1
|
Jin X, Mei Y, Yang P, Huang R, Zhang H, Wu Y, Wang M, He X, Jiang Z, Zhu W, Wang L. Prioritization of therapeutic targets for cancers using integrative multi-omics analysis. Hum Genomics 2024; 18:42. [PMID: 38659038 PMCID: PMC11040978 DOI: 10.1186/s40246-024-00571-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/17/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND The integration of transcriptomic, proteomic, druggable genetic and metabolomic association studies facilitated a comprehensive investigation of molecular features and shared pathways for cancers' development and progression. METHODS Comprehensive approaches consisting of transcriptome-wide association studies (TWAS), proteome-wide association studies (PWAS), summary-data-based Mendelian randomization (SMR) and MR were performed to identify genes significantly associated with cancers. The results identified in above analyzes were subsequently involved in phenotype scanning and enrichment analyzes to explore the possible health effects and shared pathways. Additionally, we also conducted MR analysis to investigate metabolic pathways related to cancers. RESULTS Totally 24 genes (18 transcriptomic, 1 proteomic and 5 druggable genetic) showed significant associations with cancers risk. All genes identified in multiple methods were mainly enriched in nuclear factor erythroid 2-related factor 2 (NRF2) pathway. Additionally, biosynthesis of ubiquinol and urate were found to play an important role in gastrointestinal tumors. CONCLUSIONS A set of putatively causal genes and pathways relevant to cancers were identified in this study, shedding light on the shared biological processes for tumorigenesis and providing compelling genetic evidence to prioritize anti-cancer drugs development.
Collapse
Affiliation(s)
- Xin Jin
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yunyun Mei
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Puyu Yang
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Runze Huang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Haifeng Zhang
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, People's Republic of China
| | - Yibin Wu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Miao Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xigan He
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Ziting Jiang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Weiping Zhu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
2
|
Maia LB, Maiti BK, Moura I, Moura JJG. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Molecules 2023; 29:120. [PMID: 38202704 PMCID: PMC10779653 DOI: 10.3390/molecules29010120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium's unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein's physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium's physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium's role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.
Collapse
Affiliation(s)
- Luisa B. Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - Biplab K. Maiti
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Isabel Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - José J. G. Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| |
Collapse
|
3
|
Song W, Bian L, Xiong M, Duan Y, Wang Y, Zhang X, Li B, Dai Y, Lu J, Li M, Liu Z, Liu S, Zhang L, Yao H, Shao R, Li G, Li L. Association of genetic polymorphisms with mercapturic acids in the urine of young healthy subjects before and after exposure to outdoor air pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:936-948. [PMID: 35469493 DOI: 10.1080/09603123.2022.2066068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
We aimed to identify the relationship between variations in metabolic genes and human urinary changes in mercapturic acids (MAs), including CEMA, HMPMA, SPMA, HPMA and HEMA, before and after air pollution exposure. Genotype detection for 47 relevant single nucleotide polymorphisms (SNPs) collected by literature research was performed. Five MAs expression levels in the urinary samples of 50 young healthy individuals with short-term exposure to clean, polluted and purified air at five time points were detected by targeted online solid-phase extraction liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS), followed with associations of SNPs with MAs changes. Difference in MAs between polluted and clean/purified air was significantly associated with 21 SNPs mapped into 9 genes. Five SNPs in GSTP1 showed the most prominent association with the changes in SPMA expression, indicating that those SNPs in GSTP1 and SPMA might serve as biomarkers for susceptibility and the prognosis of lung cancer.
Collapse
Affiliation(s)
- Wenping Song
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Lingjie Bian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mengran Xiong
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyuan Duan
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Wang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Xia Zhang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Biao Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yulong Dai
- Department of Bioinformatics Analysis & Technical Support, Shanghai Lu Ming Biological Technology Co. Ltd, Shanghai, China
| | - Jiawei Lu
- Department of Bioinformatics Analysis & Technical Support, Shanghai Lu Ming Biological Technology Co. Ltd, Shanghai, China
| | - Meng Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiguo Liu
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Shigang Liu
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Li Zhang
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Hongjuan Yao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Guangxi Li
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Li
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
4
|
Golara A, Kozłowski M, Guzik P, Kwiatkowski S, Cymbaluk-Płoska A. The Role of Selenium and Manganese in the Formation, Diagnosis and Treatment of Cervical, Endometrial and Ovarian Cancer. Int J Mol Sci 2023; 24:10887. [PMID: 37446063 DOI: 10.3390/ijms241310887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Selenium (Se) and manganese (Mn) are essential micronutrients that are important elements of cell metabolism. They are involved in the composition of enzyme systems and regulate enzyme activity. Disturbances in the homeostasis of these micronutrients affect the development of many diseases and carcinogenesis, which can be linked to increased levels of oxidative stress and impaired antioxidant properties of many enzymes. Selenium has a very important function in maintaining immune-endocrine, metabolic and cellular homeostasis. Manganese, on the other hand, is important in development, digestion, reproduction, antioxidant defense, energy production, immune response and regulation of neuronal activity. We review the role of selenium and manganese and their effects on tumor growth, metastasis potential and remodeling of the microenvironment. We also describe their role as potential biomarkers in the diagnosis and the potential for the use of Se- and Mn-containing compounds in composition for the treatment of cancer of the reproductive organs.
Collapse
Affiliation(s)
- Anna Golara
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Mateusz Kozłowski
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Paweł Guzik
- Clinical Department of Gynecology and Obstetrics, City Hospital, 35-241 Rzeszów, Poland
| | - Sebastian Kwiatkowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Aneta Cymbaluk-Płoska
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
5
|
Polymorphisms of Antioxidant Enzymes SOD2 (rs4880) and GPX1 (rs1050450) Are Associated with Bladder Cancer Risk or Its Aggressiveness. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59010131. [PMID: 36676755 PMCID: PMC9860962 DOI: 10.3390/medicina59010131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023]
Abstract
Background and Objectives: Oxidative stress induced by increased reactive oxygen species (ROS) production plays an important role in carcinogenesis. The entire urinary tract is continuously exposed to numerous potentially mutagenic environmental agents which generate ROS during their biotransformation. In first line defense against free radicals, antioxidant enzymes superoxide dismutase (SOD2) and glutathione peroxidase (GPX1) both have essential roles. Altered enzyme activity and decreased ability of neutralizing free oxygen radicals as a consequence of genetic polymorphisms in genes encoding these two enzymes are well described so far. This study aimed to investigate the association of GPX1 (rs1050450) and SOD2 (rs4880) genetic variants with the urothelial bladder cancer (UBC) risk independently and in combination with smoking. Furthermore, we aimed to determine whether the UBC stage and pathological grade were influenced by GPX1 and SOD2 polymorphisms. Material and Methods: The study population included 330 patients with UBC (mean age 65 ± 10.3 years) and 227 respective controls (mean age 63.4 ± 7.9 years). Single nucleotide polymorphism (SNP) of GPX1 (rs1050450) was analyzed using the PCR-RFLP, while SOD2 (rs4880) SNP was analyzed using the q-PCR method. Results: Our results showed that UBC risk was significantly increased among carriers of at least one variant SOD2 Val allele compared to the SOD2 Ala16Ala homozygotes (OR = 1.55, p = 0.03). Moreover, this risk was even more pronounced in smokers with at least one variant SOD2 Val allele, since they have even 7.5 fold higher UBC risk (OR = 7.5, p < 0.001). Considering GPX1 polymorphism, we have not found an association with UBC risk. However, GPX1 genotypes distribution differed significantly according to the tumor stage (p ˂ 0.049) and pathohistological grade (p ˂ 0.018). Conclusion: We found that SOD2 genetic polymorphism is associated with the risk of UBC development independently and in combination with cigarette smoking. Furthermore, we showed that GPX1 genetic polymorphism is associated with the aggressiveness of the disease.
Collapse
|
6
|
Zhao Y, Wang H, Zhou J, Shao Q. Glutathione Peroxidase GPX1 and Its Dichotomous Roles in Cancer. Cancers (Basel) 2022; 14:cancers14102560. [PMID: 35626163 PMCID: PMC9139801 DOI: 10.3390/cancers14102560] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/20/2022] Open
Abstract
As the first identified selenoprotein, glutathione peroxidase 1 (GPX1) is a widely and abundantly expressed antioxidant enzyme. GPX1 utilizes glutathione as a substrate to catalyze hydrogen peroxide, lipid peroxide, and peroxynitrite, thereby reducing intracellular oxidative stress. The GPX1 gene is regulated at transcriptional, post-transcriptional, and translational levels. Numerous case-control studies and meta-analyses have assessed the association between a functional genetic polymorphism of the GPX1 gene, named Pro198Leu (rs1050450 C>T), and cancer susceptibility in different populations. GPX1 polymorphism has type-specific effects as a candidate marker for cancer risk, but the association between GPX1 variants and cancer susceptibility remains controversial in different studies. GPX1 is abnormally elevated in most types of cancer but has complex dichotomous roles as tumor suppressor and promoter in different cancers. GPX1 can participate in various signaling pathways to regulate tumor biological behaviors, including cell proliferation, apoptosis, invasion, immune response, and chemoresistance. In this review, we comprehensively summarize the controversial associations between GPX1 polymorphism and cancer risks and further discuss the relationships between the aberrant expressions of GPX1 and tumorigenesis. Further studies are needed to elucidate the clinical significance of GPX1 as a potential prognostic biomarker and novel therapeutic target in various malignancies.
Collapse
Affiliation(s)
- Yangjing Zhao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (H.W.)
| | - Hui Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (H.W.)
| | - Jingdong Zhou
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang 212002, China
- Correspondence: (J.Z.); (Q.S.)
| | - Qixiang Shao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an 223005, China
- Correspondence: (J.Z.); (Q.S.)
| |
Collapse
|
7
|
Janowska M, Potocka N, Paszek S, Skrzypa M, Żulewicz K, Kluz M, Januszek S, Baszuk P, Gronwald J, Lubiński J, Zawlik I, Kluz T. An Assessment of GPX1 (rs1050450), DIO2 (rs225014) and SEPP1 (rs7579) Gene Polymorphisms in Women with Endometrial Cancer. Genes (Basel) 2022; 13:genes13020188. [PMID: 35205233 PMCID: PMC8871918 DOI: 10.3390/genes13020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Numerous studies indicate a relationship between the presence of GPX1 (rs1050450), DIO2 (rs225014) and SEPP1 (rs7579) gene polymorphisms and the development of chronic or neoplastic diseases. However, there are no reports on the influence of these polymorphisms on the development of endometrial cancer. Methods: 543 women participated in the study. The study group consisted of 269 patients with diagnosed endometrial cancer. The control group consisted of 274 healthy women. Blood samples were drawn from all the participants. The PCR-RFLP method was used to determine polymorphisms in the DIO2 (rs225014) and GPX1 (rs1050450) genes. The analysis of polymorphisms in the SEPP1 (rs7579) gene was performed by means of TaqMan probes. Results: There was a 1.99-fold higher risk of developing endometrial cancer in CC homozygotes, DIO2 (rs225014) polymorphism (95% Cl 1.14–3.53, p = 0.017), compared to TT homozygotes. There was no correlation between the occurrence of GPX1 (rs1050450) and SEPP1 (rs7579) polymorphisms and endometrial cancer. Conclusion: Carriers of the DIO2 (rs225014) polymorphism may be predisposed to the development of endometrial cancer. Further research confirming this relationship is recommended.
Collapse
Affiliation(s)
- Magdalena Janowska
- Department of Gynecology and Obstetrics, Fryderyk Chopin University Hospital No. 1, 35-055 Rzeszow, Poland; (M.J.); (S.J.); (T.K.)
| | - Natalia Potocka
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (S.P.); (M.S.); (K.Ż.)
| | - Sylwia Paszek
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (S.P.); (M.S.); (K.Ż.)
| | - Marzena Skrzypa
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (S.P.); (M.S.); (K.Ż.)
| | - Kamila Żulewicz
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (S.P.); (M.S.); (K.Ż.)
| | - Marta Kluz
- Department of Pathology, Fryderyk Chopin University Hospital No. 1, 35-055 Rzeszow, Poland;
| | - Sławomir Januszek
- Department of Gynecology and Obstetrics, Fryderyk Chopin University Hospital No. 1, 35-055 Rzeszow, Poland; (M.J.); (S.J.); (T.K.)
| | - Piotr Baszuk
- Department of Genetics and Pathology, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (J.G.); (J.L.)
| | - Jacek Gronwald
- Department of Genetics and Pathology, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (J.G.); (J.L.)
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, 70-204 Szczecin, Poland; (P.B.); (J.G.); (J.L.)
| | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (S.P.); (M.S.); (K.Ż.)
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
- Correspondence:
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Fryderyk Chopin University Hospital No. 1, 35-055 Rzeszow, Poland; (M.J.); (S.J.); (T.K.)
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
8
|
Ho KJ, Chen TH, Yang CC, Chuang YC, Chuang HY. Interaction of Smoking and Lead Exposure among Carriers of Genetic Variants Associated with a Higher Level of Oxidative Stress Indicators. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168325. [PMID: 34444074 PMCID: PMC8393757 DOI: 10.3390/ijerph18168325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 02/02/2023]
Abstract
Smoking and lead (Pb) exposure increased oxidative stress in human body, and people with some gene variants may be susceptible to Pb and smoking via oxidative stress. The aim of this study is to evaluate oxidative stress by measuring thiobarbituric acid reactive substances (TBARS) and the relationship of lipid peroxidation markers in Pb workers with different gene polymorphisms (rs4673 and rs1050450) in both smokers and nonsmokers. Blood samples were collected from 267 Pb workers who received their annual health examination in the Kaohsiung Medical University Hospital. Glutathione peroxidase 1 (GPx-1) rs1050450 and cytochrome B-245 Alpha Chain (CYBA) rs4673 single-nucleotide polymorphisms (SNP) were analyzed by specific primer-probes using Real-Time PCR methods. The interaction between blood Pb and smoking increased serum levels of TBARS and the ratio of oxidative low-density lipoprotein and low-density lipoprotein (oxLDL/LDL). Analysis of workers with rs1050450 SNPs showed higher blood Pb levels in the workers with CC genotype than those with CT genotype. Smokers had significantly higher blood Pb, alanine transaminase (ALT), TBARS, and OxLDL levels than nonsmokers. TBARS increased 0.009 nmol/mL when blood Pb increased one µg/dL in smokers compared to nonsmokers. The ratio of OxLDL/LDL increased 0.223 when blood Pb increased one µg/dL in smokers compared to nonsmokers. TBARS levels and the ratio of OxLDL/LDL were positively correlated and interacted between blood Pb and smoking after the adjustment of confounders, suggesting that smoking cessation is an important issue in the Pb-exposed working environment.
Collapse
Affiliation(s)
- Kuo-Jung Ho
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan;
| | - Tzu-Hua Chen
- Department of Family Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan;
| | - Chen-Cheng Yang
- Department of Occupational and Environmental Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan;
| | - Yao-Chung Chuang
- Institute for Translation Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 833, Taiwan;
| | - Hung-Yi Chuang
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan
- Department of Public Health and Environmental Medicine, College of Medicine, Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
- Correspondence: ; Tel.: +886-7312-1101
| |
Collapse
|
9
|
Survival of Laryngeal Cancer Patients Depending on Zinc Serum Level and Oxidative Stress Genotypes. Biomolecules 2021; 11:biom11060865. [PMID: 34200699 PMCID: PMC8228711 DOI: 10.3390/biom11060865] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/30/2023] Open
Abstract
Stress contributes to various aspects of malignancy and could influence survival in laryngeal cancer patients. Among antioxidant mechanisms, zinc and the antioxidant enzymes superoxide dismutase 2, catalase and glutathione peroxidase 1 play a major role. The aim of this study was a prospective evaluation of the survival of patients with laryngeal cancer in relation to serum levels of zinc in combination with functional genotype differences of three key antioxidant enzymes. The study group consisted of 300 patients treated surgically for laryngeal cancer. Serum zinc levels and common polymorphisms in SOD2, CAT and GPX1 were analyzed. The risk of death in patients with the lowest zinc levels was increased in comparison with patients with the highest levels. Polymorphisms of antioxidant genes by themselves were not correlated with survival, however, serum zinc level impact on survival was stronger for SOD2 TC/TT and CAT CC variants. GPX1 polymorphisms did not correlate with zinc levels regarding survival. In conclusion, serum zinc concentration appears to be an important prognostic factor for survival of patients diagnosed with laryngeal cancer. When higher zinc levels were correlated with polymorphisms in SOD2 and CAT a further increase in survival was observed.
Collapse
|
10
|
Baszuk P, Janasik B, Pietrzak S, Marciniak W, Reszka E, Białkowska K, Jabłońska E, Muszyńska M, Lesicka M, Derkacz R, Grodzki T, Wójcik J, Wojtyś M, Dębniak T, Cybulski C, Gronwald J, Kubisa B, Wójcik N, Pieróg J, Gajić D, Waloszczyk P, Scott RJ, Wąsowicz W, Jakubowska A, Lubiński J, Lener MR. Lung Cancer Occurrence-Correlation with Serum Chromium Levels and Genotypes. Biol Trace Elem Res 2021; 199:1228-1236. [PMID: 32648197 PMCID: PMC7886837 DOI: 10.1007/s12011-020-02240-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Exposure to environmental and occupational carcinogens is an important cause of lung cancer. One of these substances is chromium, which is found ubiquitously across the planet. The International Agency for Research on Cancer has classified chromium(VI) as a human carcinogen. The aim of this study was to assess whether serum chromium levels, as well as DNA variants in selected genes involved in carcinogenesis, xenobiotic-metabolism, and oxidative stress could be helpful in the detection of lung cancer. We conducted a study using 218 lung cancer patients and 218 matched healthy controls. We measured serum chromium levels and genotyped ten genetic variants in ERCC2, XRCC1, MT1B, GSTP1, ABCB1, NQ01, CRTC3, GPX1, SOD2 and CAT. The odds ratios of being diagnosed with lung cancer were calculated using conditional logistic regression with respect to serum chromium level and genotypes. The odds ratio for the occurrence of lung cancer increased with increasing serum chromium levels. The difference between the quartiles with the lowest vs. highest chromium level was more than fourfold in the entire group (OR 4.52, CI 2.17-9.42, p < 0.01). This correlation was significantly increased by more than twice when specific genotypes were taken into consideration (ERCC-rs12181 TT, OR 12.34, CI 1.17-130.01, p = 0.04; CRTC3-rs12915189 non GG, OR 9.73, CI 1.58-60.10, p = 0.01; GSTP1-rs1695 non AA, OR 9.47, CI 2.06-43.49, p = < 0.01; CAT-rs1001179 non CC, OR 9.18, CI 1.64-51.24, p = 0.01). Total serum chromium levels > 0.1 μg/L were correlated with 73% (52/71) of lung cancers diagnosed with stage I disease. Our findings support the role of chromium and the influence of key proteins on lung cancer burden in the general population.
Collapse
Affiliation(s)
- Piotr Baszuk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252, Szczecin, Poland
| | - Beata Janasik
- Biological and Environment Monitoring Department, Nofer Institute of Occupational Medicine, ul.św. Teresy od dzieciątka Jezus 8, 91-348, Łódź, Poland
| | - Sandra Pietrzak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252, Szczecin, Poland
| | - Wojciech Marciniak
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003, Grzepnica, Dobra(Szczecińska), Poland
| | - Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, ul.św. Teresy od dzieciątka Jezus 8, 91-348, Łódź, Poland
| | - Katarzyna Białkowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252, Szczecin, Poland
| | - Ewa Jabłońska
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, ul.św. Teresy od dzieciątka Jezus 8, 91-348, Łódź, Poland
| | - Magdalena Muszyńska
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003, Grzepnica, Dobra(Szczecińska), Poland
| | - Monika Lesicka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, ul.św. Teresy od dzieciątka Jezus 8, 91-348, Łódź, Poland
| | - Róża Derkacz
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003, Grzepnica, Dobra(Szczecińska), Poland
| | - Tomasz Grodzki
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, ul. A. Sokołowskiego 11, 70-891, Szczecin, Poland
| | - Janusz Wójcik
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, ul. A. Sokołowskiego 11, 70-891, Szczecin, Poland
| | - Małgorzata Wojtyś
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, ul. A. Sokołowskiego 11, 70-891, Szczecin, Poland
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252, Szczecin, Poland
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252, Szczecin, Poland
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252, Szczecin, Poland
| | - Bartosz Kubisa
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, ul. A. Sokołowskiego 11, 70-891, Szczecin, Poland
| | - Norbert Wójcik
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, ul. A. Sokołowskiego 11, 70-891, Szczecin, Poland
| | - Jarosław Pieróg
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, ul. A. Sokołowskiego 11, 70-891, Szczecin, Poland
| | - Darko Gajić
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, ul. A. Sokołowskiego 11, 70-891, Szczecin, Poland
| | - Piotr Waloszczyk
- Independent Laboratory of Pathology, Zdunomed, ul. Energetyków 2, 70-656, Szczecin, Poland
| | - Rodney J Scott
- Priority Research Centre for Cancer Research, Innovation and Translation, Hunter Medical Research Institute, New Lambton Heights, Australia
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
- Division of Molecular Medicine, Pathology North, John Hunter Hospital, New Lambton, NSW, 2305, Australia
| | - Wojciech Wąsowicz
- Biological and Environment Monitoring Department, Nofer Institute of Occupational Medicine, ul.św. Teresy od dzieciątka Jezus 8, 91-348, Łódź, Poland
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252, Szczecin, Poland
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003, Grzepnica, Dobra(Szczecińska), Poland
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252, Szczecin, Poland
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003, Grzepnica, Dobra(Szczecińska), Poland
| | - Marcin R Lener
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, ul. Unii Lubelskiej 1, 71-252, Szczecin, Poland.
| |
Collapse
|
11
|
Sukiennicki GM, Marciniak W, Muszyńska M, Baszuk P, Gupta S, Białkowska K, Jaworska-Bieniek K, Durda K, Lener M, Pietrzak S, Gromowski T, Prajzendanc K, Łukomska A, Waloszczyk P, Wójcik JZ, Scott R, Lubiński J, Jakubowska A. Iron levels, genes involved in iron metabolism and antioxidative processes and lung cancer incidence. PLoS One 2019; 14:e0208610. [PMID: 30640897 PMCID: PMC6331102 DOI: 10.1371/journal.pone.0208610] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/20/2018] [Indexed: 02/08/2023] Open
Abstract
Background Lung cancer is the most common adult malignancy accounting for the largest proportion of cancer related deaths. Iron (Fe) is an essential trace element and is a component of several major metabolic pathways playing an important role in many physiological processes. In this study we evaluated the association between Fe concentration in serum, iron metabolism parameters and genetic variaton in 7 genes involved in iron metabolism and anti-oxidative processes with the incidence of lung cancer in Poland. Materials and methods The study included 200 lung cancer patients and 200 matched healthy control subjects. We analyzed serum iron concentration and iron metabolism parameters (TIBC, UIBC, serum ferritin and transferrin saturation), and genotyped seven variants in seven genes: HFE, TFR1, HAMP, TF, SOD2, CAT and GPX1. Results Lung cancer patients compared to their matched controls had significantly higher mean serum iron level (p = 0.01), ferritin level (p = 0.007) and TIBC (p = 0.006). Analysis revealed that higher concentration of iron and ferritin (IVth quartile) compared to the lower concentration (Ist quartile) was associated with over 2-fold increased lung cancer incidence. We also found that higher transferrin saturation (p = 0.01) and lower TIBC (p<0.01) are associated with better survival of lung cancer patients. The analysis of polymorphisms in iron related genes did not reveal a significant difference between lung cancer patients and controls. However, rs10421768 in HAMP showed a borderline statistically significant correlation with lung cancer risk (OR = 2.83, p = 0.05). Conclusions The results of this case control study indicate that higher body iron represented by higher Fe and ferritin levels may be associated with lung cancer incidence. Rs10421768 in HAMP may be associated with about 3-times higher lung cancer risk. Higher Fe body content may be associated with better survival of lung cancer patients.
Collapse
Affiliation(s)
- Grzegorz Mariusz Sukiennicki
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- * E-mail:
| | | | | | - Piotr Baszuk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | | | - Katarzyna Białkowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Katarzyna Jaworska-Bieniek
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Katarzyna Durda
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Marcin Lener
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Sandra Pietrzak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Gromowski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Karolina Prajzendanc
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Alicja Łukomska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | | | - Janusz Zenon Wójcik
- Department of General Thoracic Surgery and Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Rodney Scott
- School of Biomedical Sciences, University of Newcastle, New South Wales, Newcastle, Australia
- Division of Molecular Medicine, NSW Health Pathology (Newcastle) New South Wales, Newcastle, Australia
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- Read- Gene S.A., Grzepnica, Dobra Szczecińska, Poland
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
12
|
Kopp TI, Outzen M, Olsen A, Vogel U, Ravn-Haren G. Genetic polymorphism in selenoprotein P modifies the response to selenium-rich foods on blood levels of selenium and selenoprotein P in a randomized dietary intervention study in Danes. GENES AND NUTRITION 2018; 13:20. [PMID: 30008961 PMCID: PMC6045871 DOI: 10.1186/s12263-018-0608-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022]
Abstract
Background Selenium is an essential trace element and is suggested to play a role in the etiology of a number of chronic diseases. Genetic variation in genes encoding selenoproteins, such as selenoprotein P and the glutathione peroxidases, may affect selenium status and, thus, individual susceptibility to some chronic diseases. In the present study, we aimed to (1) investigate the effect of mussel and fish intake on glutathione peroxidase enzyme activity and (2) examine whether single nucleotide polymorphisms in the GPX1, GPX4, and SELENOP genes modify the effect of mussel and fish intake for 26 weeks on whole blood selenium, plasma selenoprotein P concentrations, and erythrocyte GPX enzyme activity in a randomized intervention trial in Denmark. Results CC homozygotes of the SELENOP/rs3877899 polymorphism who consumed 1000 g fish and mussels per week for 26 consecutive weeks had higher levels of both selenoprotein P (difference between means - 4.68 ng/mL (95% CI - 8.49, - 0.871)) and whole blood selenium (difference between means - 5.76 (95% CI - 12.5, 1.01)) compared to fish and mussel consuming T-allele carriers although the effect in whole blood selenium concentration was not statistically significant. Conclusions Our study indicates that genetically determined variation in SELENOP leads to different responses in expression of selenoproteins following consumption of selenium-rich foods. This study also emphasizes the importance of taking individual aspects such as genotypes into consideration when assessing risk in public health recommendations.
Collapse
Affiliation(s)
- Tine Iskov Kopp
- 1National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark.,2Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark.,3The Danish Multiple Sclerosis Registry, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark.,5The Danish Multiple Sclerosis Center, Department of Neurology, The Danish Multiple Sclerosis Registry, Section 7801, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - Malene Outzen
- 1National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark.,2Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
| | - Anja Olsen
- 2Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
| | - Ulla Vogel
- 4National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Gitte Ravn-Haren
- 1National Food Institute, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
13
|
Varlamova EG, Cheremushkina IV. Contribution of mammalian selenocysteine-containing proteins to carcinogenesis. J Trace Elem Med Biol 2017; 39:76-85. [PMID: 27908428 DOI: 10.1016/j.jtemb.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Oxidative stress caused by a sharp growth of free radicals in the organism is a major cause underlying the occurrence of all kinds of malignant formations. Selenium is an important essential trace element found in selenoproteins in the form of selenocysteine, an amino acid differing from cysteine for the presence of selenium instead of sulfur and making such proteins highly active. To date the role of selenium has been extensively investigated through studying the functions of selenoproteins in carcinogenesis. Analysis of the obtained results clearly demonstrates that selenoproteins can act as oncosuppressors, but can also, on the contrary, favor the formation of malignant tumors.
Collapse
Affiliation(s)
- Elena Gennadyevna Varlamova
- Federal State Institution of Science Institute of Cell Biophysics, Russian Academy of Sciences, Moscow Region, Institutskaya st. 3, 142290, Pushchino, Russia.
| | - Irina Valentinovna Cheremushkina
- Federal State Educational Institution of Higher Education Voronezh State University of Engineering Technology, Prospect revolution st. 19, 394000, Voronezh, Russia.
| |
Collapse
|
14
|
Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6235641. [PMID: 27418953 PMCID: PMC4932173 DOI: 10.1155/2016/6235641] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/18/2016] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) and their products are components of cell signaling pathways and play important roles in cellular physiology and pathophysiology. Under physiological conditions, cells control ROS levels by the use of scavenging systems such as superoxide dismutases, peroxiredoxins, and glutathione that balance ROS generation and elimination. Under oxidative stress conditions, excessive ROS can damage cellular proteins, lipids, and DNA, leading to cell damage that may contribute to carcinogenesis. Several studies have shown that cancer cells display an adaptive response to oxidative stress by increasing expression of antioxidant enzymes and molecules. As a double-edged sword, ROS influence signaling pathways determining beneficial or detrimental outcomes in cancer therapy. In this review, we address the role of redox homeostasis in cancer growth and therapy and examine the current literature regarding the redox regulatory systems that become upregulated in cancer and their role in promoting tumor progression and resistance to chemotherapy.
Collapse
|
15
|
Sousa VCSD, Carmo RF, Vasconcelos LRS, Aroucha DCBL, Pereira LMMB, Moura P, Cavalcanti MSM. Association of Catalase and Glutathione Peroxidase 1 Polymorphisms with Chronic Hepatitis C Outcome. Ann Hum Genet 2016; 80:145-53. [PMID: 26990426 DOI: 10.1111/ahg.12152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/03/2016] [Indexed: 12/14/2022]
Abstract
The hepatic damage caused by hepatitis C virus (HCV) infection is associated with the host immune response and viral regulatory factors. Catalase (CAT) and glutathione peroxidase 1 (GPX1) are antioxidant enzymes located in the peroxisomes and mitochondria, respectively, and are responsible for the control of intracellular hydrogen peroxide levels. Polymorphisms in CAT (C-262T) and GPX1 (Pro198Leu) are correlated with serum levels and enzyme activity. This study aimed to investigate the association of genetic polymorphisms of CAT C-262T (rs1001179) and GPX1 Pro198Leu (rs1050450) with different stages of liver fibrosis and development of hepatocellular carcinoma (HCC). This study included 445 patients with chronic hepatitis C, of whom 139 patients had mild fibrosis (F0-F1), 200 had moderate/severe fibrosis (F2-F4), and 106 had HCC. Genotyping of SNPs was performed by real-time PCR using TaqMan probes. The Pro/Pro genotype of GPX1 was significantly associated with fibrosis severity, HCC, Child Pugh score, and BCLC staging. Additionally, patients carrying both CT+TT genotypes in the CAT gene and the Pro/Pro genotype in the GPX1 gene had higher risk for developing moderate/severe fibrosis or HCC (p = 0.009, OR 2.40 and p = 0.002, OR 3.56, respectively). CAT and GPX1 polymorphisms may be implicated in the severity of liver fibrosis and HCC caused by HCV.
Collapse
Affiliation(s)
- Vanessa C S D Sousa
- Instituto de Ciências Biológicas - ICB, Universidade de Pernambuco - UPE, Brazil
| | - Rodrigo F Carmo
- Colegiado de Farmácia, Universidade Federal do Vale do São Francisco - UNIVASF, Brazil.,Rede Nordeste de Biotecnologia - RENORBIO, Brazil
| | - Luydson R S Vasconcelos
- Instituto do Fígado e Transplantes de Pernambuco - IFP, Brazil.,Centro de Pesquisas Aggeu Magalhães (FIOCRUZ), Brazil
| | - Dayse C B L Aroucha
- Instituto do Fígado e Transplantes de Pernambuco - IFP, Brazil.,Faculdade de Ciências Médicas, UPE, Brazil
| | - Leila M M B Pereira
- Instituto do Fígado e Transplantes de Pernambuco - IFP, Brazil.,Faculdade de Ciências Médicas, UPE, Brazil
| | - Patrícia Moura
- Instituto de Ciências Biológicas - ICB, Universidade de Pernambuco - UPE, Brazil
| | - Maria S M Cavalcanti
- Instituto de Ciências Biológicas - ICB, Universidade de Pernambuco - UPE, Brazil
| |
Collapse
|
16
|
Souiden Y, Mallouli H, Meskhi S, Chaabouni Y, Rebai A, Chéour F, Mahdouani K. MnSOD and GPx1 polymorphism relationship with coronary heart disease risk and severity. Biol Res 2016; 49:22. [PMID: 27067415 PMCID: PMC4828869 DOI: 10.1186/s40659-016-0083-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 03/24/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Disturbance of the equilibrium between reactive oxygen species (ROS) and anti-oxidants (AOX) has been implicated in various diseases, including atherosclerosis, the most common pathologic process underlying coronary heart disease (CHD). Thus, the defense systems against ROS are critical protecting blood vessel walls against oxidative damage. In this study, we investigate whether Ala16Val MnSOD and Pro198Leu GPx polymorphisms are associated with CHD susceptibility and/or severity. METHODS Both polymorphisms were genotyped in a sample of 203 controls and 164 patients. CHD risk and severity, antioxidant status (enzymatic and/or non enzymatic) and biochemical parameters were assessed and analysed by genotype. RESULTS A significant association of MnSOD variant to CHD risk was revealed in males. Males harboring the Val/Val genotype were approximately at twofold increased risk of CHD compared to controls (Ala carriers vs Val/Val, adjusted OR 1.89; 95 % CI 1.18‒3.42, p = 0.03). Significant decreases in SOD activity and total antioxidant status (TAS) were observed in Val carriers and by CHD status. Whereas, no association of GPx variant genotype (Leu/Leu) and activity to cardiopathy events was discerned. CHD severity, as demonstrated by the number of vessel stenosis, was associated with significantly higher frequency of Val allele and LDL levels in CHD subjects. CONCLUSIONS Our results showed a lack of association of Pro198Leu GPx polymorphism to CHD risk and severity. However, they suggest that Ala16Val MnSOD polymorphism and decreased antioxidant defences are likely contributed to CHD risk in Tunisian men. Furthermore, the Val encoding MnSOD allele and decreased SOD activity were significantly correlated with CHD stenosis progression.
Collapse
Affiliation(s)
- Yosra Souiden
- Laboratory of Biochemistry and Molecular Biology, Hospital of Ibn Eljazzar of Kairouan, Avenue Ibn Eljazzar, 3140, Kairouan, Tunisia. .,Laboratory of Analysis, Treatment and Valorization of the pollutants of the environment and products, Faculty of Pharmacy, Rue Ibn Sina, 5000, Monastir, Tunisia.
| | - Hela Mallouli
- Laboratory of Biochemistry and Molecular Biology, Hospital of Ibn Eljazzar of Kairouan, Avenue Ibn Eljazzar, 3140, Kairouan, Tunisia.,Laboratory of Analysis, Treatment and Valorization of the pollutants of the environment and products, Faculty of Pharmacy, Rue Ibn Sina, 5000, Monastir, Tunisia
| | - Salah Meskhi
- Department of Cardiovascular, Hospital of Ibn Eljazzar of Kairouan, Avenue Ibn Eljazzar, 3140, Kairouan, Tunisia
| | - Yassine Chaabouni
- Laboratory of Biochemistry and Molecular Biology, Hospital of Ibn Eljazzar of Kairouan, Avenue Ibn Eljazzar, 3140, Kairouan, Tunisia
| | - Ahmed Rebai
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, P. O. Box 1177, 3018, Sfax, Tunisia
| | - Foued Chéour
- Institute of Applied Biology of Medenine, 4119, Medenine, Tunisia
| | - Kacem Mahdouani
- Laboratory of Biochemistry and Molecular Biology, Hospital of Ibn Eljazzar of Kairouan, Avenue Ibn Eljazzar, 3140, Kairouan, Tunisia.,Laboratory of Analysis, Treatment and Valorization of the pollutants of the environment and products, Faculty of Pharmacy, Rue Ibn Sina, 5000, Monastir, Tunisia
| |
Collapse
|
17
|
Mazjin MA, Salehi Z, Mashayekhi F, Bahadori M. Evaluation of GPx1 Pro198Leu polymorphism in idiopathic male infertility. Mol Biol 2016. [DOI: 10.1134/s0026893316010143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Selenium and chronic diseases: a nutritional genomics perspective. Nutrients 2015; 7:3621-51. [PMID: 25988760 PMCID: PMC4446770 DOI: 10.3390/nu7053621] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 04/28/2015] [Accepted: 05/06/2015] [Indexed: 01/10/2023] Open
Abstract
Mechanistic data have revealed a key role for selenium (Se) and selenoproteins in biological pathways known to be altered in multifactorial diseases, such as cellular maintenance, response to oxidative stress and correct protein folding. Although epidemiological studies indicate that low Se intake is linked to increased risk for various chronic diseases, supplementation trials have given confusing outcomes, suggesting that additional genetic factors could affect the relationship between Se and health. Genetic data support this hypothesis, as risk for several chronic diseases, in particular cancer, was linked to a number of single nucleotide polymorphisms (SNP) altering Se metabolism, selenoprotein synthesis or activity. Interactions between SNPs in selenoprotein genes, SNPs in related molecular pathways and biomarkers of Se status were found to further modulate the genetic risk carried by the SNPs. Taken together, nutritional genomics approaches uncovered the potential implication of some selenoproteins as well as the influence of complex interactions between genetic variants and Se status in the aetiology of several chronic diseases. This review discusses the results from these genetic associations in the context of selenoprotein functions and epidemiological investigations and emphasises the need to assess in future studies the combined contribution of Se status, environmental stress, and multiple or individual SNPs to disease risk.
Collapse
|
19
|
Najafi M, Ghasemi H, Roustazadeh A, Farajollahi M. Lack of association between glutathione peroxidase1 (GPx1) activity, Pro198Leu polymorphism and stenosis of coronary arteries: A population-based prediction. Meta Gene 2014; 2:722-9. [PMID: 25606455 PMCID: PMC4287826 DOI: 10.1016/j.mgene.2014.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/04/2014] [Accepted: 09/11/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND We studied the association between erythrocyte glutathione peroxidase1 (GPx1) activity and rs1050450 (Pro198Leu) site with the stenosis of coronary arteries and, evaluated the Pro/Leu position within the predicted tertiary structure. METHODS Subjects were recruited from who underwent coronary angiography (controls; n = 55, Stenosis < 5% and Patients; n = 95, Stenosis ≥ 50%). The GPx1 activity and rs1050450 C/T variants were determined using enzyme assay and RFLP-PCR techniques, respectively. The conserved regions and GPx1 tertiary structure were predicted using bioinformatics tools. RESULTS We did not find significant association between GPx1 activity (P = 0.96), rs1050450 genotype distribution and coronary artery disease (adjusted OR = 0.79; 95%CI 0.28-2.2, P = 0.6). The polymorphic variants were not located at the predicted structural and functional domains so that it had not the significant role on the GPx1stability and function. CONCLUSIONS In agreement with the results predicted from bioinformatics tools, we suggested that the GPx1 activity and rs1050450 (Pro198Leu) site are not involved in the development of stenosis of coronary arteries in the study population.
Collapse
Affiliation(s)
- Mohammad Najafi
- Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
- Corresponding author. Tel./fax: + 98 2188622742.
| | - Hassan Ghasemi
- Biochemistry Department, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abazar Roustazadeh
- Biochemistry Department, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mohammad Farajollahi
- Cellular and Molecular Research Center, School of Medical Biotechnology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Mocchegiani E, Costarelli L, Giacconi R, Malavolta M, Basso A, Piacenza F, Ostan R, Cevenini E, Gonos ES, Monti D. Micronutrient-gene interactions related to inflammatory/immune response and antioxidant activity in ageing and inflammation. A systematic review. Mech Ageing Dev 2014; 136-137:29-49. [PMID: 24388876 DOI: 10.1016/j.mad.2013.12.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 12/06/2013] [Accepted: 12/20/2013] [Indexed: 02/07/2023]
Abstract
Recent longitudinal studies in dietary daily intake in human centenarians have shown that a satisfactory content of some micronutrients within the cells maintain several immune functions, a low grade of inflammation and preserve antioxidant activity. Micronutrients (zinc, copper, selenium) play a pivotal role in maintaining and reinforcing the performances of the immune and antioxidant systems as well as in affecting the complex network of the genes (nutrigenomic) with anti- and pro-inflammatory tasks. Genes of pro- and anti-inflammatory cytokines and some key regulators of trace elements homeostasis, such as Metallothioneins (MT), are involved in the susceptibility to major geriatric disease/disorders. Moreover, the genetic inter-individual variability may affect the nutrients' absorption (nutrigenetic) with altered effects on inflammatory/immune response and antioxidant activity. The interaction between genetic factors and micronutrients (nutrigenomic and nutrigenetic approaches) may influence ageing and longevity because the micronutrients may become also toxic. This review reports the micronutrient-gene interactions in ageing and their impact on the healthy state with a focus on the method of protein-metal speciation analysis. The association between micronutrient-gene interactions and the protein-metal speciation analysis can give a complete picture for a personalized nutrient supplementation or chelation in order to reach healthy ageing and longevity.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy.
| | - Laura Costarelli
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Robertina Giacconi
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Marco Malavolta
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Andrea Basso
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Francesco Piacenza
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Rita Ostan
- Department of Experimental Diagnostic and Specialty Medicine (DIMES) and Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Via San Giacomo, 12, 40126 Bologna, Italy
| | - Elisa Cevenini
- Department of Experimental Diagnostic and Specialty Medicine (DIMES) and Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Via San Giacomo, 12, 40126 Bologna, Italy
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Daniela Monti
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Viale Morgagni, 50, 50134 Florence, Italy
| |
Collapse
|
21
|
Abstract
Selenium (Se) is an essential micronutrient that is incorporated into selenoproteins. Although epidemiological studies suggest that low Se intake is associated with increased risk of various cancers, the results of supplementation trials have been confusing. These conflicting results may be due to different baseline Se status and/or genetic factors. In addition, mechanistic links between Se intake, selenoproteins and carcinogenesis are not clear. In this article, we discuss the functional significance of single-nucleotide polymorphisms (SNP) in selenoprotein genes and the evidence as to whether or not they influence risk of colorectal, prostate, lung or breast cancers. Both in vitro and in vivo studies have shown that a small number of SNPs in genes encoding glutathione peroxidases 1 and 4, selenoprotein P, selenoprotein S and 15-kDa selenoprotein have functional consequences. Data from case-control studies suggest that a variant at codon 198 in glutathione peroxidase 1 influences the effect of Se status on prostate cancer and risk, and it has also been associated with breast cancer and lung cancer risk, whereas variants in glutathione peroxidase 4, selenoprotein P and selenoprotein S may influence the risk of colorectal cancer. In addition, the results of gene microarray (transcriptomic) studies have identified novel selenoprotein biomarkers of Se status and novel downstream Se-targeted pathways. The work highlights the need to take baseline Se status and genetic factors into account in the design of future intervention trials.
Collapse
|
22
|
Huang L, Shi Y, Lu F, Zheng H, Liu X, Gong B, Yang J, Lin Y, Cheng J, Ma S, Lin H, Yang Z. Association study of polymorphisms in selenoprotein genes and Kashin-Beck disease and serum selenium/iodine concentration in a Tibetan population. PLoS One 2013; 8:e71411. [PMID: 24058403 PMCID: PMC3751926 DOI: 10.1371/journal.pone.0071411] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/28/2013] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Kashin-Beck disease is a kind of degenerative osteoarthropathy. Genetic factors may play an important role in the pathogenesis of KBD. OBJECTIVE To investigate the association of the selenoprotein genes GPX1 (rs1050450, rs1800668, and rs3811699), TrxR2 (rs5748469), and DIO2 (rs225014) with Kashin-Beck disease (KBD) in a Tibetan population and to investigate the association of these SNPs with the serum iodine/selenium concentration in the Tibetan population. DESIGN Five SNPs including rs1050450, rs1800668, and rs3811699 in the GPX1 gene, rs5748469 in the TrxR2 gene, and rs225014 in the DIO2 gene were analyzed in Tibetan KBD patients and controls using the SNaPshot method. P trend values of the SNPs were calculated using an additive model. RESULTS None of the five SNPs in the three genes showed a significant association with KBD. Haplotypes TCC, TTC and TTT of rs1050450, rs1800668 and rs3811699 in GPX1 showed a significant association with KBD and controls with P value of 0.0421, 5.0E-4 and 0.0066, respectively. The GPX1 gene (rs1050450) showed a potential significant association with the iodine concentration in the Tibetan study population (P = 0.02726). However, no such association was detected with the selenium concentration (P = 0.2849). CONCLUSIONS In this study, we showed that single SNPs in the genes GPX1 (rs1050450, rs1800668 and rs3811699), TrxR2 (rs5748469), and DIO2 (rs225014) may not be significantly associated with KBD in a Tibetan population. However, haplotype analysis of SNPs rs1050450, rs1800668 and rs3811699 in GPX1 gene showed a significant association with KBD. The results suggested that GPX1 gene play a protective role in the susceptivity of KBD in Tibetans. Furthermore, the GPX1 gene (rs1050450) may be significantly associated with the serum iodine concentration in Tibetans.
Collapse
Affiliation(s)
- Lulin Huang
- Center for Human Molecular Biology & Genetics, The Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Sichuan Translational Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Yi Shi
- Center for Human Molecular Biology & Genetics, The Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Sichuan Translational Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Fang Lu
- Center for Human Molecular Biology & Genetics, The Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Sichuan Translational Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Hong Zheng
- Center for Human Molecular Biology & Genetics, The Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Sichuan Translational Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Xiaoqi Liu
- Center for Human Molecular Biology & Genetics, The Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Sichuan Translational Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Bo Gong
- Center for Human Molecular Biology & Genetics, The Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Sichuan Translational Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Jiyun Yang
- Center for Human Molecular Biology & Genetics, The Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Sichuan Translational Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Ying Lin
- Center for Human Molecular Biology & Genetics, The Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Sichuan Translational Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Jing Cheng
- Center for Human Molecular Biology & Genetics, The Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Sichuan Translational Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Shi Ma
- Center for Human Molecular Biology & Genetics, The Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Sichuan Translational Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - He Lin
- Center for Human Molecular Biology & Genetics, The Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Sichuan Translational Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Zhenglin Yang
- Center for Human Molecular Biology & Genetics, The Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Sichuan Translational Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| |
Collapse
|
23
|
A low selenium level is associated with lung and laryngeal cancers. PLoS One 2013; 8:e59051. [PMID: 23516596 PMCID: PMC3596323 DOI: 10.1371/journal.pone.0059051] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 02/11/2013] [Indexed: 11/26/2022] Open
Abstract
Purpose It has been suggested that selenium deficiency is a risk factor for several cancer types. We conducted a case-control study in Szczecin, a region of northwestern Poland, on 95 cases of lung cancer, 113 cases of laryngeal cancer and corresponding healthy controls. Methods We measured the serum level of selenium and established genotypes for four variants in four selenoprotein genes (GPX1, GPX4, TXNRD2 and SEP15). Selenium levels in the cases were measured after diagnosis but before treatment. We calculated the odds of being diagnosed with lung or laryngeal cancer, conditional on selenium level and genotype. Results Among lung cancer cases, the mean selenium level was 63.2 µg/l, compared to a mean level of 74.6 µg/l for their matched controls (p<0.0001). Among laryngeal cancer cases, the mean selenium level was 64.8 µg/l, compared to a mean level of 77.1 µg/l for their matched controls (p<0.0001). Compared to a serum selenium value below 60 µg/l, a selenium level above 80 µg/l was associated with an odds ratio of 0.10 (95% CI 0.03 to 0.34; p = 0.0002) for lung cancer and 0.23 (95% CI 0. 09 to 0.56; p = 0.001) for laryngeal cancer. In analysis of four selenoprotein genes we found a modest evidence of association of genetic variant in GPX1 with the risk of lung and laryngeal cancers. Conclusion A selenium level below 60 µg/l is associated with a high risk of both lung and laryngeal cancer.
Collapse
|
24
|
GPX1 gene Pro200Leu polymorphism, erythrocyte GPX activity, and cancer risk. Mol Biol Rep 2013; 40:1801-12. [PMID: 23073788 DOI: 10.1007/s11033-012-2234-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/10/2012] [Indexed: 12/14/2022]
Abstract
A meta-analysis was conducted to assess the effect of glutathione peroxidase1 (GPX1) gene Pro200Leu (rs1050450) polymorphism on cancer risk. A comprehensive search was performed to identify all studies on the association of GPX1 gene Pro200Leu polymorphism with cancer risk. The fixed or random effect pooled measure was selected based on homogeneity test among studies. Heterogeneity among studies was evaluated using the I (2). Potential sources of between-study heterogeneity were explored by meta-regression and the sensitivity analysis. Publication bias was estimated using Egger's linear regression test. 35 published articles with 36 results were identified involving 16,920 cases and 19,946 controls. Results from the articles that both obeyed Hardy-Weinberg equilibrium in controls and met high quality design, showed no significant association of GPX1 gene Pro200Leu polymorphism with cancer risk in any of dominant (OR = 1.05, 95 %CI = 0.98-1.12), recessive (OR = 1.04 (0.95-1.13), and TT versus CC (OR = 1.05, 95 %CI = 0.97-1.15) models, and the findings were consistent considering the stratified analysis by cancer type. However, multivariate-adjusted ORs from articles that both obeyed Hardy-Weinberg equilibrium in controls and met high quality design, showed a significant association considering dominant (OR = 1.22, 95 %CI = 1.06-1.41), TT versus CC (OR = 1.16, 95 %CI = 1.02-1.32) models, and a marginally significant association was found considering TC versus CC (OR = 1.11, 95 %CI = 0.99-1.25) model. And compared with the CC genotype, the erythrocyte GPX activity was significantly lower for TT genotype: the standardized mean difference (SMD) = -0.37, 95 %CI = (-0.624, -0.118), and CT genotype: SMD = -0.19, 95 %CI = (-0.37, -0.002). The association of GPX1 gene Pro200Leu polymorphism with cancer risk might be influenced by confounders.
Collapse
|
25
|
Genetic oxidative stress variants and glioma risk in a Chinese population: a hospital-based case-control study. BMC Cancer 2012; 12:617. [PMID: 23259684 PMCID: PMC3546059 DOI: 10.1186/1471-2407-12-617] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 12/18/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The oxidative stress mechanism is of particular interest in the pathogenesis of glioma, given the high rate of oxygen metabolism in the brain. Potential links between polymorphisms of antioxidant genes and glioma risk are currently unknown. We therefore investigated the association between polymorphisms in antioxidant genes and glioma risk. METHODS We examined 16 single nucleotide polymorphisms (SNPs) of 9 antioxidant genes (GPX1, CAT, PON1, NQO1, SOD2/MnSOD, SOD3, and NOS1*2*3) in 384 glioma and 384 control cases in a Chinese hospital-based case-control study. Genotypes were determined using the OpenArray platform, which employs the chip-based Taq-Man genotyping technology. The adjusted odds ratio (OR) and 95% confidence interval (CI) were estimated using unconditional logistic regression. RESULTS Using single-locus analysis, we identified four SNPs (SOD2 V16A, SOD3 T58A, GPX1 -46 C/T, and NOS1 3'-UTR) that were significantly associated with the risk of glioma development. To assess the cumulative effects, we performed a combined unfavourable genotype analysis. Compared with the reference group that exhibited no unfavourable genotypes, the medium- and high-risk groups exhibited a 1.86-fold (95% CI, 1.30-2.67) and a 4.86-fold (95% CI, 1.33-17.71) increased risk of glioma, respectively (P-value for the trend < 0.001). CONCLUSIONS These data suggest that genetic variations in oxidative stress genes might contribute to the aetiology of glioma.
Collapse
|
26
|
Pavanello S, Fedeli U, Mastrangelo G, Rota F, Overvad K, Raaschou-Nielsen O, Tjønneland A, Vogel U. Role of CYP1A2 polymorphisms on lung cancer risk in a prospective study. Cancer Genet 2012; 205:278-84. [PMID: 22749033 DOI: 10.1016/j.cancergen.2012.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/31/2012] [Accepted: 02/09/2012] [Indexed: 11/30/2022]
Abstract
Cytochrome P4501A2 (CYP1A2) is a key enzyme for lung carcinogen activation and lung inflammation. We studied the interactions of the CYP1A2 functional variants -3860G/A(rs2069514),-2467T/delT(rs3569413),-163C/A(rs762551)] with occupational/environmental carcinogenic exposures in the development of lung cancer in a case-control study nested in the Danish prospective cohort "Diet, Cancer and Health." At enrollment (1993-1997), blood samples for genotype analyses and information on lifestyle were collected 5 (mean value) years before the onset of the disease. The study population included 425 lung cancer cases and 786 subcohort members, who were gender- and age-matched. We found that -163A carriers were at increased risk of lung cancer (P=0.035) in a multivariate COX regression model, which was adjusted for personal habits (i.e., cumulative smoking, passive smoke at home, alcohol intake, and fruit intake) and occupational exposure. Additionally, the interaction between -2467delT and smoking increases lung cancer risk in males, especially light smokers (<21.5 pack-years, P=0.004). The increased lung cancer risk found in -163C carriers, independent of smoking status, and in -2467delT male smokers, suggests that these variants could influence lung cancer development through different mechanisms (i.e. lung carcinogen activation and lung inflammation).
Collapse
Affiliation(s)
- Sofia Pavanello
- Occupational Health Section, Department of Cardiological, Thoracic and Vascular Sciences, Università di Padova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The discovery of multiple selenoproteins has raised tantalizing questions about their role in maintaining normal cellular function. Unfortunately, many of these remain inadequately investigated. While they have a role in maintaining redox balance, other functions are becoming increasingly recognized. As the roles of these selenoproteins are further characterized, a better understanding of the true physiological significance of this trace element will arise. This knowledge will be essential in defining optimum intakes to achieve cellular homeostasis in order to optimize health, including a reduction in cancer, for diverse populations. Human variation in the response to selenium likely reflects significant interactions between the type and amounts of selenium consumed with the genome and a host of environmental factors including the totality of the diet, as discussed in this review.
Collapse
Affiliation(s)
- Cindy D. Davis
- Nutritional Science Research Group, National Cancer Institute, Rockville, Maryland 20892;,
- Current address: Office of Dietary Supplements, National Institutes of Health, Rockville, Maryland 20892
| | - Petra A. Tsuji
- Department of Biological Sciences, Towson University, Towson, Maryland 21252
| | - John A. Milner
- Nutritional Science Research Group, National Cancer Institute, Rockville, Maryland 20892;,
| |
Collapse
|
28
|
Liwei L, Wei Z, Ruifa H, Chunyu L. Association between genetic variants in glutathione peroxidase 1 gene and risk of prostate cancer: a meta-analysis. Mol Biol Rep 2012; 39:8615-9. [PMID: 22699881 DOI: 10.1007/s11033-012-1715-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/06/2012] [Indexed: 11/30/2022]
Abstract
To examine the association between glutathione peroxidase 1 (GPx1) gene Pro198Leu polymorphism with the development and progression of prostate cancer. A comprehensive search was conducted to identify all case-control studies of GPx1 polymorphisms and prostate cancer. Statistical analysis was performed with the software program Stata, version 11.0, and Review Manage, version 4.2. A total of 7 eligible studies relating the GPx1 polymorphism to the risk of prostate cancer were identified. The results indicated no significant association between GPx1 polymorphisms and prostate cancer susceptibility in the dominant model (random effects OR 0.75, 95 % CI 0.48-1.18), recessive model (random effects OR 0.47, 95 % CI 0.22-1.01) and co-dominant genetic model (random effects OR 0.72, 95 % CI 0.43-1.21). For the analysis of GPx1 polymorphism and progression of prostate cancer, no significant association were found in the dominant model (fixed effects OR 1.20, 95 % CI 0.95-1.52), recessive model (fixed effects OR 0.69, 95 % CI 0.48-1.00) and co-dominant genetic model (fixed effects OR 0.95, 95 % CI 0.79-1.15). Egger's test showed that publication bias was not present in all the comparisons.
Collapse
Affiliation(s)
- Liu Liwei
- Tianjin Institute of Urology, Tianjing Medical University, Tianjin 300211, People's Republic of China
| | | | | | | |
Collapse
|
29
|
Tang TS, Prior SL, Li KW, Ireland HA, Bain SC, Hurel SJ, Cooper JA, Humphries SE, Stephens JW. Association between the rs1050450 glutathione peroxidase-1 (C > T) gene variant and peripheral neuropathy in two independent samples of subjects with diabetes mellitus. Nutr Metab Cardiovasc Dis 2012; 22:417-425. [PMID: 21185702 DOI: 10.1016/j.numecd.2010.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 06/02/2010] [Accepted: 08/02/2010] [Indexed: 12/14/2022]
Abstract
Glutathione peroxidase-1 (GPx-1) is an endogenous anti-oxidant enzyme. The T allele of the GPx-1 rs1050450 (C > T) gene variant is associated with reduced enzyme activity. Our aim was to examine the association between this gene variant and peripheral neuropathy in two cross-sectional samples of subjects with diabetes: (i) 773 Caucasian subjects were genotyped from the UCL Diabetes and Cardiovascular disease Study (UDACS) and (ii) 382 Caucasian subjects from the Ealing Diabetes Study (EDS). Peripheral neuropathy status (and oxidised-LDL [Ox-LDL:LDL] and plasma Total Ant-ioxidant Status [TAOS] in UDACS), were analysed in relation to genotype. We observed that: (i) In UDACS, the odds ratio (OR) for peripheral neuropathy in the T allele carriers compared to the CC genotype was 1.61 [1.10-2.28], p = 0.01. This remained significant after adjustment for other risk factors. Ox-LDL:LDL ratio was significantly elevated in T allele carriers (CC vs. CT/TT: 16.3 ± 2.4 v 18.0 ± 2.9 U/mmol LDL, p = 0.02). (ii) In EDS, the OR for peripheral neuropathy in the T allele carriers compared to the CC genotype was 1.95 [1.11-3.42], p = 0.02. This remained significant after adjustment for other risk factors. In conclusion, we observed a significant association between the T allele and peripheral neuropathy and LDL oxidation. This is the first paper to examine the rs1050450 variant in two samples of Caucasian subjects with diabetes. Prospective analysis of the gene variant is required in diabetic and healthy cohorts with measured plasma markers of oxidative stress to investigate the described association further.
Collapse
Affiliation(s)
- T S Tang
- Diabetes Research Group, Institute of Life Sciences, Swansea University, Swansea SA2 8PP, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Crawford A, Fassett RG, Geraghty DP, Kunde DA, Ball MJ, Robertson IK, Coombes JS. Relationships between single nucleotide polymorphisms of antioxidant enzymes and disease. Gene 2012; 501:89-103. [PMID: 22525041 DOI: 10.1016/j.gene.2012.04.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/21/2012] [Accepted: 04/05/2012] [Indexed: 12/18/2022]
Abstract
The presence and progression of numerous diseases have been linked to deficiencies in antioxidant systems. The relationships between single nucleotide polymorphisms (SNPs) arising from specific antioxidant enzymes and diseases associated with elevated oxidative stress have been studied with the rationale that they may be useful in screening for diseases. The purpose of this narrative review is to analyse evidence from these studies. The antioxidant enzyme SNPs selected for analysis are based on those most frequently investigated in relation to diseases in humans: superoxide dismutase (SOD2) Ala16Val (80 studies), glutathione peroxidise (GPx1) Pro197Leu (24 studies) and catalase C-262T (22 studies). Although the majority of evidence supports associations between the SOD2 Ala16Val SNP and diseases such as breast, prostate and lung cancers, diabetes and cardiovascular disease, the presence of the SOD2 Ala16Val SNP confers only a small, clinically insignificant reduction (if any) in the risk of these diseases. Other diseases such as bladder cancer, liver disease, nervous system pathologies and asthma have not been consistently related to this SOD SNP genotype. The GPx1 Pro197Leu and catalase C-262T SNP genotypes have been associated with breast cancer, but only in a small number of studies. Thus, currently available evidence suggests antioxidant enzyme SNP genotypes are not useful for screening for diseases in humans.
Collapse
Affiliation(s)
- Amanda Crawford
- School of Human Life Sciences, University of Tasmania, Newnham, Launceston, Tasmania 7248, Australia
| | | | | | | | | | | | | |
Collapse
|
31
|
Yuzhalin AE, Kutikhin AG. Inherited variations in theSODandGPXgene families and cancer risk. Free Radic Res 2012; 46:581-99. [DOI: 10.3109/10715762.2012.658515] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Erdem O, Eken A, Akay C, Arsova-Sarafinovska Z, Matevska N, Suturkova L, Erten K, Özgök Y, Dimovski A, Sayal A, Aydin A. Association of GPX1 polymorphism, GPX activity and prostate cancer risk. Hum Exp Toxicol 2012; 31:24-31. [PMID: 21636625 DOI: 10.1177/0960327111411499] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prostate cancer is the second most common cancer in men worldwide. Although the aetiology of this disease remains largely unclear, several lines of evidence suggest that oxidative stress plays a role in prostate carcinogenesis. The antioxidant enzyme glutathione peroxidase 1 (GPX1) is part of the enzymatic antioxidant defence, preventing oxidative damage to DNA, proteins and lipids by detoxifying hydrogen and lipid peroxides that may contribute to prostate cancer development. Some studies indicate an association between GPX1 Pro198Leu polymorphism and an increased risk of cancer. The purpose of the present study was to determine the possible association of GPX1 Pro198Leu polymorphism and erythrocyte GPX activity with the risk of developing prostate cancer and to clarify whether erythrocyte GPX activity levels were correlated with the GPX1 Pro198Leu genotype in the Turkish population. The GPX1 Pro198Leu genotype was determined in 33 prostate cancer patients and 91 control individuals. As evident from our results, there was no difference between genotype and/or allele frequencies in prostate cancer patients and controls. No significant difference was found in GPX1 genotype or allele frequency between aggressive and non-aggressive prostate cancer patients. It can be suggested with these findings that individual susceptibility of prostate cancer may be modulated by GPX1 polymorphism, but it needs further studies.
Collapse
Affiliation(s)
- O Erdem
- Department of Toxicology, Gulhane Military Medical Academy, Etlik, Ankara, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chen J, Cao Q, Qin C, Shao P, Wu Y, Wang M, Zhang Z, Yin C. GPx-1 polymorphism (rs1050450) contributes to tumor susceptibility: evidence from meta-analysis. J Cancer Res Clin Oncol 2011; 137:1553-61. [PMID: 21842217 DOI: 10.1007/s00432-011-1033-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/29/2011] [Indexed: 12/14/2022]
Abstract
PURPOSE Accumulating evidences implicate the selenium-containing cytosolic glutathione peroxidase, GPx-1, as a determinant of cancer risk and a mediator of the chemopreventive properties of selenium. Since the identification of a well-characterized functional polymorphism named Pro198Leu (rs1050450 C>T) in GPx-1, abundant studies have evaluated the association between Pro198Leu polymorphism and tumor risk in diverse population. But, the available results are conflicting. METHODS To derive a more precise estimation, we performed a meta-analysis based on 14,372 cases with different tumor types and 18,081 controls from 31 published case-control studies. Published literature from PubMed was retrieved. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to estimate the strength of the association. RESULTS Overall, the results indicated that individuals who carried variant Leu allele (Pro/Leu and Leu/Leu) were associated with an increased cancer risk [odds ratio (OR) = 1.12, 95% confidence interval (CI) = 1.02-1.23] in a dominant genetic model. In further subgroup analyses, the increased risk of cancer was observed in subgroup of Asians and sample size more than 500 subjects. CONCLUSION These results suggest that the GPx-1 Pro198Leo polymorphism contributes to cancer susceptibility through a disturbed antioxidant balance.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lubos E, Loscalzo J, Handy DE. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011; 15:1957-97. [PMID: 21087145 PMCID: PMC3159114 DOI: 10.1089/ars.2010.3586] [Citation(s) in RCA: 808] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species, such as superoxide and hydrogen peroxide, are generated in all cells by mitochondrial and enzymatic sources. Left unchecked, these reactive species can cause oxidative damage to DNA, proteins, and membrane lipids. Glutathione peroxidase-1 (GPx-1) is an intracellular antioxidant enzyme that enzymatically reduces hydrogen peroxide to water to limit its harmful effects. Certain reactive oxygen species, such as hydrogen peroxide, are also essential for growth factor-mediated signal transduction, mitochondrial function, and maintenance of normal thiol redox-balance. Thus, by limiting hydrogen peroxide accumulation, GPx-1 also modulates these processes. This review explores the molecular mechanisms involved in regulating the expression and function of GPx-1, with an emphasis on the role of GPx-1 in modulating cellular oxidant stress and redox-mediated responses. As a selenocysteine-containing enzyme, GPx-1 expression is subject to unique forms of regulation involving the trace mineral selenium and selenocysteine incorporation during translation. In addition, GPx-1 has been implicated in the development and prevention of many common and complex diseases, including cancer and cardiovascular disease. This review discusses the role of GPx-1 in these diseases and speculates on potential future therapies to harness the beneficial effects of this ubiquitous antioxidant enzyme.
Collapse
Affiliation(s)
- Edith Lubos
- Department of Medicine II, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | | | | |
Collapse
|
35
|
Kucukgergin C, Sanli O, Amasyalı AS, Tefik T, Seckin S. Genetic variants of MnSOD and GPX1 and susceptibility to bladder cancer in a Turkish population. Med Oncol 2011; 29:1928-34. [DOI: 10.1007/s12032-011-0057-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 08/22/2011] [Indexed: 12/22/2022]
|
36
|
Cominetti C, de Bortoli MC, Purgatto E, Ong TP, Moreno FS, Garrido AB, Cozzolino SMF. Associations between glutathione peroxidase-1 Pro198Leu polymorphism, selenium status, and DNA damage levels in obese women after consumption of Brazil nuts. Nutrition 2011; 27:891-6. [DOI: 10.1016/j.nut.2010.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/27/2010] [Accepted: 09/18/2010] [Indexed: 10/18/2022]
|
37
|
Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol Appl Pharmacol 2011; 254:86-99. [PMID: 21296097 DOI: 10.1016/j.taap.2009.11.028] [Citation(s) in RCA: 297] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 11/29/2009] [Accepted: 11/29/2009] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are induced through a variety of endogenous and exogenous sources. Overwhelming of antioxidant and DNA repair mechanisms in the cell by ROS may result in oxidative stress and oxidative damage to the cell. This resulting oxidative stress can damage critical cellular macromolecules and/or modulate gene expression pathways. Cancer induction by chemical and physical agents involves a multi-step process. This process includes multiple molecular and cellular events to transform a normal cell to a malignant neoplastic cell. Oxidative damage resulting from ROS generation can participate in all stages of the cancer process. An association of ROS generation and human cancer induction has been shown. It appears that oxidative stress may both cause as well as modify the cancer process. Recently association between polymorphisms in oxidative DNA repair genes and antioxidant genes (single nucleotide polymorphisms) and human cancer susceptibility has been shown.
Collapse
|
38
|
Abstract
While the normal inflammatory cascade is self-limiting and crucial for host protection against invading pathogens and in the repair of damaged tissue, a wealth of evidence suggests that chronic inflammation is the engine driving carcinogenesis. Over a period of almost 150 years the link between inflammation and cancer development has been well established. In this chapter we discuss the fundamental concepts and mechanisms behind normal inflammation as it pertains to wound healing. We further discuss the association of inflammation and its role in carcinogenesis, highlighting the different stages of cancer development, namely tumour initiation, promotion and progression. With both the innate and adaptive arms of the immune system being central to the inflammatory process, we examine the role of a number of immune effectors in contributing to the carcinogenic process. In addition, we highlight the influences of host genetics in altering cancer risk.
Collapse
Affiliation(s)
- Stephen G Maher
- Department of Surgery, Institute of Molecular Medicine, Trinity College Dublin and St. James's Hospital, Dublin 8, Ireland.
| | | |
Collapse
|
39
|
Ermolenko NA, Boyarskikh UA, Sushko AG, Voronina EN, Selezneva IA, Sinkina TV, Lazarev AF, Petrova VD, Filipenko ML. Effect of point substitutions in the MnSOD, GPX1, and GSTP1 genes on the risk of familial and sporadic breast cancers in residents of Altai Krai. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410120124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Van Winkle LS, Chan JKW, Anderson DS, Kumfer BM, Kennedy IM, Wexler AS, Wallis C, Abid AD, Sutherland KM, Fanucchi MV. Age specific responses to acute inhalation of diffusion flame soot particles: cellular injury and the airway antioxidant response. Inhal Toxicol 2010; 22 Suppl 2:70-83. [PMID: 20961279 DOI: 10.3109/08958378.2010.513403] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Current studies of particulate matter (PM) are confounded by the fact that PM is a complex mixture of primary (crustal material, soot, metals) and secondary (nitrates, sulfates, and organics formed in the atmosphere) compounds with considerable variance in composition by sources and location. We have developed a laboratory-based PM that is replicable, does not contain dust or metals and that can be used to study specific health effects of PM composition in animal models. We exposed both neonatal (7 days of age) and adult rats to a single 6-h exposure of laboratory generated fine diffusion flame particles (DFP; 170 µg/m(3)), or filtered air. Pulmonary gene and protein expression as well as indicators of cytotoxicity were evaluated 24 h after exposure. Although DFP exposure did not alter airway epithelial cell composition in either neonates or adults, increased lactate dehydrogenase activity was found in the bronchoalveolar lavage fluid of neonates indicating an age-specific increase in susceptibility. In adults, 16 genes were differentially expressed as a result of DFP exposure whereas only 6 genes were altered in the airways of neonates. Glutamate cysteine ligase protein was increased in abundance in both DFP exposed neonates and adults indicating an initiation of antioxidant responses involving the synthesis of glutathione. DFP significantly decreased catalase gene expression in adult airways, although catalase protein expression was increased by DFP in both neonates and adults. We conclude that key airway antioxidant enzymes undergo changes in expression in response to a moderate PM exposure that does not cause frank epithelial injury and that neonates have a different response pattern than adults.
Collapse
Affiliation(s)
- Laura S Van Winkle
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California 95616-8732, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Andersen V, Christensen J, Overvad K, Tjønneland A, Vogel U. Polymorphisms in NFkB, PXR, LXR and risk of colorectal cancer in a prospective study of Danes. BMC Cancer 2010; 10:484. [PMID: 20836841 PMCID: PMC2949803 DOI: 10.1186/1471-2407-10-484] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 09/13/2010] [Indexed: 12/19/2022] Open
Abstract
Background Transcription factors and nuclear receptors constitute a link between exposure to heterocyclic amines and polycyclic aromatic hydrocarbons from meat and tobacco smoke and colorectal cancer (CRC) risk. The aim of this study was to investigate if polymorphisms in nuclear factor kappa-B, pregnane X receptor, and liver X receptor were associated with risk of CRC, and to investigate possible interactions with lifestyle factors such as smoking, meat consumption, and NSAID use. Methods The polymorphisms nuclear factor kappa-B (NFkB, NFKB1) -94 insertion/deletion ATTG (rs28362491), pregnane X receptor (PXR, NR1I2) A-24381C (rs1523127), C8055T (rs2276707), A7635G (rs6785049), liver X receptor (LXR-β, NR1H3) C-rs1405655T, T-rs2695121C were assessed together with lifestyle factors in a nested case-cohort study of 378 CRC cases and 756 random participants from the Danish prospective Diet, Cancer and Health study of 57,053 persons. Results Carriers of NFkB -94deletion were at 1.45-fold higher risk of CRC than homozygous carriers of the insertion allele (incidence rate ratio (IRR) = 1.45, 95% confidence interval (95% CI): 1.10-1.92). There was interaction between this polymorphism and intake of red and processed meat in relation to CRC risk. Carriers of NFkB -94deletion were at 3% increased risk pr 25 gram meat per day (95% CI: 0.98-1.09) whereas homozygous carriers of the insertion were not at increased risk (p for interaction = 0.03). PXR and LXR polymorphisms were not associated with CRC risk. There was no interaction between use of nonsteroid antiinflammatory drugs (NSAID) or smoking status and NFkB, PXR or LXR polymorphisms. Conclusions A polymorphism in NFkB was associated with CRC risk and there was interaction between this polymorphism and meat intake in relation to CRC risk. This study suggests a role for NFkB in CRC aetiology.
Collapse
Affiliation(s)
- Vibeke Andersen
- Medical Department, Viborg Regional Hospital, Heibergs Allé 4, DK-8800 Viborg, Denmark.
| | | | | | | | | |
Collapse
|
42
|
Xiong YM, Mo XY, Zou XZ, Song RX, Sun WY, Lu W, Chen Q, Yu YX, Zang WJ. Association study between polymorphisms in selenoprotein genes and susceptibility to Kashin-Beck disease. Osteoarthritis Cartilage 2010; 18:817-24. [PMID: 20178852 DOI: 10.1016/j.joca.2010.02.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/27/2010] [Accepted: 02/09/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Kashin-Beck disease (KBD) is a disabling osteoarthropathy involving growth cartilage endemic to selenium (Se)-deficient regions in China. Associations between genetic variation in selenoprotein genes and susceptibility to many diseases have recently been investigated but few studies have been performed on KBD. We found four genetic polymorphisms in selenoprotein genes and assessed their association with increased susceptibility to KBD. METHODS Four polymorphisms including GPX1 (rs1050450), TrxR2 (rs5748469), SEPP1 (rs7579) and DIO2 (rs225014) were analyzed for 161 KBD patients and 312 controls using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) or tetra-primer amplification refractory mutation system PCR (Tetra-primer ARMS PCR). Glutathione peroxidase (GPX) activity in whole blood was measured using a GPX assay kit. The mRNA expression of GPX1, nuclear factor-kappaB (NF-kappaB) p65 and p53 in both whole blood and articular cartilage tissue were detected using Real-Time PCR. RESULTS The genotypic and allelic frequency of GPX1 Pro198Leu was significantly different between KBD patients and controls (P=0.013, P=0.037). A significant increased KBD risk was observed in individuals with Pro/Leu or Leu/Leu (odds ratio=1.781; 95% confidence interval: 1.127-2.814) compared with Pro/Pro. No association was observed between the other three single nucleotide polymorphisms (SNPs) and KBD risk. In addition, GPX enzyme activity in whole blood was lower in the KBD group (P<0.01), and the GPX activity in whole blood decreased significantly in a subgroup of individuals representing Pro/Leu and Leu/Leu compared to Pro/Pro (P<0.01). In whole blood and articular cartilage tissue samples of KBD patients, GPX1 and NF-kappaB p65 mRNA levels were lower (P<0.01) while p53 levels were higher (P<0.001). CONCLUSION GPX1 Pro198Leu is a potential genetic risk factor in the development of KBD and the GPX1 Leu allele is significantly associated with higher KBD risk among the Chinese Han population and with lower GPX enzyme activity. The expression of apoptosis related molecules in KBD patients significantly differs from controls.
Collapse
Affiliation(s)
- Y M Xiong
- Department of Pharmacology, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
GPX1 Pro198Leu polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 2010; 124:425-31. [DOI: 10.1007/s10549-010-0841-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
|
44
|
CAT C-262T and GPX1 Pro198Leu polymorphisms in a Turkish population. Mol Biol Rep 2010; 37:87-92. [PMID: 19424819 DOI: 10.1007/s11033-009-9540-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 04/24/2009] [Indexed: 12/14/2022]
Abstract
Oxidative stress is believed to play an important role in the pathogenesis of considerable number of complex diseases. The antioxidant enzymes catalase (CAT) and glutathione peroxidase (GPX) are important components of cell defense against oxidative stress, and polymorphisms in the genes which regulate their expression may contribute to differences in susceptibility of individuals to oxidative damage caused by reactive oxygen species. The aim of this study was to assess the distribution of CAT C-262T and GPX1 Pro198Leu genotypic variants in a Turkish population. Genotyping analyses of CAT and GPX1 were conducted in 250 unrelated, healthy volunteers by the PCR-RFLP assay. The allele frequencies were 0.784 (C) and 0.216 (T) for CAT and 0.636 (C) and 0.364 (T) for GPX1 Pro198Leu. The genotype frequencies were 0.632 (CC), 0.304 (CT), and 0.064 (TT) for CAT and 0.416 (CC), 0.44 (CT), and 0.144 (TT) for GPX1 Pro198Leu. The genotype frequencies did not deviate from Hardy-Weinberg equilibrium. The results are compared with those of other reported populations. They showed marked ethnic group differences.
Collapse
|
45
|
Klaunig JE, Kamendulis LM, Hocevar BA. Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol 2009; 38:96-109. [PMID: 20019356 DOI: 10.1177/0192623309356453] [Citation(s) in RCA: 630] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carcinogenesis is a multistep process involving mutation and the subsequent selective clonal expansion of the mutated cell. Chemical and physical agents including those that induce reative oxygen species can induce and/or modulate this multistep process. Several modes of action by which carcinogens induce cancer have been identified, including through production of reactive oxygen species (ROS). Oxidative damage to cellular macromolecules can arise through overproduction of ROS and faulty antioxidant and/or DNA repair mechanisms. In addition, ROS can stimulate signal transduction pathways and lead to activation of key transcription factors such as Nrf2 and NF-kappaB. The resultant altered gene expression patterns evoked by ROS contribute to the carcinogenesis process. Recent evidence demonstrates an association between a number of single nucleotide polymorphisms (SNPs) in oxidative DNA repair genes and antioxidant genes with human cancer susceptibility. These aspects of ROS biology will be discussed in the context of their relationship to carcinogenesis.
Collapse
Affiliation(s)
- James E Klaunig
- Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
46
|
Rayman MP. Selenoproteins and human health: Insights from epidemiological data. Biochim Biophys Acta Gen Subj 2009; 1790:1533-40. [DOI: 10.1016/j.bbagen.2009.03.014] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/15/2009] [Accepted: 03/17/2009] [Indexed: 10/21/2022]
|
47
|
Associations between COX-2 polymorphisms, blood cholesterol and risk of acute coronary syndrome. Atherosclerosis 2009; 209:155-62. [PMID: 19748095 DOI: 10.1016/j.atherosclerosis.2009.08.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 08/19/2009] [Accepted: 08/19/2009] [Indexed: 12/19/2022]
Abstract
BACKGROUND The use of specific COX-2 inhibitors in cancer prevention has been associated with higher risk of acute coronary syndrome (ACS) and myocardial infarction. The aim of this study was to investigate if the polymorphisms COX2 T8473C (rs5275), and COX2 A-1195G (rs689466), which modify the enzyme levels of COX-2, were associated with risk of ACS and if alcohol intake, smoking, and use of NSAID would modify the associations. We also wanted to investigate associations with blood lipid levels. METHODS A case-cohort study including 1031 ACS cases and a sub-cohort of 1703 persons was nested within the population-based prospective study Diet, Cancer and Health of 57,053 individuals aged 55-64 at recruitment 1993-1997. RESULTS Male variant allele carriers of COX-2 T8473C were at lower risk of ACS (IRR=0.75, CI=0.61-0.93, p=0.008) than homozygous wildtype carriers. There were no statistically significant interactions between genotypes and alcohol intake, smoking and NSAID use in relation to risk of ACS. Among males, there was interaction between COX-2 T8473C and alcohol in relation to total cholesterol, non-HDL cholesterol and LDL levels (p for interaction: 0.003, 0.007 and 0.01, respectively), such that variant allele carriers with low alcohol intake had the lowest lipid levels. No statistically significant associations were observed in females. CONCLUSION This study suggests that genetically determined COX-2 levels are associated with risk of ACS and blood lipid levels among males. No consistent associations were found for females.
Collapse
|
48
|
Malling TH, Sigsgaard T, Andersen HR, Frischknecht L, Deguchi Y, Skadhauge L, Sherson D, Thomsen G, Baelum J, Pedersen JK, Omland Ø. Sex determines the influence of smoking and gene polymorphism on glutathione peroxidase activity in erythrocytes. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 69:295-302. [PMID: 19125369 DOI: 10.1080/00365510802632155] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Glutathione peroxidase 1 (GPX1) is one of the major oxidative enzymes. Our aim was to characterize factors influencing its activity and to determine whether or not the activity is associated with asthma. MATERIAL AND METHODS Serum selenium concentration was measured, GPX1 polymorphisms were genotyped and smoking history was obtained in a Danish population-derived case-base cohort of 1,191 subjects designed to evaluate risk factors for asthma. GPX1 activity was measured in 134 male and 164 female subjects equally distributed according to genotype of GPX1. Among these subjects, 82 (28 %) had doctor-diagnosed asthma. RESULTS The average serum selenium concentration was too low for optimal enzyme activity (mean (SE), 83.4 (0.76) ng/mL). GPX1 activity in men was lower than in women, 52.6 (0.66) and 56.4 (0.59) U/g protein, respectively (p<0.001). In men, activity was positively associated with serum selenium concentration (p = 0.005) and negatively associated with both active smoking (p = 0.009) and exposure to environmental tobacco smoke (p = 0.02). In women, activity was associated with genotypes with 59.2 (1.4), 56.0 (1.4) and 54.2 (1.4) U/g protein in the homozygote wild-type, the heterozygote and the homozygote variant type, respectively (p = 0.001). Doctor-diagnosed asthma was unrelated to GPX1 activity in either sex. CONCLUSION Determinants for activity in the oxidative enzyme GPX1 show marked differences between the sexes, but the activity is not associated with asthma. Sex ought to be taken into consideration when analysing the activity of the enzyme.
Collapse
|
49
|
Association between GPx1 Pro198Leu polymorphism, GPx1 activity and plasma selenium concentration in humans. Eur J Nutr 2009; 48:383-6. [DOI: 10.1007/s00394-009-0023-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 04/05/2009] [Indexed: 10/20/2022]
|
50
|
Abstract
PURPOSE OF REVIEW Although interactions between fat soluble micronutrients and lipid metabolism in relation to absorption, status and body composition have been well described, there is new evidence to suggest that key genes have profound effects on how micronutrients and lipids are handled in a range of cells and organs. This review highlights the importance of genetic variation in folate, selenium, zinc and carotenoid metabolism and the recent findings of micro-macro nutrient interactions. RECENT FINDINGS Although the methylenetetrahydrofolate reductase gene has been linked to CVD for some time, recent findings indicate that single-nucleotide polymorphisms (SNPs) in this gene are also linked to diabetes and may influence the pathogenesis of this disease through elevated alanine amino transferase concentrations. A recent selenium supplementation trial showed that SNPs can affect responses of GPx4, GPx1 and GPx3 protein expression or activity in response to Se supplementation or withdrawal. There is convincing evidence to suggest that the high variability of plasma carotenoids seen in human populations is at least partly caused by multiple genetic variations in genes involved in lipoprotein metabolism and lipid transfer. The most striking evidence of an interaction between carotenoid and lipid metabolism, however, comes from the observation that BCMO1 mice develop liver steatosis independent of the vitamin A content of the diet, and the discovery of common SNPs in this gene indicates that this interaction might be of clinical significance. SUMMARY Knowledge of genetic variants that affect micronutrient metabolism and responses to micronutrient supplementation were until recently largely limited to methylenetetrahydrofolate reductase. However, identification of novel functional SNPs in BCMO1, the critical enzyme of beta-carotene metabolism, and in several key selenoproteins indicates the potential importance of micronutrient-gene interactions.
Collapse
Affiliation(s)
- Georg Lietz
- School of Agriculture, Food and Rural Development, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|