Eighteen participants (nine female) received in-phase, anti-phase, and sham stimulation in balanced order. While being stimulated, subjects performed the MtS task, which varied in executive demand (two levels: low and high). EEG analysis of power peaks within the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz) frequency bands was carried out. No significant differences were observed between in-phase and anti-phase stimulation regarding both behavioral and EEG measurements. Yet, with regard to the alpha frequency band, we observed a statistically significant drop of peak power from pre to post in the sham condition, whereas alpha power remained on a similar level in the actively stimulated conditions. Our results indicate a frequency-unspecific modulation of neuronal oscillations by tACS. However, the closer participants’ individual theta peak frequencies were to the stimulation frequency of 5 Hz after anti-phase tACS, the faster they responded in the MtS task. This effect did not reach statistical significance during in-phase tACS and was not present during sham. A lack of statistically significant behavioral results in the MtS task and frequency-unspecific effects on the electrophysiological level question the effectiveness of tACS in modulating cortical oscillations in a frequency-specific manner.
Collapse
Affiliation(s)
- Maria-Lisa Kleinert
- Center for Lifespan Psychology, Max Planck Institute for Human DevelopmentBerlin, Germany.,Department of Education and Psychology, Freie Universität BerlinBerlin, Germany
| | - Caroline Szymanski
- Center for Lifespan Psychology, Max Planck Institute for Human DevelopmentBerlin, Germany.,School of Mind and Brain, Humboldt-Universität zu BerlinBerlin, Germany
| | - Viktor Müller
- Center for Lifespan Psychology, Max Planck Institute for Human DevelopmentBerlin, Germany
| |
Collapse
|
43
|
Theta band transcranial alternating current stimulations modulates network behavior of dorsal anterior cingulate cortex. Sci Rep 2017; 7:3607. [PMID: 28620215 PMCID: PMC5472616 DOI: 10.1038/s41598-017-03859-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2016] [Accepted: 04/12/2017] [Indexed: 12/31/2022] Open
Abstract
Dorsal anterior cingulate cortex (dACC) is an important region in the processing of both cognition and affect. Recently, transcranial brain stimulation has been used to modulate cortical activity, but it is unclear whether this stimulation has a specific effect on dACC. Based on EEG evidence that frontal midline theta activity is generated in dACC, we hypothesized that transcranial alternating current stimulation (tACS) with theta band frequency would modulate neural networks including dACC. In this study, we examined the effects of theta band tACS on functional networks and emotional state. Graph theory analysis for resting-state functional MRI data revealed that theta band tACS decreased functional integration and hub capacity in dACC, and the attenuation of dACC network function was associated with emotional state change. Overall, these results demonstrate that theta band stimulation can modulate dACC.
Collapse
|