1
|
Lu Y, Zhou H, Zhao W, Jiang J, Du J, Zhao L. Radiation synthesis of high conductivity hydrogel based on tragacanth gum/poly (ionic liquids) for multimodal sensors and supercapacitor. Int J Biol Macromol 2024; 282:137299. [PMID: 39510456 DOI: 10.1016/j.ijbiomac.2024.137299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/17/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Natural polymer-based hydrogels have found extensive use in flexible sensing, energy storage, and other fields because of their environmental sustainability and biocompatibility. Nonetheless, numerous challenges persist in the development of hydrogels with outstanding conductivity solely from natural polymers. Herein, we have successfully synthesized hydrogels based on natural polymer (tragacanth gum) and ionic liquids (1-vinyl-3-ethylimidazolium bromide) using a convenient and efficient one-step ionizing radiation method (TG/PIL hydrogels). The TG/PIL hydrogels exhibit high ionic conductivity (7.1 S m-1 at 25 °C), and can be used for multimodal sensors, including strain and temperature sensors. It has exceptional capabilities in monitoring human motor behavior, capturing subtle facial expressions and pulses beat. TG/PIL hydrogel can also accurately sense changes in the temperature of the external environment, and have significant thermal sensitivity within the range of 40 to 60 °C (-3.22 % /°C). Furthermore, the high conductivity of TG/PIL hydrogels enables them to exhibit outstanding performance in supercapacitor electrolytes, it has good stability in a certain load bearing range, temperature range, folding angle range. This work offers a straightforward technique for creating a multimodal hydrogel sensor, with promising applications in flexible wearable devices, energy storage, and beyond.
Collapse
Affiliation(s)
- Yixuan Lu
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haifeng Zhou
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenchao Zhao
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiali Jiang
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jifu Du
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Long Zhao
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
2
|
Choi YS, Lee JS, Lee HG. Nanoencapsulation of Grapefruit Seed Extract and Cinnamon Oil for Oral Health: Preparation, In Vitro, and Clinical Antimicrobial Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5646-5654. [PMID: 36988548 DOI: 10.1021/acs.jafc.2c05518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/19/2023]
Abstract
This study aimed to formulate mucoadhesive antimicrobial nanoparticles using natural antimicrobials and biopolymers for oral health and verify their antimicrobial activity in clinical studies. A combination of grapefruit seed extract and cinnamon oil (GCN) and chitosan/carrageenan (CS/CR) were selected as synergistic antimicrobial combinations and mucoadhesive wall materials for nanoparticles, respectively. GCN nanoparticles (NPs; size = 357 nm and polydispersity index = 0.188) prepared by ionic gelation between CS and CR exhibited synergistic antimicrobial activity between grapefruit seed extract and cinnamon oil and significantly higher antimicrobial activity against Streptococcus mutans and sobrinus than free GCN in a time-kill assay. The clinical antibacterial activity of GCN was significantly increased and sustained by nanoencapsulation in the mouth-rinse test and GCN NP-treated drinking yogurt. These results suggest that GCN-loaded CS/CR nanoencapsulation is a promising technique that can inhibit oral bacteria with or without the presence of other food ingredients.
Collapse
Affiliation(s)
- Ye Seul Choi
- Department of Food and Nutrition, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Ji-Soo Lee
- Department of Food and Nutrition, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea
| |
Collapse
|
3
|
Nazemi Z, Sahraro M, Janmohammadi M, Nourbakhsh MS, Savoji H. A review on tragacanth gum: A promising natural polysaccharide in drug delivery and cell therapy. Int J Biol Macromol 2023; 241:124343. [PMID: 37054856 DOI: 10.1016/j.ijbiomac.2023.124343] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2022] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Abstract
Tragacanth is an abundant natural gum extracted from wounds created in some plants and is dried for use in various applications from industry to biomedicines. It is a cost-effective and easily accessible polysaccharide with desirable biocompatibility and biodegradability, drawing much attention for use in new biomedical applications such as wound healing and tissue engineering. Moreover, this anionic polysaccharide with a highly branched structure has been used as an emulsifier and thickening agent in pharmaceutical applications. In the following, this gum has been interested as an appealing biomaterial for producing engineering tools in drug delivery. Furthermore, the biological properties of tragacanth gum have made it a favorable biomaterial in cell therapies, especially for bone tissue engineering. This review aims to discuss the recent studies on this natural gum as a potential carrier for different drugs and cells.
Collapse
Affiliation(s)
- Zahra Nazemi
- Faculty of New Sciences and Technologies, Semnan University, P.O. Box 19111-35131, Semnan, Iran
| | - Maryam Sahraro
- Department of Polyurethane and Advanced Materials, Iran Polymer & Petrochemical Institute, P.O. Box 14965-115, Tehran, Iran.
| | - Mahsa Janmohammadi
- Faculty of New Sciences and Technologies, Semnan University, P.O. Box 19111-35131, Semnan, Iran
| | - Mohammad Sadegh Nourbakhsh
- Faculty of New Sciences and Technologies, Semnan University, P.O. Box 19111-35131, Semnan, Iran; Faculty of Materials and Metallurgical Engineering, Semnan University, P.O. Box 19111-35131, Semnan, Iran.
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T 1C5, Canada; Montreal TransMedTech Institute, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
4
|
Keivanfard N, Nasirpour A, Barekat S, Keramat J. Effects of heat and high-pressure homogenization processes on rheological and functional properties of gum tragacanth. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023]
|
5
|
Microencapsulation and controlled release of α-tocopherol by complex coacervation between pea protein and tragacanth gum: A comparative study with arabic and tara gums. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023]
|
6
|
Ghobadi M, Koocheki A, Varidi MJ, Varidi M. Encapsulation of curcumin using Grass pea (Lathyrus sativus) protein isolate/Alyssum homolocarpum seed gum complex nanoparticles. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023]
|
7
|
Trapani A, Corbo F, Agrimi G, Ditaranto N, Cioffi N, Perna F, Quivelli A, Stefàno E, Lunetti P, Muscella A, Marsigliante S, Cricenti A, Luce M, Mormile C, Cataldo A, Bellucci S. Oxidized Alginate Dopamine Conjugate: In Vitro Characterization for Nose-to-Brain Delivery Application. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3495. [PMID: 34201634 PMCID: PMC8269503 DOI: 10.3390/ma14133495] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND The blood-brain barrier (BBB) bypass of dopamine (DA) is still a challenge for supplying it to the neurons of Substantia Nigra mainly affected by Parkinson disease. DA prodrugs have been studied to cross the BBB, overcoming the limitations of DA hydrophilicity. Therefore, the aim of this work is the synthesis and preliminary characterization of an oxidized alginate-dopamine (AlgOX-DA) conjugate conceived for DA nose-to-brain delivery. METHODS A Schiff base was designed to connect oxidized polymeric backbone to DA and both AlgOX and AlgOX-DA were characterized in terms of Raman, XPS, FT-IR, and 1H- NMR spectroscopies, as well as in vitro mucoadhesive and release tests. RESULTS Data demonstrated that AlgOX-DA was the most mucoadhesive material among the tested ones and it released the neurotransmitter in simulated nasal fluid and in low amounts in phosphate buffer saline. Results also demonstrated the capability of scanning near-field optical microscopy to study the structural and fluorescence properties of AlgOX, fluorescently labeled with fluorescein isothiocyanate microstructures. Interestingly, in SH-SY5Y neuroblastoma cell line up to 100 μg/mL, no toxic effect was derived from AlgOX and AlgOX-DA in 24 h. CONCLUSIONS Overall, the in vitro performances of AlgOX and AlgOX-DA conjugates seem to encourage further ex vivo and in vivo studies in view of nose-to-brain administration.
Collapse
Affiliation(s)
- Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, I-70125 Bari, Italy; (F.C.); (F.P.); (A.Q.)
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, I-70125 Bari, Italy; (F.C.); (F.P.); (A.Q.)
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, I-70125 Bari, Italy;
| | - Nicoletta Ditaranto
- Dipartimento di Chimica and CSGI-Bari Unit, Università degli Studi di Bari Aldo Moro, I-70125 Bari, Italy; (N.D.); (N.C.)
| | - Nicola Cioffi
- Dipartimento di Chimica and CSGI-Bari Unit, Università degli Studi di Bari Aldo Moro, I-70125 Bari, Italy; (N.D.); (N.C.)
| | - Filippo Perna
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, I-70125 Bari, Italy; (F.C.); (F.P.); (A.Q.)
| | - Andrea Quivelli
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, I-70125 Bari, Italy; (F.C.); (F.P.); (A.Q.)
- Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, I-70125 Bari, Italy
| | - Erika Stefàno
- Dipartimento Scienze e Tecnologie Biologiche e Ambientali, University of Salento, I-73100 Lecce, Italy; (E.S.); (P.L.); (A.M.); (S.M.)
| | - Paola Lunetti
- Dipartimento Scienze e Tecnologie Biologiche e Ambientali, University of Salento, I-73100 Lecce, Italy; (E.S.); (P.L.); (A.M.); (S.M.)
| | - Antonella Muscella
- Dipartimento Scienze e Tecnologie Biologiche e Ambientali, University of Salento, I-73100 Lecce, Italy; (E.S.); (P.L.); (A.M.); (S.M.)
| | - Santo Marsigliante
- Dipartimento Scienze e Tecnologie Biologiche e Ambientali, University of Salento, I-73100 Lecce, Italy; (E.S.); (P.L.); (A.M.); (S.M.)
| | - Antonio Cricenti
- ISM-CNR, Via del Fosso del Cavaliere 100, I-00133 Rome, Italy; (A.C.); (M.L.)
| | - Marco Luce
- ISM-CNR, Via del Fosso del Cavaliere 100, I-00133 Rome, Italy; (A.C.); (M.L.)
| | - Cristina Mormile
- Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, Via Enrico Fermi 54, Frascati, I-00044 Rome, Italy; (C.M.); (A.C.)
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Antonino Cataldo
- Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, Via Enrico Fermi 54, Frascati, I-00044 Rome, Italy; (C.M.); (A.C.)
| | - Stefano Bellucci
- Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati, Via Enrico Fermi 54, Frascati, I-00044 Rome, Italy; (C.M.); (A.C.)
| |
Collapse
|
8
|
Carpentier J, Conforto E, Chaigneau C, Vendeville JE, Maugard T. Complex coacervation of pea protein isolate and tragacanth gum: Comparative study with commercial polysaccharides. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
|
9
|
Oral peptide delivery: challenges and the way ahead. Drug Discov Today 2021; 26:931-950. [PMID: 33444788 DOI: 10.1016/j.drudis.2021.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2020] [Revised: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Peptides and proteins have emerged as potential therapeutic agents and, in the search for the best treatment regimen, the oral route has been extensively evaluated because of its non-invasive and safe nature. The physicochemical properties of peptides and proteins along with the hurdles in the gastrointestinal tract (GIT), such as degrading enzymes and permeation barriers, are challenges to their delivery. To address these challenges, several conventional and novel approaches, such as nanocarriers, site-specific and stimuli specific delivery, are being used. In this review, we discuss the challenges to the oral delivery of peptides and the approaches used to tackle these challenges.
Collapse
|
10
|
Mallakpour S, Sirous F, Hussain CM. Green synthesis of nano-Al 2O 3, recent functionalization, and fabrication of synthetic or natural polymer nanocomposites: various technological applications. NEW J CHEM 2021. [DOI: 10.1039/d0nj05578f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
Environmentally friendly fabrication of nano-Al2O3, recent functionalization, and preparation of polymer nanocomposites including natural and man-made polymers with various industrial applications are reviewed.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | - Fariba Sirous
- Organic Polymer Chemistry Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Islamic Republic of Iran
| | | |
Collapse
|
11
|
Dehghan-Niri M, Vasheghani-Farahani E, Baghaban Eslaminejad M, Tavakol M, Bagheri F. Physicomechanical, rheological and in vitro cytocompatibility properties of the electron beam irradiated blend hydrogels of tyramine conjugated gum tragacanth and poly (vinyl alcohol). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111073. [PMID: 32994011 DOI: 10.1016/j.msec.2020.111073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/30/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/28/2023]
Abstract
In the present study, preparation of blend hydrogels of tyramine conjugated gum tragacanth and poly (vinyl alcohol) was carried out by electron beam irradiation, and modification of hydrogel properties with poly (vinyl alcohol) was demonstrated. Gel content, swelling behavior, pore size and mechanical and rheological properties of hydrogels prepared at 14, 28 and 56 kilogray (kGy) with different ratios of polymers were investigated. Gel content increased from 67 ± 2% for pure tyramine conjugated gum tragacanth hydrogel to >92% for blend hydrogels. However, the corresponding equilibrium swelling degree decreased from 35.21 ± 1.51 to 9.14 ± 1.66 due to the higher crosslink density of blend hydrogel. The mechanical strength of the hydrogels with interconnected pores increased significantly in the presence of poly (vinyl alcohol) and increasing irradiation dose up to 28 kGy with a twenty-fold enhancement of stress fracture and excellent elastic recovery in cyclic compression analysis. The equilibrium swelling degree of blend hydrogel containing 3% w/v tyramine conjugated gum tragacanth and 2% w/v poly (vinyl alcohol) prepared at 28 kGy was 16.59 ± 0.81. The biocompatibility of hydrogels was tested in the presence of rabbit bone marrow mesenchymal stem cells. The viability of cells exposed to hydrogel extract was >92% after 7 days of culture and indicated hydrogel biocompatibility with potential biomedical applications.
Collapse
Affiliation(s)
- Maryam Dehghan-Niri
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Moslem Tavakol
- Department of Chemical & Polymer Engineering, Faculty of Engineering, Yazd University, Yazd, Iran
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
In vitro digestion of polysaccharide including whey protein isolate hydrogels. Carbohydr Polym 2020; 229:115469. [DOI: 10.1016/j.carbpol.2019.115469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 02/08/2023]
|
13
|
Chahibakhsh N, Hosseini E, lslam MS, Rahbar AR. Bitter almond gum reduces body mass index, serum triglyceride, hyperinsulinemia and insulin resistance in overweight subjects with hyperlipidemia. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/09/2023] Open
|
14
|
Nazarzadeh Zare E, Makvandi P, Tay FR. Recent progress in the industrial and biomedical applications of tragacanth gum: A review. Carbohydr Polym 2019; 212:450-467. [PMID: 30832879 DOI: 10.1016/j.carbpol.2019.02.076] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2019] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 02/08/2023]
Abstract
Natural polymers have distinct advantages over synthetic polymers because of their abundance, biocompatibility, and biodegradability. Tragacanth gum, an anionic polysaccharide, is a natural polymer which is derived from renewable sources. As a biomaterial, tragacanth gum has been used in industrial settings such as food packaging and water treatment, as well as in the biomedical field as drug carriers and for wound healing purposes. The present review provides an overview on the state-of-the-art in the field of tragacanth gum applications. The structure, properties, cytotoxicity, and degradability as well as the recent advances in industrial and biomedical applications of tragacanth gum are reviewed to offer a backdrop for future research.
Collapse
Affiliation(s)
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy; Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Franklin R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
15
|
Cikrikci S, Mert B, Oztop MH. Development of pH Sensitive Alginate/Gum Tragacanth Based Hydrogels for Oral Insulin Delivery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11784-11796. [PMID: 30346766 DOI: 10.1021/acs.jafc.8b02525] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/22/2023]
Abstract
Insulin entrapped alginate-gum tragacanth (ALG-GT) hydrogels at different ALG replacement ratios (100, 75, 50, 25) were prepared through an ionotropic gelation method, followed by chitosan (CH) polyelectrolyte complexation. A mild gelation process without the use of harsh chemicals was proposed to improve insulin efficiency. Retention of almost the full amount of entrapped insulin in a simulated gastric environment and sustained insulin release in simulated intestinal buffer indicated the pH sensitivity of the gels. Insulin release from hydrogels with different formulations showed significant differences ( p < 0.05). Time domain (TD) NMR relaxometry experiments also showed the differences for different formulations, and the presence of CH revealed that ALG-GT gel formulation could be used as an oral insulin carrier at optimum concentrations. The hydrogels formulated from biodegradable, biocompatible, and nontoxic natural polymers were seen as promising devices for potential oral insulin delivery.
Collapse
Affiliation(s)
- Sevil Cikrikci
- Food Engineering Department , Middle East Technical University , Ankara 06800 , Turkey
| | - Behic Mert
- Food Engineering Department , Middle East Technical University , Ankara 06800 , Turkey
| | - Mecit Halil Oztop
- Food Engineering Department , Middle East Technical University , Ankara 06800 , Turkey
| |
Collapse
|
16
|
Fabrication of lecithin-gum tragacanth muco-adhesive hybrid nano-carrier system for in-vivo performance of Amphotericin B. Carbohydr Polym 2018; 194:89-96. [DOI: 10.1016/j.carbpol.2018.04.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 02/02/2023]
|
17
|
Physicochemical and microstructural characterization of gum tragacanth added whey protein based films. Food Res Int 2018; 105:1-9. [DOI: 10.1016/j.foodres.2017.10.071] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 01/26/2023]
|
18
|
Salamanca CH, Yarce CJ, Moreno RA, Prieto V, Recalde J. Natural gum-type biopolymers as potential modified nonpolar drug release systems. Carbohydr Polym 2018; 189:31-38. [PMID: 29580414 DOI: 10.1016/j.carbpol.2018.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2017] [Revised: 01/10/2018] [Accepted: 02/03/2018] [Indexed: 11/29/2022]
Abstract
In this work, the relationship between surface properties and drug release mechanism from binary composition tablets formed by quetiapine fumarate and biopolymer materials was studied. The biopolymers correspond to xanthan and tragacanth gums, which are projected as modified drug release systems. The surface studies were carried out by the sessile drop method, while the surface free energy (SFE) was determinate through Young-Dupree and OWRK semi-empirical models. On the other hand, the drug release studies were performed by in vitro dissolution tests, where the data were analyzed through kinetic models of zero order, first order, Higuchi, and Korsmeyer-Peppas. The results showed that depending on the type and the proportion of biopolymer, surface properties, and the drug release processes are significantly affected, wherein tragacanth gum present a usual erosion mechanism, while xanthan gum describes a swelling mechanism that controls the release of the drug.
Collapse
Affiliation(s)
- Constain H Salamanca
- Universidad Icesi, Facultad de Ciencias Naturales, Programa de Maestría en Formulación de Productos Químicos y Derivados, Colombia; Departamento de Ciencias Farmacéuticas, Calle 18 No. 122 -135, Cali 760031, Colombia.
| | - Cristhian J Yarce
- Universidad Icesi, Facultad de Ciencias Naturales, Programa de Maestría en Formulación de Productos Químicos y Derivados, Colombia
| | - Roger A Moreno
- Departamento de Ciencias Farmacéuticas, Calle 18 No. 122 -135, Cali 760031, Colombia
| | - Vanessa Prieto
- Departamento de Ciencias Farmacéuticas, Calle 18 No. 122 -135, Cali 760031, Colombia
| | - Juanita Recalde
- Departamento de Ciencias Farmacéuticas, Calle 18 No. 122 -135, Cali 760031, Colombia
| |
Collapse
|
19
|
López-Cebral R, Peng G, Reys LL, Silva SS, Oliveira JM, Chen J, Silva TH, Reis RL. Dual delivery of hydrophilic and hydrophobic drugs from chitosan/diatomaceous earth composite membranes. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:21. [PMID: 29396700 DOI: 10.1007/s10856-018-6025-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/27/2017] [Accepted: 01/10/2018] [Indexed: 06/07/2023]
Abstract
Oral administration of drugs presents important limitations, which are frequently not granted the importance that they really have. For instance, hepatic metabolism means an important drug loss, while some patients have their ability to swell highly compromised (i.e. unconsciousness, cancer…). Sublingual placement of an accurate Pharmaceutical Dosage Form is an attractive alternative. This work explores the use of the β-chitosan membranes, from marine industry residues, composed with marine sediments for dual sublingual drug delivery. As proof of concept, the membranes were loaded with a hydrophilic (gentamicin) and a hydrophobic (dexamethasone) drug. The physico-chemical and morphological characterization indicated the successful incorporated of diatomaceous earth within the chitosan membranes. Drug delivery studies showed the potential of all formulations for the immediate release of hydrophilic drugs, while diatomaceous earth improved the loading and release of the hydrophobic drug. These results highlight the interest of the herein developed membranes for dual drug delivery.
Collapse
Affiliation(s)
- Rita López-Cebral
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark- Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.
- ICVS/3B's - PT Goverment Assciate Laboratory, Braga, Guimarães, Portugal.
| | - Guangjia Peng
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark- Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Goverment Assciate Laboratory, Braga, Guimarães, Portugal
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Lara L Reys
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark- Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Goverment Assciate Laboratory, Braga, Guimarães, Portugal
| | - Simone S Silva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark- Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Goverment Assciate Laboratory, Braga, Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark- Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Goverment Assciate Laboratory, Braga, Guimarães, Portugal
| | - Jie Chen
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark- Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai, 200444, China
| | - Tiago H Silva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark- Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Goverment Assciate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark- Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Goverment Assciate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
20
|
Nur M, Vasiljevic T. Insulin Inclusion into a Tragacanth Hydrogel: An Oral Delivery System for Insulin. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E79. [PMID: 29304023 PMCID: PMC5793577 DOI: 10.3390/ma11010079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/06/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 12/18/2022]
Abstract
Nanoparticles or microparticles created by physical complexation between two polyelectrolytes may have a prospective use as an excipient for oral insulin administration. Natural polymers such as tragacanth, alginate, dextran, pullulan, hyaluronic acid, gelatin and chitosan can be potential candidates for this purpose. In this research, insulin particles were prepared by the inclusion of insulin into a tragacanth hydrogel. The effect of the pH and concentration relationship involving polyelectrolytes offering individual particle size and zeta potential was assessed by zetasizer and scanning electron microscopy (SEM). Insulin-tragacanth interactions at varying pH (3.7, 4.3, 4.6, or 6), and concentration (0.1%, 0.5%, or 1% w/w) were evaluated by differential scanning calorimetry (DSC) and ATR Fourier transform infrared (ATR-FTIR) analysis. Individual and smaller particles, approximately 800 nm, were acquired at pH 4.6 with 0.5% of tragacanth. The acid gelation test indicated that insulin could be entrapped in the physical hydrogel of tragacanth. DSC thermograms of insulin-tragacanth showed shifts on the same unloaded tragacanth peaks and suggested polyelectrolyte-protein interactions at a pH close to 4.3-4.6. FTIR spectra of tragacanth-insulin complexes exhibited amide absorption bands featuring in the protein spectra and revealed the creation of a new chemical substance.
Collapse
Affiliation(s)
- Mokhamad Nur
- Advanced Food Systems Research Unit, College of Health and Biomedicine, Victoria University, PO Box 14428, Melbourne 8001, Australia.
- Department of Agricultural Product Technology, Faculty of Agricultural Technology, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia.
| | - Todor Vasiljevic
- Advanced Food Systems Research Unit, College of Health and Biomedicine, Victoria University, PO Box 14428, Melbourne 8001, Australia.
| |
Collapse
|
21
|
Niknia N, Kadkhodaee R. Gum tragacanth-polyvinyl alcohol cryogel and xerogel blends for oral delivery of silymarin: Structural characterization and mucoadhesive property. Carbohydr Polym 2017; 177:315-323. [DOI: 10.1016/j.carbpol.2017.08.110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2017] [Revised: 08/01/2017] [Accepted: 08/25/2017] [Indexed: 01/04/2023]
|
22
|
Ozel B, Cikrikci S, Aydin O, Oztop MH. Polysaccharide blended whey protein isolate-(WPI) hydrogels: A physicochemical and controlled release study. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.04.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2023]
|
23
|
Kondiah PPD, Choonara YE, Tomar LK, Tyagi C, Kumar P, du Toit LC, Marimuthu T, Modi G, Pillay V. Development of a Gastric Absorptive, Immediate Responsive, Oral Protein-Loaded Versatile Polymeric Delivery System. AAPS PharmSciTech 2017; 18:2479-2493. [PMID: 28205143 DOI: 10.1208/s12249-017-0725-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2016] [Accepted: 01/20/2017] [Indexed: 12/19/2022] Open
Abstract
A multifunctional platform to deliver three diverse proteins of insulin, interferon beta (INF-β) and erythropoietin (EPO), using a novel copolymeric microparticulate system of TMC-PEGDMA-MAA, was synthesised as an intelligent pH-responsive 2-fold gastric and intestinal absorptive system. Physiochemical and physicomechanical studies proved the degree of crystallinity that supported the controlled protein delivery of the microparticulate system. The copolymer was tableted before undertaking in vitro and in vivo analysis. After 2.5 h in simulated gastric fluid (SGF), insulin showed a fractional release of 3.2% in comparison to simulated intestinal fluid (SIF), in which a maximum of 83% of insulin was released. Similarly, INF-β and EPO released 3 and 9.7% in SGF and a maximum of 74 and 81.3% in SIF, respectively. In vivo studies demonstrated a significant decrease in blood glucose by 54.19% within 4 h post-dosing, and the comparator formulation provided 74.6% decrease in blood glucose within the same time period. INF-β peak bioavailable dose in serum was calculated to be 1.3% in comparison to an SC formulation having a peak concentration of 0.9%, demonstrating steady-state release for 24 h. EPO-loaded copolymeric microparticles had a 1.6% peak bioavailable concentration, in comparison to the 6.34% peak concentration after 8 h from the SC comparator formulation.
Collapse
|
24
|
|
25
|
Nur M, Vasiljevic T. Can natural polymers assist in delivering insulin orally? Int J Biol Macromol 2017; 103:889-901. [PMID: 28552728 DOI: 10.1016/j.ijbiomac.2017.05.138] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2017] [Revised: 05/01/2017] [Accepted: 05/23/2017] [Indexed: 02/02/2023]
Abstract
Diabetes mellitus is one of the most grave and lethal non communicable diseases. Insulin is normally used to medicate diabetes. Due to bioavailability issues, the most regular route of administration is through injection, which may pose compliance problems to treatment. The oral administration thus appears as a suitable alternative, but with several important problems. Low stability of insulin in the gastrointestinal tract and low intestinal permeation are some of the issues. Encapsulation of insulin into polymer-based particles emerges as a plausible strategy. Different encapsulation approaches and polymers have been used in this regard. Polymers with different characteristics from natural or synthetic origin have been assessed to attain this goal, with natural polymers being preferable. Natural polymers studied so far include chitosan, alginate, carrageenan, starch, pectin, casein, tragacanth, dextran, carrageenan, gelatine and cyclodextrin. While some promising knowledge and results have been gained, a polymeric-based particle system to deliver insulin orally has not been introduced onto the market yet. In this review, effectiveness of different natural polymer materials developed so far along with fabrication techniques are evaluated.
Collapse
Affiliation(s)
- Mokhamad Nur
- Advanced Food Systems Research Unit, College of Health and Biomedicine, Victoria University, PO Box 14428, Melbourne, 8001, Australia; Department of Agricultural Product Technology, Faculty of Agricultural Technology, Brawijaya University, Jl. Veteran, 65145, Malang, Indonesia
| | - Todor Vasiljevic
- Advanced Food Systems Research Unit, College of Health and Biomedicine, Victoria University, PO Box 14428, Melbourne, 8001, Australia.
| |
Collapse
|